Effective Removal of Hexavalent Chromium from Aqueous Solutions Using Quaternary Ammonium-Functionalized Magnetic Graphene Oxide Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Fabrication of Fe3O4 Nanoparticles
2.3. Synthesis of Quaternary Ammonium-Functionalized Magnetic Graphene Oxide Composite (M-PAS-GO)
2.4. Analytical Methods
2.5. Batch Sorption Experiment
3. Results and Discussion
3.1. Characterization of the M-PAS-GO Composite
3.2. Effect of pH on Cr(VI) Adsorption by M-PAS-GO Composite
3.3. Effect of M-PAS-GO Dosage on Cr(VI) Adsorption
3.4. Effect of Contact Time on Cr(VI) Adsorption by M-PAS-GO
3.5. Effect of Initial Concentration on Cr(VI) Adsorption by M-PAS-GO
3.6. Effect of Temperature on Cr(VI) Adsorption by GO and M-PAS-GO
3.7. Regeneration and Reuse of Adsorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Yue, R.; Gao, F.; Ren, R.; Wei, J.; Wang, X.; Kong, Z. Rapid preparation of adsorbent based on mussel inspired chemistry and simultaneous removal of heavy metal ions in water. Chem. Eng. J. 2020, 383, 123107. [Google Scholar] [CrossRef]
- Mondal, S.; Majumder, S.K. Fabrication of the polysulfone-based composite ultrafiltration membranes for the adsorptive removal of heavy metal ions from their contaminated aqueous solutions. Chem. Eng. J. 2020, 401, 126036. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, H.; Xue, F.; He, H.; Wang, S. Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism. Chem. Eng. J. 2020, 385, 123879. [Google Scholar] [CrossRef]
- Wu, S.; Dai, X.; Kan, J.; Shilong, F.; Zhu, M. Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin. Chem. Lett. 2017, 28, 625–632. [Google Scholar] [CrossRef]
- Castro-Riquelme, C.L.; López-Maldonado, E.A.; Ochoa-Terán, A.; Alcántar-Zavala, E.; Trujillo-Navarrete, B.; Pérez-Sicairos, S.; Miranda-Soto, V.; Zizumbo-López, A. Chitosan-carbamoylcarboxylic acid grafted polymers for removal of metal ions in wastewater. Chem. Eng. J. 2023, 456, 141034. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.; Xu, C.; Liu, P.; Lv, J.; Liu, Y.; Wang, Q. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study. J. Hazard. Mater. 2020, 384, 121371. [Google Scholar] [CrossRef]
- Liang, X.; Liang, B.; Wei, J.; Zhong, S.; Zhang, R.; Yin, Y.; Zhang, Y.; Hu, H.; Huang, Z. A cellulose-based adsorbent with pendant groups of quaternary ammonium and amino for enhanced capture of aqueous Cr(VI). Int. J. Biol. Macromol. 2020, 148, 802–810. [Google Scholar] [CrossRef]
- Kharrazi, S.M.; Soleimani, M.; Jokar, M.; Richards, T.; Pettersson, A.; Mirghaffari, N. Pretreatment of lignocellulosic waste as a precursor for synthesis of high porous activated carbon and its application for Pb (II) and Cr (VI) adsorption from aqueous solutions. Int. J. Biol. Macromol. 2021, 180, 299–310. [Google Scholar] [CrossRef]
- Pei, X.; Gan, L.; Tong, Z.; Gao, H.; Meng, S.; Zhang, W.; Wang, P.; Chen, Y. Robust cellulose-based composite adsorption membrane for heavy metal removal. J. Hazard. Mater. 2021, 406, 124746. [Google Scholar] [CrossRef] [PubMed]
- Ianăși, C.; Ianăși, P.; Negrea, A.; Ciopec, M.; Ivankov, O.I.; Kuklin, A.I.; Almásy, L.; Putz, A.-M. Effects of catalysts on structural and adsorptive properties of iron oxide-silica nanocomposites. Korean J. Chem. Eng. 2021, 38, 292–305. [Google Scholar] [CrossRef]
