Carob Pulp Flour Extract Obtained by a Microwave-Assisted Extraction Technique: A Prospective Antioxidant and Antimicrobial Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Microwave-Assisted Extraction Process
2.4. Total Extraction Yield
2.5. Total Polyphenols Content
2.6. Antioxidant Activity
2.7. Experimental Plan and Statistical Analysis
2.8. Conventional and Ultrasound-Assisted Extraction
2.9. Phenolic Profile and HPLC Analysis
2.10. Antimicrobial Activity: The Broth Microdilution Method
3. Results and Discussion
3.1. Model Fitting
3.2. Yield of Targeted Compounds
3.3. Antioxidant Activity
3.4. Process Optimization and Comparison with Other Extraction Techniques
3.5. Quantification of Polyphenols
3.6. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Solana, R.; Romano, A.; Moreno-Rojas, J.M. Carob Pulp: A Nutritional and Functional By-Product Worldwide Spread in the Formulation of Different Food Products and Beverages. A Review. Processes 2021, 9, 1146. [Google Scholar] [CrossRef]
- Battle, I.; Tous, J. Carob Tree (Ceratonia siliqua L.). Promoting the Conservation and Use of Underutilized and Neglected Crops. 17; Institute of Plant Genetics and Crop Plant Research, International Plant Genetic Resources Institute: Rome, Italy, 1997; pp. 7–8. [Google Scholar]
- Thakur, M.; Singh, K.; Khedkar, R. Phytochemicals: Extraction process, safety assessment, toxicological evaluations and regulatory issues. In Functional and Preservative Properties of Phytochemicals; Prakash, B., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 341–356. [Google Scholar]
- San Miguel-Chávez, R. Phenolic antioxidant capacity: A review of the state of the art. In Phenolic Compounds—Biological Activity; Soto-Hernndez, M., Palma-Tenango, M., Garcia-Mateos, M.D.R., Eds.; InTech: Rijeka, Croatia, 2017; pp. 59–74. [Google Scholar]
- Dhaouadi, K.; Belkhir, M.; Akinocho, I.; Raboudi, F.; Pamies, D.; Barrajón, E.; Estevan, C.; Fattouch, S. Sucrose supplementation during traditional carob syrup processing affected its chemical characteristics and biological activities. LWT Food Sci. Technol. 2014, 57, 1–8. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; El-Baky, R.M.A.; Desoukey, S.Y.; Abd-Lateff, A.; Kamel, M.S. Bacterial growth inhibitory effect of Ceratonia siliqua L. plant extracts alone and in combination with some antimicrobial agents. J. Adv. Biotechnol. Bioeng. 2013, 1, 3–13. [Google Scholar] [CrossRef]
- Tounsi, L.; Ghazala, I.; Kechaou, N. Physicochemical and phytochemical properties of Tunisian carob molasses. J. Food Meas. Charact. 2020, 14, 20–30. [Google Scholar] [CrossRef]
- Ameer, K.; Bae, S.-W.; Jo, Y.; Lee, H.-G.; Ameer, A.; Kwon, J.-H. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chem. 2017, 229, 198–207. [Google Scholar] [CrossRef]
- Nabet, N.; Gilbert-López, B.; Madani, K.; Herrero, M.; Ibáñez, E.; Mendiola, J.A. Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Ind. Crops Prod. 2019, 129, 395–404. [Google Scholar] [CrossRef]
