Exploring the Impact of In Vitro Gastrointestinal Digestion in the Bioaccessibility of Phenolic-Rich Chestnut Shells: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. In Vitro Simulated Digestion
2.4. Recovery of Phenolic Compounds from Chestnut Shells
2.5. Total Phenolic Content
2.6. Total Flavonoid Content
2.7. In Vitro Antioxidant/Antiradical Properties
2.8. Reactive Oxygen and Nitrogen Species Quenching Assays
2.8.1. Superoxide Anion Radical Quenching Assay
2.8.2. Hydrogen Peroxide Quenching Assay
2.8.3. Hydroxyl Radical Quenching Assay
2.8.4. Hypochlorous Acid Quenching Assay
2.8.5. Peroxyl Radical Quenching Assay
2.8.6. Peroxynitrite Quenching Assay
2.9. Acetylcholinesterase Activity
2.10. Metabolomic Analysis by LC-ESI-LTQ-Orbitrap-MS
2.11. Statistical Analysis
3. Results
3.1. Effect of In Vitro Digestion in the Phenolic and Flavonoid Contents
3.2. Bioaccessibility
3.3. Effect of In Vitro Digestion on the Antioxidant/Antiradical Properties
3.4. Scavenging Activity against Reactive Oxygen and Nitrogen Species upon In Vitro Digestion
3.5. Inhibition of Acetylcholinesterase Activity upon In Vitro Digestion
3.6. Metabolomic Profiling of Chestnut Shells by LC-ESI-LTQ-Orbitrap-MS upon In Vitro Digestion
3.7. Screening of Potential Correlations between Phenolic Composition and Bioactivity upon In Vitro Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinto, D.; Cádiz-Gurrea, M.D.L.L.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Castanea sativa shells: A review on phytochemical composition, bioactivity and waste management approaches for industrial valorization. Food Res. Int. 2021, 144, 110364. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Cádiz-Gurrea, M.D.L.L.; Silva, A.M.; Delerue-Matos, C.; Rodrigues, F. Chapter 25—Cosmetics—Food Waste Recovery. In Food Waste Recovery, 2nd ed.; Galanakis, C.M., Ed.; Academic Press: San Diego, CA, USA, 2021; pp. 503–528. [Google Scholar] [CrossRef]
- Almeida, D.; Pinto, D.; Santos, J.; Vinha, A.F.; Palmeira, J.; Ferreira, H.N.; Rodrigues, F.; Oliveira, M.B.P.P. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem. 2018, 259, 113–121. [Google Scholar] [CrossRef] [PubMed]
- de Francisco, L.M.B.; Pinto, D.; Rosseto, H.C.; de Toledo, L.D.A.S.; Dos Santos, R.S.; Costa, P.; Rodrigues, F.; Oliveira, M.B.P.P.; Sarmento, B.; Bruschi, M.L. Development of a microparticulate system containing Brazilian propolis by-product and gelatine for ascorbic acid delivery: Evaluation of intestinal cell viability and radical scavenging activity. Food Funct. 2018, 9, 4194–4206. [Google Scholar] [CrossRef] [PubMed]
- Dorosh, O.; Moreira, M.M.; Pinto, D.; Peixoto, A.F.; Freire, C.; Costa, P.; Rodrigues, F.; Delerue-Matos, C. Evaluation of the extraction temperature influence on polyphenolic profiles of vine-canes (Vitis vinifera) subcritical water extracts. Foods 2020, 9, 872. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Silva, A.M.; Pinto, D.; Moreira, M.M.; Ferraz, R.; Švarc-Gajić, J.; Costa, P.C.; Delerue-Matos, C.; Rodrigues, F. New perspectives on the sustainable employment of chestnut shells as active ingredient against oral mucositis: A first screening. Int. J. Mol. Sci. 2022, 23, 14956. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Cádiz-Gurrea, M.D.L.L.; Sut, S.; Ferreira, A.S.; Leyva-Jimenez, F.J.; Dall’Acqua, S.; Segura-Carretero, A.; Delerue-Matos, C.; Rodrigues, F. Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by supercritical fluid extraction with CO2: A response surface methodology approach. J. CO2 Util. 2020, 40, 101194. [Google Scholar] [CrossRef]
- Pinto, D.; Reis, J.; Silva, A.M.; Salazar, M.; Dall’Acqua, S.; Delerue-Matos, C.; Rodrigues, F. Valorisation of Salicornia ramosissima biowaste by a green approach—An optimizing study using response surface methodology. Sustain. Chem. Pharm. 2021, 24, 100548. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521. [Google Scholar] [CrossRef]
- Pinto, D.; Braga, N.; Silva, A.M.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Chapter 6—Chestnut. In Valorization of Fruit Processing By-Products, 1st ed.; Galanakis, C.M., Ed.; Academic Press: San Diego, CA, USA, 2020; pp. 127–144. [Google Scholar]
- Food and Agriculture Organization (FAO) Data Statistics. Available online: https://www.fao.org/faostat/en/#home (accessed on 25 May 2023).