- Putz, A.-M.; Ciopec, M.; Negrea, A.; Grad, O.; Ianăși, C.; Ivankov, O.I.; Milanovic, M.; Stijepovic, I.; Almásy, L. Comparison of Structure and Adsorption Properties of Mesoporous Silica Functionalized with Aminopropyl Groups by the Co-Condensation and the Post Grafting Methods. Materials 2021, 14, 628. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Lora, I.; Wronski, N.; Bialas, A.; Osip, H.; Czosnek, C. Efficient Adsorption of Chromium Ions from Aqueous Solutions by Plant-Derived Silica. Molecules 2022, 27, 4171. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, L.; He, Y.; Li, J.; Dong, H.; Wang, X.; Hu, W. Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater. 2011, 23, 3959–3963. [Google Scholar] [CrossRef]
- Li, J.; Duan, Q.; Wu, Z.; Li, X.; Chen, C. Few-layered metal-organic framework nanosheets as a highly selective and efficient scavenger for heavy metal pollution treatment. Chem. Eng. J. 2019, 383, 123189. [Google Scholar] [CrossRef]
- Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Viana, M.; Amparo, S.; Lima, M.; Lopes, R.; Silva, G. Microwave-assisted synthesis of polyacrylamide-aminated graphene oxide hybrid hydrogel with improved adsorption properties. J. Environ. Chem. Eng. 2020, 8, 104415. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, P.; Du, W.; Liu, B.; Guo, Z. An Overview of Graphene and Its Derivatives Reinforced Metal Matrix Composites: Preparation, Properties and Applications. Carbon 2020, 170, 302–326. [Google Scholar] [CrossRef]
- Safaviyan, M.; Faramarzi, M.; Parsa, S.; Karimi, H. Tetraethylenepentamine-enriched magnetic graphene oxide as a novel Cr (VI) removal adsorbent. React. Funct. Polym. 2022, 180, 105410. [Google Scholar] [CrossRef]
- Boulanger, N.; Kuzenkova, A.; Iakunkov, A.; Romanchuk, A.; Trigub, A.; Egorov, A.; Bauters, S.; Amidani, L.; Retegan, M.; Kvashnina, K.; et al. Enhanced Sorption of Radionuclides by Defect-Rich Graphene Oxide. ACS Appl. Mater. Interfaces 2020, 12, 45122–45135. [Google Scholar] [CrossRef]
- Bao, S.; Liu, H.; Liu, Y.; Yang, W.; Li, K. Amino-functionalized graphene oxide-supported networked Pd–Ag nanowires as highly efficient catalyst for reducing Cr(VI) in industrial effluent by formic acid. Chemosphere 2020, 257, 127245. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, Y.; Xiong, L.; Huang, H.; Zhang, Q.; Li, L.; Yu, X.; Wei, L. Facile assembly of polyaniline/graphene oxide composite hydrogels as adsorbent for Cr(VI) removal. Polym. Compos. 2019, 40, E1777–E1785. [Google Scholar] [CrossRef]
- Huang, M.; Xie, L.; Wang, Y.; Feng, X.; Gao, J.; Lou, Z.; Xiong, Y. Efficient and selective capture of uranium by polyethyleneimine-modified chitosan composite microspheres from radioactive nuclear waste. Environ. Pollut. 2023, 316, 120550. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; He, H.; Zhou, H.; Quan, Z.; Chen, Z.; Wu, Q.; Zhu, H.; Wang, S. Structural design of a cellulose-based hyperbranched adsorbent for the rapid and complete removal of Cr(VI) from water. Chem. Eng. J. 2021, 417, 128037. [Google Scholar] [CrossRef]
- Park, S.H.; Shin, S.; Park, C.H.; Jeon, S.; Gwon, J.; Lee, S.Y.; Kim, S.J.; Kim, H.J.; Lee, J.H. Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity. J. Hazard. Mater. 2020, 394, 122512. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, L.; Duan, W.; Han, L.; Chen, Y. Adsorption of aqueous Cr (VI) by novel fibrous adsorbent with amino and quaternary ammonium groups. Ind. Eng. Chem. Res. 2012, 51, 13655–13662. [Google Scholar] [CrossRef]
- Lin, C.; Wang, X.; Hu, E.; Yang, Q.; Zhang, Q.; Zhu, A.; Liu, Q. Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability. J. Membr. Sci. 2017, 541, 358–366. [Google Scholar]