- Sarfarazi, M.; Jafari, S.M.; Rajabzadeh, G.; Galanakis, C.M. Evaluation of microwave-assisted extraction technology for separation of bioactive components of saffron (Crocus sativus L.). Ind. Crops Prod. 2020, 145, 111978. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Rodríguez-Rojo, S.; Visentin, A.; Maestri, D.; Cocero, M.J. Assisted extraction of rosemary antioxidants with green solvents. J. Food Eng. 2012, 109, 98–103. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Nibin Joy, M.; Bodke, J.D.; Telkar, S.; Bakulev, V.A. Synthesis of coumarins linked with 1,2,3-triazoles under microwave irradiation and evaluation of their antimicrobial and antioxidant activity. J. Mex. Chem. Soc. 2020, 64, 53–57. [Google Scholar] [CrossRef]
- Todorov, L.; Saso, L.; Kostova, I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals 2023, 16, 651. [Google Scholar] [CrossRef]
- Patil, S.A.; Nesaragi, A.R.; Rodríguez-Berrios, R.R.; Hampton, S.M.; Bugarin, A.; Patil, S.A. Coumarin triazoles as potential antimicrobial agents. Antibiotics 2023, 12, 160. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, A.; Yadav, S. Pharmacological potential of coumarin-based derivates: A comprehensive review. Orient. J. Chem. 2023, 39, 568–576. [Google Scholar] [CrossRef]
- Huma, Z.E.; Jayasena, V.; Nasar-Abbas, S.M.; Imran, M.; Khan, M.K. Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J. Food Process. Preserv. 2018, 42, e13450. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Mellinas, C.; Garrigos, M.C.; Balart, R.; Torres-Giner, S. Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods. Food Anal. Methods 2019, 12, 2480–2490. [Google Scholar] [CrossRef]
- Martić, N.; Zahorec, J.; Stilinović, N.; Andrejić-Višnjić, B.; Pavlić, B.; Kladar, N.; Šoronja-Simović, D.; Šereš, Z.; Vujčić, M.; Horvat, O.; et al. Hepatoprotective effect of carob pulp flour (Ceratonia siliqua L.) extract obtained by optimized microwave-assisted extraction. Pharmaceutics 2022, 14, 657. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. Continuous and pulsed ultrasound-assisted extraction of carob’s antioxidants: Processing parameters optimization and identification of polyphenolic composition. Ultrason. Sonochem. 2021, 76, 105630. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Harborne, J.B. Plant phenolics. In Methods in Plant Biochemistry; Academic Press Ltd.: London, UK, 1989; Volume 1. [Google Scholar]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction pre-pared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggenete, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Salaj, N.; Kladar, N.; Srđenović, Č.B.; Jeremić, K.; Barjaktarović, J.; Hitl, M.; Gavarić, N.; Božin, B. Stabilization of sunflower and olive oils with savory (Satureja kitaibelii, Lamiaceae). J. Food Nutr. Res. 2020, 59, 259–271. [Google Scholar]
- Kocić-Tanackov, S.; Blagojev, N.; Suturović, I.; Dimić, G.; Pejin, J.; Tomović, V.; Sojić, B.; Savanović, J.; Kravić, S.; Karabasil, N. Antibacterial activity of essential oils against Escherichia coil, Salmonella enterica and Listeria monocytogenes. J. Food Saf. Food Qual. 2017, 68, 88–95. [Google Scholar]
- Karami, Z.; Emam-Djomeh, Z.; Mirzaee, H.A.; Khomeiri, M.; Mahoonak, A.S.; Aydani, E. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compounds from licorice root. J. Food Sci. Technol. 2015, 52, 3242–3253. [Google Scholar] [CrossRef]