- Pinto, D.; Moreira, M.M.; Švarc-Gajić, J.; Vallverdú-Queralt, A.; Brezo-Borjan, T.; Delerue-Matos, C.; Rodrigues, F. In-vitro gastrointestinal digestion of functional cookies enriched with chestnut shells extract: Effects on phenolic composition, bioaccessibility, bioactivity, and α-amylase inhibition. Food Biosci. 2023, 53, 102766. [Google Scholar] [CrossRef]
- Cádiz Gurrea, M.D.L.L.; Soares, S.; Jiménez, F.J.L.; Ochoa, Á.F.; Pinto, D.; Delerue-Matos, C.; Carretero, A.S.; Rodrigues, F. Chapter 4—Effects of Nutritional Supplements on Human Health. In Nutraceuticals and Natural Product Pharmaceuticals, 1st ed.; Galanakis, C.M., Ed.; Academic Press: San Diego, CA, USA, 2019; pp. 105–140. [Google Scholar] [CrossRef]
- de Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Quideau, S.; Jacquet, R.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crops Prod. 2010, 31, 301–311. [Google Scholar] [CrossRef]
- Lameirão, F.; Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Sut, S.; Dall’Acqua, S.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Green-Sustainable Recovery of Phenolic and Antioxidant Compounds from Industrial Chestnut Shells Using Ultrasound-Assisted Extraction: Optimization and Evaluation of Biological Activities In Vitro. Antioxidants 2020, 9, 267. [Google Scholar] [CrossRef]
- Pinto, D.; Almeida, A.; López-Yerena, A.; Pinto, S.; Sarmento, B.; Lamuela-Raventós, R.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Appraisal of a new potential antioxidants-rich nutraceutical ingredient from chestnut shells through in-vivo assays—A targeted metabolomic approach in phenolic compounds. Food Chem. 2023, 404, 134546. [Google Scholar] [CrossRef]
- Pinto, D.; Cádiz-Gurrea, M.D.L.L.; Garcia, J.; Saavedra, M.J.; Freitas, V.; Costa, P.; Sarmento, B.; Delerue-Matos, C.; Rodrigues, F. From soil to cosmetic industry: Validation of a new cosmetic ingredient extracted from chestnut shells. Sustain. Mater. Technol. 2021, 29, e00309. [Google Scholar] [CrossRef]
- Pinto, D.; López-Yerena, A.; Almeida, A.; Sarmento, B.; Lamuela-Raventós, R.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Metabolomic insights into phenolics-rich chestnut shells extract as a nutraceutical ingredient—A comprehensive evaluation of its impacts on oxidative stress biomarkers by an in-vivo study. Food Res. Int. 2023, 170, 112963. [Google Scholar] [CrossRef]
- Pinto, D.; Silva, A.M.; Freitas, V.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Microwave-Assisted Extraction as a Green Technology Approach to Recover Polyphenols from Castanea sativa Shells. ACS Food Sci. Technol. 2021, 1, 229–241. [Google Scholar] [CrossRef]
- Pinto, D.; Moreira, M.M.; Vieira, E.F.; Švarc-Gajić, J.; Vallverdú-Queralt, A.; Brezo-Borjan, T.; Delerue-Matos, C.; Rodrigues, F. Development and Characterization of Functional Cookies Enriched with Chestnut Shells Extract as Source of Bioactive Phenolic Compounds. Foods 2023, 12, 640. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Santos, J.; Pimentel, F.B.; Braga, N.; Palmeira-de-Oliveira, A.; Oliveira, M.B. Promising new applications of Castanea sativa shell: Nutritional composition, antioxidant activity, amino acids and vitamin E profile. Food Funct. 2015, 6, 2854–2860. [Google Scholar] [CrossRef]