- Gao, Q.; Keller, A. Novel disinfection method for toxic cyanobacteria (Oscillatoria tenuis) and simultaneous removal of cyanotoxins aided by recyclable magnetic nanoparticles. J. Environ. Chem. Eng. 2021, 9, 106589. [Google Scholar] [CrossRef]
- Ragheb, E.; Shamsipur, M.; Jalali, F.; Mousavi, F. Modified magnetic-metal organic framework as a green and efficient adsorbent for removal of heavy metals. J. Environ. Chem. Eng. 2022, 10, 107297. [Google Scholar] [CrossRef]
- Mak, S.; Chen, D. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes. Pigm. 2004, 61, 93–98. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, D. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. J. Colloid Interf. Sci. 2005, 283, 446–451. [Google Scholar] [CrossRef]
- Hummers, W., Jr.; Offeman, R. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Liao, M.; Chen, D. Preparation and characterization of a novel magnetic nano-adsorbent. J. Mater. Chem. 2002, 12, 3654–3659. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Feng, J.; Zhang, J.; Deng, X.; Zhou, B.; Zhang, H.; Xue, D.; Li, F.; Mellors, N. One-pot polylol synthesis of graphene decorated with size-and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 2013, 60, 488–497. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef]
- Liu, M.; Wen, T.; Wu, X.; Chen, C.; Hu, J.; Li, J.; Wang, X. Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr (VI) removal. Dalton Trans. 2013, 42, 14710–14717. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y. Highly efficient and ultrafast removal of Cr(VI) in aqueous solution to ppb level by poly(allylamine hydrochloride) covalently cross-linked amino-modified graphene oxide. J. Hazard. Mater. 2021, 409, 124470. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, G.; Cano, Z.P.; Liu, G.; Liu, W.; Feng, K.; Lui, G.; Zhang, Z.; Chen, Z. Highly efficient removal of suspended solid pollutants from wastewater by magnetic Fe3O4-graphene oxides nanocomposite. ChemistrySelect 2018, 3, 11643–11648. [Google Scholar] [CrossRef]
- He, Y.; Xiao, W.; Li, G.; Yang, F.; Wu, P.; Yang, T.; Chen, C.; Ding, P. A novel lead-ion-imprinted magnetic biosorbent: Preparation, optimization and characterization. Environl. Technol. 2017, 40, 1397762. [Google Scholar] [CrossRef] [PubMed]
- Bouazizi, N.; Vieillard, J.; Bargougui, R.; Couvrat, N.; Thoumire, O.; Morin, S.; Ladam, G.; Mofaddel, N.; Brun, N.; Azzouz, A.; et al. Entrapment and stability of iron nanoparticles within APTES modified graphene oxide sheets with improved catalytic activity. J. Alloys Compd. 2019, 771, 1090–1102. [Google Scholar] [CrossRef]
- Tran, H.V.; Tran, T.L.; Le, T.D.; Le, T.D.; Nguyen, H.M.T.; Dang, L.T. Graphene oxide enhanced adsorption capacity of chitosan/magnetite nanocomposite for Cr(VI) removal from aqueous solution. Mater. Res. Express 2018, 6, 25018. [Google Scholar] [CrossRef]
- Sravanthi, K.; Ayodhya, D.; Swamy, P. Eco-friendly synthesis and characterization of phytogenic zero-valent iron nanoparticles for efficient removal of Cr(VI) from contaminated water. Emergent Mater. 2019, 2, 327–335. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Zhang, T. Preparation of magnetic zeolite/chitosan composite using silane as modifier for adsorption of Cr(VI) from aqueous solutions. J. Vinyl. Addit. Technol. 2021, 27, 640–654. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, R.; Yang, Y.; Huang, L.; Chen, N.; Xie, Q. Study of ion-imprinted adsorbent materials on diatom-based Cr(VI) Surfaces. Mater. Lett. 2022, 308, 131149. [Google Scholar] [CrossRef]