- Zhao, C.-N.; Zhang, J.-J.; Li, Y.; Meng, X.; Li, H.-B. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules 2018, 23, 2498. [Google Scholar] [CrossRef]
- Teslić, N.; Bojanić, N.; Rakić, D.; Takači, A.; Zeković, Z.; Fišteš, A.; Bodroža-Solarov, M.; Pavlić, B. Deffated wheat germ as source of polyphenols—Optimization of microwave-assisted extraction by RSM and ANN approach. Chem. Eng. Process. Process Intens. 2019, 143, 107634. [Google Scholar] [CrossRef]
- Petkova, N.; Petrova, I.; Ivanov, I.; Mihov, R.; Hadjikinova, R.; Ognyanov, M.; Nikolova, V. Nutritional and antioxidant potential of carob (Ceratonia siliqua L.) flour and evaluation of functional properties of its polysaccharide fraction. J. Pharm. Sci. Res. 2017, 9, 2189–2195. [Google Scholar]
- Chew, Y.L.; Goh, J.K.; Lim, Y.Y. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem. 2009, 116, 13–18. [Google Scholar] [CrossRef]
- Zeković, Z.; Vladić, J.; Vidović, S.; Adamović, D.; Pavlić, B. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants—Response surface methodology approach. J. Sci. Food Agric. 2016, 96, 4613–4622. [Google Scholar] [CrossRef]
- Papagiannopoulos, M.; Rainer Wollseifen, H.; Mellenthin, A.; Haber, B.; Galensa, R. Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J. Agric. Food Chem. 2004, 52, 3784–3791. [Google Scholar] [CrossRef]
- Goulas, V.; Georgiou, E. Utilization of carob fruit as sources of phenolic compounds with antioxidant potential: Extraction optimization and application in food models. Foods 2020, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effect, and health impact. Food Chem. 2018, 269, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Ait Ouahioune, L.; Wrona, M.; Becerril, R.; Salafranca, J.; Nerín, C.; Djenane, D. Ceratonia siliqua L. kibbles, seeds and leaves as a source of volatile bioactive compounds for antioxidant food biopackaging applications. Food Packag. Shelf Life 2022, 31, 100764. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Trigui, M.; Ben Mansour, R.; Mezghani Jarraya, R.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effects of thyme and basil essential oils, carvacrol, thyme, estragol, linalool and p-cymene towards Shigella zonnei and S. flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Anwar, R.; Hajardhini, P. Antibacterial Activity of Gallic Acid from the Leaves of Altingia excelsa Noronha to Enterococcus faecalis. Open Access Maced. J. Med. Sci. 2022, 10, 1–6. [Google Scholar] [CrossRef]
- Pinho, E.; Ferreira, I.; Barros, L.; Carvalho, A.M.; Soares, G.; Henriques, M. Antibacterial potential of northeastern Portugal wild plant extracts and respective phenolic compounds. BioMed Res. Int. 2014, 2014, 814590. [Google Scholar] [CrossRef]
- Cowan, M.M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Khelouf, I.; Jabri Karoui, I.; Abderrabba, M. Chemical composition, in vitro antioxidant and antimicrobial activities of carob pulp (Ceratonia siliqua L.) from Tunisia. Chem. Pap. 2023. [Google Scholar] [CrossRef]
Independent Variables | Coded Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Natural Levels | |||
L/S ratio (mL/g) | 10 | 20 | 30 |
Extraction time (min) | 15 | 25 | 35 |
Ethanol concentration (%) | 40 | 60 | 80 |