- Hong, M.Y.; Groven, S.; Marx, A.; Rasmussen, C.; Beidler, J. Anti-Inflammatory, Antioxidant, and Hypolipidemic Effects of Mixed Nuts in Atherogenic Diet-Fed Rats. Molecules 2018, 23, 3126. [Google Scholar] [CrossRef]
- Sisconeto Bisinotto, M.; da Silva, D.C.; de Carvalho Fino, L.; Moreira Simabuco, F.; Neves Bezerra, R.M.; Costa Antunes, A.E.; Bertoldo Pacheco, M.T. Bioaccessibility of cashew nut kernel flour compounds released after simulated in vitro human gastrointestinal digestion. Food Res. Int. 2021, 139, 109906. [Google Scholar] [CrossRef]
- Tu, F.; Xie, C.; Li, H.; Lei, S.; Li, J.; Huang, X.; Yang, F. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chem. 2021, 363, 130277. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Pinto, D.; Silva, A.M.; Dall’Acqua, S.; Sut, S.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Simulated Gastrointestinal Digestion of Chestnut (Castanea sativa Mill.) Shell Extract Prepared by Subcritical Water Extraction: Bioaccessibility, Bioactivity, and Intestinal Permeability by In Vitro Assays. Antioxidants 2023, 12, 1414. [Google Scholar] [CrossRef]
- Valentão, P.; Fernandes, E.; Carvalho, F.; Andrade, P.B.; Seabra, R.M.; Bastos, M.L. Hydroxyl radical and hypochlorous acid scavenging activity of small centaury (Centaurium erythraea) infusion. A comparative study with green tea (Camellia sinensis). Phytomedicine 2003, 10, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Avello, D.; Mardones, C.; Saéz, V.; Riquelme, S.; von Baer, D.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Pilot-plant scale extraction of phenolic compounds from grape canes: Comprehensive characterization by LC-ESI-LTQ-Orbitrap-MS. Food Res. Int. 2021, 143, 110265. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Sugiyama, R.; Yamamoto, H.; Nakaya, T.; Yamazaki, M.; et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef]
- Tsugawa, H.; Kind, T.; Nakabayashi, R.; Yukihira, D.; Tanaka, W.; Cajka, T.; Saito, K.; Fiehn, O.; Arita, M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88, 7946–7958. [Google Scholar] [CrossRef]
- Durán-Castañeda, A.C.; Cardenas-Castro, A.P.; Pérez-Jiménez, J.; Pérez-Carvajal, A.M.; Sánchez-Burgos, J.A.; Mateos, R.; Sáyago-Ayerdi, S.G. Bioaccessibility of phenolic compounds in Psidium guajava L. varieties and P. friedrichsthalianum Nied. after gastrointestinal digestion. Food Chem. 2023, 400, 134046. [Google Scholar] [CrossRef]
- Ed Nignpense, B.; Latif, S.; Francis, N.; Blanchard, C.; Santhakumar, A.B. The impact of simulated gastrointestinal digestion on the bioaccessibility and antioxidant activity of purple rice phenolic compounds. Food Biosci. 2022, 47, 101706. [Google Scholar] [CrossRef]