- Jia, W.; Du, J.; Jiang, M.; Zhang, M.; Han, E.; Niu, H.; Wu, D. Preparation and Cr (VI) adsorption of functionalized polyimide fibers. J. Appl. Polym. Sci. 2022, 139, e52799. [Google Scholar] [CrossRef]
- Chen, G.; Li, H.; Yang, X.; Wen, J.; Pang, Q.; Zhang, J. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study. Superlattices Microstruct. 2018, 115, 108–115. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, X.; Liu, Q.; Jing, X.; Liu, J.; Song, D.; Hu, S.; Liu, L.; Wang, J. Synthesis of Fe3O4@ TiO2 core–shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf. 2015, 469, 279–286. [Google Scholar] [CrossRef]
Adsorbents | pH | qm (mg/g) | Ref. |
---|---|---|---|
Phytogenic zero-valent iron nanoparticles | 4.3–10.0 | 9.0 | [44] |
Separable magnetic zeolite/chitosan composite (MZFA/CS) | 3.0 | 16.96 | [45] |
Ion-imprinted adsorbent material | 2.5 | 2.4 | [46] |
PI-PEI | 2.0–6.0 | 44.67 | [47] |
Mg-Al-LDH | 1.75–6.0 | 38.9 | [48] |
Fe(III)–chitosan microbeads (Fe-CTB) | 3.0 | 34.15 | [49] |
M-PAS-GO | 3.20 | 46.48 | This work |
Model | Parameter | GO | M-PAS-GO |
---|---|---|---|
Qexp (mg/L) | 2.75 | 37.47 | |
Pseudo-first-order model | Q1cal (mg/g) | 1.4969 | 13.8810 |
k1 (min−1) | 0.0339 | 0.03823 | |
R2 | 0.9382 | 0.8074 | |
Pseudo-second-order model | Q2cal (mg/g) | 2.7896 | 37.8072 |
k2 (g/(mg·min)) | 0.0955 | 0.0142 | |
h (mg/(g·min)) | 0.7434 | 20.3417 | |
R2 | 0.9980 | 0.9995 |
Model | Parameter | GO | M-APTES-GO | M-PAS-GO |
---|---|---|---|---|
Langmuir | qm (mg/g) | 5.67 | 24.65 | 46.48 |
b(L/mg) | 0.0496 | 1.2495 | 1.5288 | |
R2 | 0.9571 | 0.9913 | 0.9735 | |
Freundlich | Kf(L/g) | 0.654 | 12.584 | 24.013 |
n | 2.1953 | 4.2513 | 5.5172 | |
R2 | 0.9255 | 0.9892 | 0.9311 | |
Temkin | A(L/mg) | 0.6171 | 46.2513 | 125.5374 |
B | 1.1511 | 4.1564 | 5.4697 | |
R2 | 0.9480 | 0.9586 | 0.9600 |
Adsorbents | ∆G°ads (kJ/mol) | ∆H°ads (kJ/mol) | ∆S°ads (J/(mol·k)) | |||
---|---|---|---|---|---|---|
298 K | 308 K | 318 K | 328 K | |||
GO | 3.59 | 4.36 | 5.13 | 5.90 | −19.33 | −76.90 |
M-PAS-GO | −3.15 | −3.06 | −2.98 | −2.89 | −5.70 | −8.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Huang, W.; Chen, Y.; Sun, J.; Liang, M.; Guo, Y.; Liu, X.; Liu, M.; Wei, Y.; Wei, J.; et al. Effective Removal of Hexavalent Chromium from Aqueous Solutions Using Quaternary Ammonium-Functionalized Magnetic Graphene Oxide Composites. Separations 2023, 10, 463. https://doi.org/10.3390/separations10090463
Huang Y, Huang W, Chen Y, Sun J, Liang M, Guo Y, Liu X, Liu M, Wei Y, Wei J, et al. Effective Removal of Hexavalent Chromium from Aqueous Solutions Using Quaternary Ammonium-Functionalized Magnetic Graphene Oxide Composites. Separations. 2023; 10(9):463. https://doi.org/10.3390/separations10090463
Chicago/Turabian StyleHuang, Yue, Weibin Huang, Ying Chen, Jianteng Sun, Maofeng Liang, Yonggui Guo, Xiaping Liu, Mingqiang Liu, Yajing Wei, Junfu Wei, and et al. 2023. "Effective Removal of Hexavalent Chromium from Aqueous Solutions Using Quaternary Ammonium-Functionalized Magnetic Graphene Oxide Composites" Separations 10, no. 9: 463. https://doi.org/10.3390/separations10090463
APA StyleHuang, Y., Huang, W., Chen, Y., Sun, J., Liang, M., Guo, Y., Liu, X., Liu, M., Wei, Y., Wei, J., Zhang, H., & Wang, H. (2023). Effective Removal of Hexavalent Chromium from Aqueous Solutions Using Quaternary Ammonium-Functionalized Magnetic Graphene Oxide Composites. Separations, 10(9), 463. https://doi.org/10.3390/separations10090463