Run | Input Factors * | Responses | |||||||
---|---|---|---|---|---|---|---|---|---|
X1 [mL/g] | X2 [min] | X3 [%] | Y [%] | TP [mg GAE/100 g] | TF [mg CE/100 g] | DPPH [µM TE/g] | FRAP [µM Fe2+/g] | ABTS [µM TE/g] | |
1 | 20 | 25 | 60 | 42.28 | 960.56 | 205.52 | 75.67 | 31.66 | 110.78 |
2 | 20 | 25 | 80 | 36.94 | 635.88 | 177.34 | 61.27 | 22.93 | 56.24 |
3 | 20 | 25 | 60 | 42.62 | 1055.52 | 196.45 | 79.00 | 38.11 | 125.30 |
4 | 20 | 25 | 60 | 42.88 | 946.78 | 192.63 | 75.67 | 35.55 | 113.04 |
5 | 10 | 15 | 40 | 41.42 | 875.41 | 184.45 | 74.00 | 37.76 | 124.12 |
6 | 30 | 15 | 40 | 59.48 | 1603.80 | 309.18 | 139.74 | 48.33 | 171.22 |
7 | 20 | 25 | 60 | 38.06 | 966.78 | 178.30 | 79.67 | 33.55 | 114.04 |
8 | 30 | 35 | 40 | 58.48 | 1801.36 | 326.86 | 155.19 | 57.68 | 200.26 |
9 | 20 | 15 | 60 | 42.58 | 926.87 | 175.91 | 83.57 | 35.02 | 110.46 |
10 | 10 | 35 | 80 | 29.77 | 545.37 | 113.27 | 49.68 | 24.21 | 65.71 |
11 | 30 | 15 | 80 | 51.80 | 948.31 | 247.56 | 101.82 | 28.57 | 96.35 |
12 | 10 | 15 | 80 | 36.23 | 568.34 | 116.85 | 52.32 | 22.85 | 71.85 |
13 | 20 | 35 | 60 | 43.74 | 986.60 | 182.59 | 81.46 | 37.84 | 112.07 |
14 | 10 | 25 | 60 | 41.40 | 833.30 | 158.89 | 68.91 | 34.23 | 101.05 |
15 | 20 | 25 | 60 | 40.98 | 922.28 | 174.47 | 90.24 | 39.52 | 112.39 |
16 | 10 | 35 | 40 | 37.90 | 881.54 | 159.61 | 65.75 | 34.01 | 102.34 |
17 | 30 | 25 | 60 | 57.08 | 1429.21 | 269.53 | 133.78 | 44.98 | 142.82 |
18 | 20 | 25 | 40 | 42.32 | 1124.44 | 209.35 | 102.70 | 48.06 | 138.85 |
19 | 30 | 35 | 80 | 45.04 | 899.30 | 234.66 | 96.91 | 29.27 | 89.90 |
20 | 20 | 25 | 60 | 41.70 | 785.97 | 182.59 | 88.13 | 37.93 | 116.26 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Total extraction yield | |||||
Model | 1061.39 | 9 | 117.93 | 27.87 | <0.0001 |
Residual | 42.31 | 10 | 4.23 | ||
Lack of Fit | 26.44 | 5 | 5.29 | 1.67 | 0.2946 |
Pure Error | 15.87 | 5 | 3.17 | ||
Cor Total | 1103.70 | 19 | |||
Total phenols content | |||||
Model | 1,814,965.24 | 9 | 201,661.80 | 41.46 | <0.0001 |
Residual | 48,640.46 | 10 | 4864.05 | ||
Lack of Fit | 10,071.24 | 5 | 2014.25 | 0.26 | 0.9166 |
Pure Error | 38,569.22 | 5 | 7713.84 | ||
Cor Total | 1,863,596.70 | 19 | |||
Total flavonoids content | |||||
Model | 55,465.88 | 9 | 6162.88 | 33.29 | <0.0001 |
Residual | 1851.45 | 10 | 185.14 | ||
Lack of Fit | 1145.89 | 5 | 229.18 | 1.62 | 0.3038 |
Pure Error | 705.57 | 5 | 141.11 | ||
Cor Total | 57,317.33 | 19 | |||
DPPH | |||||
Model | 14,441.65 | 9 | 1604.63 | 44.03 | <0.0001 |
Residual | 364.47 | 10 | 36.45 | ||
Lack of Fit | 166.62 | 5 | 33.32 | 0.84 | 0.5725 |
Pure Error | 197.86 | 5 | 39.57 | ||
Cor Total | 14,806.13 | 19 | |||
FRAP | |||||
Model | 1404.33 | 9 | 156.04 | 15.58 | <0.0001 |
Residual | 100.18 | 10 | 10.02 | ||
Lack of Fit | 54.59 | 5 | 10.92 | 1.20 | 0.4241 |
Pure Error | 45.59 | 5 | 9.12 | ||
Cor Total | 1504.51 | 19 | |||
ABTS | |||||
Model | 20,404.96 | 9 | 2267.22 | 34.20 | <0.0001 |
Residual | 662.96 | 10 | 66.30 | ||
Lack of Fit | 526.44 | 5 | 105.29 | 3.86 | 0.0824 |
Pure Error | 136.51 | 5 | 27.03 | ||
Cor Total | 21,067.91 | 19 |
Response | ||||||
---|---|---|---|---|---|---|
Y | TP | TF | DPPH | FRAP | ABTS | |
β0 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