- Muñoz-Fariña, O.; López-Casanova, V.; García-Figueroa, O.; Roman-Benn, A.; Ah-Hen, K.; Bastias-Montes, J.M.; Quevedo-León, R.; Ravanal-Espinosa, M.C. Bioaccessibility of phenolic compounds in fresh and dehydrated blueberries (Vaccinium corymbosum L.). Food Chem. Adv. 2023, 2, 100171. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Lu, P.; Barrow, C.; Dunshea, F.R.; Suleria, H.A.R. Bioaccessibility and bioactivities of phenolic compounds from roasted coffee beans during in vitro digestion and colonic fermentation. Food Chem. 2022, 386, 132794. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, Z.; Wang, X.; Yan, X.; Guo, Q.; Yue, Y.; Yue, T.; Yuan, Y. The bioaccessibility, bioavailability, bioactivity, and prebiotic effects of phenolic compounds from raw and solid-fermented mulberry leaves during in vitro digestion and colonic fermentation. Food Res. Int. 2023, 165, 112493. [Google Scholar] [CrossRef] [PubMed]
- Ketsawatsakul, U.; Whiteman, M.; Halliwell, B. A Reevaluation of the Peroxynitrite Scavenging Activity of Some Dietary Phenolics. Biochem. Biophys. Res. Commun. 2000, 279, 692–699. [Google Scholar] [CrossRef]
- Andrade, J.K.S.; Barros, R.G.C.; Pereira, U.C.; Gualberto, N.C.; de Oliveira, C.S.; Shanmugam, S.; Narain, N. α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chem. 2022, 373, 131494. [Google Scholar] [CrossRef] [PubMed]
- Cañas, S.; Rebollo-Hernanz, M.; Bermúdez-Gómez, P.; Rodríguez-Rodríguez, P.; Braojos, C.; Gil-Ramírez, A.; Benítez, V.; Aguilera, Y.; Martín-Cabrejas, M.A. Radical Scavenging and Cellular Antioxidant Activity of the Cocoa Shell Phenolic Compounds after Simulated Digestion. Antioxidants 2023, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.; Kerr, D.J.; Gescher, A.; Chipman, J.K. Antioxidant effects of isoflavonoids and lignans, and protection against DNA oxidation. Free Radic. Res. 1999, 31, 149–160. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.L.; Arráez-Román, D.; Segura-Carretero, A. Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023, 15, 449. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef]
- Yin, P.; Yang, L.; Xue, Q.; Yu, M.; Yao, F.; Sun, L.; Liu, Y. Identification and inhibitory activities of ellagic acid- and kaempferol-derivatives from Mongolian oak cups against α-glucosidase, α-amylase and protein glycation linked to type II diabetes and its complications and their influence on HepG2 cells’ viability. Arab. J. Chem. 2018, 11, 1247–1259. [Google Scholar] [CrossRef]
- Bastola, K.; Guragain, Y.; Bhadriraju, V.; Vadlani, P. Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. Am. J. Anal. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef]
Reactive Oxygen Species | Reactive Nitrogen Species | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O2●− | H2O2 | HO● | HOCl | ROO● | ONOO− with NaHCO3 | ONOO− without NaHCO3 | |||||||
Inhibition (%) | IC50 (µg/mL) | Inhibition (%) | IC50 (µg/mL) | Inhibition (%) | IC50 (µg/mL) | Inhibition (%) | IC50 (µg/mL) | µmol TE/100 mg DW | Inhibition (%) | IC50 (µg/mL) | Inhibition (%) | IC50 (µg/mL) | |
Oral | 14.13 ± 0.90 3 | − | 9.70 ± 1.27 1 | − | 55.23 ± 0.63 1 | − | 23.37 ± 1.49 3 | − | 2.85 ± 0.04 c | 28.55 ± 0.28 3 | − | 24.46 ± 0.77 3 | − |
Stomach | 28.04 ± 0.43 2 | − | 25.84 ± 0.32 2 | − | 64.08 ± 0.41 2 | − | 36.75 ± 0.96 2 | − | 9.76 ± 0.34 c | 45.11 ± 0.48 2 | − | 40.78 ± 0.17 2 | − |
Intestine | 43.01 ± 1.38 1 | − | 39.14 ± 0.95 3 | − | 68.06 ± 0.10 3 | − | 59.85 ± 0.20 1 | − | 19.40 ± 0.49 c | 77.38 ± 2.28 1 | − | 70.13 ± 0.79 1 | − |