Linear | ||||||
β1 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | 0.0002 * | <0.0001 * |
β2 | 0.0289 * | 0.4057 | 0.7017 | 0.9000 | 0.3197 | 0.8880 |
β3 | 0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
Cross product | ||||||
β12 | 0.7108 | 0.4214 | 0.4085 | 0.2380 | 0.1948 | 0.0530 |
β13 | 0.2097 | 0.0009 * | 0.3245 | 0.0065 * | 0.0256 * | 0.0019 * |
β23 | 0.1657 | 0.1925 | 0.8135 | 0.4079 | 0.7008 | 0.4089 |
Quadratic | ||||||
β11 | 0.0005 * | 0.0029 * | 0.0092 * | 0.0014 * | 0.3271 | 0.0332 * |
β22 | 0.8616 | 0.8238 | 0.3211 | 0.4400 | 0.5409 | 0.7744 |
β33 | 0.0236 * | 0.0676 | 0.5157 | 0.3647 | 0.3495 | 0.0314 * |
Sample * | TP [mg GAE/100 g] | TF [mg CE/100 g] | DPPH [µM TE/g] | FRAP [µM Fe2+/g] | ABTS [µM TE/g] |
---|---|---|---|---|---|
MAEpredicted | 1774.74 ± 88.74 | 315.53 ± 15.78 | 153.33 ± 7.67 | 56.98 ± 2.85 | 194.08 ± 9.70 |
MAEexperimental | 1609.92 ± 56.15 | 271.92 ± 5.73 | 99.02 ± 6.41 | 50.45 ± 5.36 | 110.55 ± 9.74 |
S/L | 1121.37 ± 32.27 | 190.72 ± 7.89 | 72.68 ± 4.21 | 10.39 ± 2.20 | 75.06 ± 7.33 |
UAE | 1148.94 ± 50.61 | 182.59 ± 6.46 | 65.31 ± 9.18 | 9.33 ± 1.86 | 57.63 ± 21.33 |
Microorganism | Parameter * | MAE | S/L | UAE |
---|---|---|---|---|
S. aureus | MIC (μL/mL) | 227.27 | 227.27 | >454.54 |
MBC (μL/mL) | 454.54 | 454.54 | >454.54 | |
B. cereus | MIC (μL/mL) | 227.27 | 227.27 | 454.54 |
MBC (μL/mL) | 454.54 | 454.54 | >454.54 | |
E. coli | MIC (μL/mL) | 227.27 | 227.27 | >454.54 |
MBC (μL/mL) | 454.54 | 454.54 | >454.54 | |
S. cerevisiae | MIC (μL/mL) | >454.54 | >454.54 | >454.54 |
MBC (μL/mL) | >454.54 | >454.54 | >454.54 | |
A. flavus | MIC (μL/mL) | >454.54 | >454.54 | >454.54 |
MFC (μL/mL) | >454.54 | >454.54 | >454.54 | |
P. aurantiogriseum | MIC (μL/mL) | >454.54 | >454.54 | >454.54 |
MFC (μL/mL) | >454.54 | >454.54 | >454.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahorec, J.; Šoronja-Simović, D.; Kocić-Tanackov, S.; Bulut, S.; Martić, N.; Bijelić, K.; Božović, D.; Pavlić, B. Carob Pulp Flour Extract Obtained by a Microwave-Assisted Extraction Technique: A Prospective Antioxidant and Antimicrobial Agent. Separations 2023, 10, 465. https://doi.org/10.3390/separations10090465
Zahorec J, Šoronja-Simović D, Kocić-Tanackov S, Bulut S, Martić N, Bijelić K, Božović D, Pavlić B. Carob Pulp Flour Extract Obtained by a Microwave-Assisted Extraction Technique: A Prospective Antioxidant and Antimicrobial Agent. Separations. 2023; 10(9):465. https://doi.org/10.3390/separations10090465
Chicago/Turabian StyleZahorec, Jana, Dragana Šoronja-Simović, Sunčica Kocić-Tanackov, Sandra Bulut, Nikola Martić, Katarina Bijelić, Danica Božović, and Branimir Pavlić. 2023. "Carob Pulp Flour Extract Obtained by a Microwave-Assisted Extraction Technique: A Prospective Antioxidant and Antimicrobial Agent" Separations 10, no. 9: 465. https://doi.org/10.3390/separations10090465
APA StyleZahorec, J., Šoronja-Simović, D., Kocić-Tanackov, S., Bulut, S., Martić, N., Bijelić, K., Božović, D., & Pavlić, B. (2023). Carob Pulp Flour Extract Obtained by a Microwave-Assisted Extraction Technique: A Prospective Antioxidant and Antimicrobial Agent. Separations, 10(9), 465. https://doi.org/10.3390/separations10090465