Undigested CS | − | 94.89 ± 4.18 a | − | 77.66 ± 4.45 b | − | 415.29 ± 2.40 a | − | 25.45 ± 0.31 a | 30.01 ± 0.92 c | − | 14.04 ± 0.33 a | − | 17.47 ± 0.31 a |
Positive controls | |||||||||||||
Catechin | − | 50.97 ± 0.51 b | − | 20.78 ± 0.75 c | − | 1.45 ± 0.04 c | − | 0.38 ± 0.01 c | 180.96 ± 12.01 a | − | 0.24 ± 0.01 b | − | 0.24 ± 0.01 b |
Gallic acid | − | 12.85 ± 0.18 c | − | 106.03 ± 0.93 a | − | 63.92 ± 2.75 b | − | 1.79 ± 0.01 b | 107.58 ± 10.39 b | − | 0.27 ± 0.02 b | − | 0.27 ± 0.01 b |
Phenolic Metabolites | Concentration (µg/g DW) | |||
---|---|---|---|---|
In Vitro Digestion | Undigested CS | |||
Oral | Stomach | Intestine | ||
3-Hydroxybenzoic acid | 3.05 ± 1.86 b | 6.74 ± 4.63 b | n.q. | 188.78 ± 14.80 a |
3-Hydroxyphenylacetic acid | 1.34 ± 0.27 c | 2.61 ± 1.65 c | 6.72 ± 4.36 b | 557.74 ± 41.63 a |
2,5-Dihydroxybenzoic acid | n.d. | n.d. | n.d. | 24.40 ± 2.72 |
p-Coumaric acid | tr | tr | tr | 10.71 ± 0.19 |
Epicatechin | n.d. | n.d. | n.d. | 95.75 ± 9.52 |
Ferulic acid | tr | tr | n.d. | 49.71 ± 7.00 |
Gallic acid | 48.36 ± 3.08 c | 84.90 ± 26.25 b | n.d. | 3978.74 ± 290.95 a |
Isorhamnetin | n.d. | n.d. | n.d. | 5.29 ± 0.21 |
Methyl gallate | n.q. | n.d. | n.d. | 3.63 ± 1.58 |
Neochlorogenic acid | n.d. | n.d. | n.d. | 2.47 ± 0.73 |
Phlorizin | n.d. | n.d. | n.d. | 3.96 ± 1.14 |
Protocatechuic acid | 2.06 ± 0.12 b | 2.90 ± 1.65 b | 1.17 ± 0.17 c | 106.80 ± 6.92 a |
Pyrogallol | 4.40 ± 0.31 b | 7.13 ± 4.48 b | tr | 407.26 ± 61.66 a |
Quercetin 4′-glucoside | n.d. | n.d. | n.d. | 7.12 ± 1.23 |
Secoisolariciresinol | 0.02 ± 0.01 b | n.d. | n.d. | 7.49 ± 1.08 a |
Sinapic acid | 0.11 ± 0.01 b | n.d. | n.d. | 25.62 ± 3.92 a |
Syringic acid | 13.84 ± 6.67 b | n.d. | n.d. | 305.60 ± 37.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, D.; Ferreira, A.S.; Lozano-Castellón, J.; Laveriano-Santos, E.P.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Exploring the Impact of In Vitro Gastrointestinal Digestion in the Bioaccessibility of Phenolic-Rich Chestnut Shells: A Preliminary Study. Separations 2023, 10, 471. https://doi.org/10.3390/separations10090471
Pinto D, Ferreira AS, Lozano-Castellón J, Laveriano-Santos EP, Lamuela-Raventós RM, Vallverdú-Queralt A, Delerue-Matos C, Rodrigues F. Exploring the Impact of In Vitro Gastrointestinal Digestion in the Bioaccessibility of Phenolic-Rich Chestnut Shells: A Preliminary Study. Separations. 2023; 10(9):471. https://doi.org/10.3390/separations10090471
Chicago/Turabian StylePinto, Diana, Ana Sofia Ferreira, Julián Lozano-Castellón, Emily P. Laveriano-Santos, Rosa M. Lamuela-Raventós, Anna Vallverdú-Queralt, Cristina Delerue-Matos, and Francisca Rodrigues. 2023. "Exploring the Impact of In Vitro Gastrointestinal Digestion in the Bioaccessibility of Phenolic-Rich Chestnut Shells: A Preliminary Study" Separations 10, no. 9: 471. https://doi.org/10.3390/separations10090471
APA StylePinto, D., Ferreira, A. S., Lozano-Castellón, J., Laveriano-Santos, E. P., Lamuela-Raventós, R. M., Vallverdú-Queralt, A., Delerue-Matos, C., & Rodrigues, F. (2023). Exploring the Impact of In Vitro Gastrointestinal Digestion in the Bioaccessibility of Phenolic-Rich Chestnut Shells: A Preliminary Study. Separations, 10(9), 471. https://doi.org/10.3390/separations10090471