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Abstract: The different adsorption applications require the development of sorbents with prede-
termined properties. One of the ways for fine tuning the adsorption properties of the material is
using a binary salt system as an active sorbing component. The aim of this work is to conduct a
precision investigation of thermodynamic data on the sorption equilibrium of composite sorbents
“(CaCl2 + CaBr2) confined to the silica gel pores” with water vapour. The isotherms and isosteres
(at an uptake of N = 1.5 and 3.6 mole/mole) of water sorption on the composites were measured. It
was shown that at a fixed temperature, the composites based on solid solutions of CaCl2 in CaBr2

form complexes with water at a pressure that is dependent on the CaCl2/CaBr2 molar ratio. The
isosteric enthalpy and entropy of water sorption (∆H = −48 ± 3 kJ/mol ∆S = −108 ± 2 J/(mol·K)) at
N = 3.6 mole/mole were midway between the same parameters for composites on the base of the
pure salts CaCl2 and CaBr2. The novelty of this work is in the design of sorbents optimized for air
conditioning in hot climates and air drying cycles. It was shown that the use of the binary CaCl2 +
CaBr2 system confined to the silica pores can be an effective tool for designing innovative materials
with predetermined properties.

Keywords: water adsorption; calcium halides; porous materials; predetermined properties; air
conditioning; dehumidification

1. Introduction

Adsorption is widely used in numerous applications, among which are the purifica-
tion, separation and storage of gases, maintaining relative humidity, adsorptive cooling,
heat storage, etc. [1]. The phenomenon of adsorption is based on the sorption of vapours by
the surface of a porous media (adsorbent). In industry, sorbents such as silica gels, zeolites
and activated carbons are widely used. Unfortunately, such widespread adsorbents are
not always the most optimal for a specific practical application. Indeed, the requirements
of various applications of the adsorbent can differ significantly since the processes’ effi-
ciency is extremely sensitive to the sorption equilibrium in the “adsorbent—working fluid”
pair [2–4].

An ideal adsorbent for gas drying will not be suitable for maintaining humidity at
a given value of relative pressure (Figure 1a). Moreover, the requirements for the adsor-
bent can differ significantly even within the same practical application, depending on
the conditions in which the device will operate. For example, let us consider two air
conditioning adsorption cycles with the same cooling temperature of 5 ◦C but under differ-
ent climatic conditions (Figure 1b): (1) standard air conditioning—ambient temperature
35 ◦C, regeneration temperature 80 ◦C and (2) air conditioning for a very hot climate
with an ambient temperature of 45 ◦C and regeneration temperature of 100 ◦C. Polanyi
boundary potentials ∆F [5] calculated for given climate data clearly demonstrate that a
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sorbent capable of exchanging a large amount of working fluid in the first “cycle win-
dow” exchanges almost nothing in the “cycle window” for hotter climates, and vice versa.
In other words, the improvement of adsorptive processes is closely connected with the
development of new adsorbents with predetermined properties. However, despite the
wide variety in the requirements imposed by different applications on the desirable adsor-
bent properties, only a few types of porous adsorbents are used in actual practice—silica
gels, alumina, zeolites and porous carbons [6–8]. Varying the chemical nature and porous
structure of these single-component adsorbents is the main possibility for the alteration
of their adsorption properties. The surface modification of common adsorbents with the
use of various functional groups is an alternative way to affect their adsorption properties,
which gives diverse hybrid “organic-inorganic” and composite adsorbents [9]. Indeed,
through physico-chemical treatment, the moisture adsorption properties of materials can
be changed [10,11].
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Figure 1. (a) Optimal adsorbent for gas drying (red line) and maintaining humidity (green line);
(b) boundary potentials for typical air conditioning cycle (blue area) and air conditioning cycle for
extremely hot climate (violet area).

The present-day level of material science allows a target-oriented design of novel
porous materials adapted to a particular application. Indeed, very often, composite mate-
rials demonstrate more impressive results than nonmodified traditional sorbents. The
modified sorbents demonstrate affinity to both organic [12–14] and inorganic [15,16]
compounds/pollutants. The composites materials “Salt inside a porous matrix” (CSPM)
are characterised by a high sorption ability (0.4–1.4 g/g) caused by the reaction of salt
confined into matrix pores with water, methanol or ammonia [17–19]. The sorption
properties of CSPMs can be intently designed by variations in the composite’s compo-
nents and parameters of synthesis [20–22]: (1) the chemical nature of active salt and the
host matrix [20,23,24], (2) the matrixes’ porous structure [21,25], (3) the salt content [22],
(4) the pH of the impregnating solution [20] and (5) the temperature of the composite
drying [20].

A number of studies have considered tailoring the sorbent properties in accordance
with the requirements of the particular application by embedding two salts into matrix
pores [26–28]. In [27], it was shown that by partially substituting MgSO4 by MgCl2,
the relative humidity over the mixture was changed. The phenomenon of changing the
properties of solid solutions compared to the properties of the individual components is
now well known [29]. It has been shown that during the formation of a solid solution,
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the parameters of crystal lattices change monotonically. In the first approximation, this
dependence of the parameter on the content of the dissolved component is linear and
is known as the Vegard rule [30]. The change in the crystal lattice parameter during the
formation of a solid solution also leads to a change in its physico-chemical properties.

This phenomenon has been used to reduce the melting temperature of CaCl2·6H2O
hexahydrate in heat storage systems [31]. The use of the CaBr2·6H2O additive makes it
possible to decrease the melting point of CaCl2·6H2O from 30 ◦C to 16 ◦C, while the addition
of nonisomorphic KCl reduces the melting temperature of the system insignificantly. The
addition of calcium bromide gives a greater effect on the thermodynamic characteristics of
the system than the addition of potassium chloride since the CaCl2-CaBr2 system forms
a homogeneous solid solution over the entire concentration range [32]. To change the
formation temperature of calcium halide ammoniates for ammonia storage systems, it
is proposed to use solid solutions CaCl2-CaBr2 [33,34]. The authors studied ammonia
sorption by a series of systems with different molar ratios of salts: CaCl2, CaCl1.67Br0.33,
CaCl1.33Br0.67, CaClBr, CaCl0.67Br1.33, CaCl0.33Br1.67 and CaBr2, and it was shown that the
pressure at which the sorption process begins decreases with increasing calcium bromide
concentration in the system (28.7, 14.1, 5.2, 3.2 and 1.2 kPa, respectively). Thus, the
reaction of the formation of ammoniates for a solid solution of calcium halides occurs at a
temperature midway between the temperatures at which the formation of the ammoniates
of individual salts takes place. The authors explain this effect by changing the electric
potential of the cation when it is surrounded by different anions [34]. Apparently, this is
of decisive importance since it is to the cation that the molecules of the sorbed substance
(ammonia, water or alcohol) are coordinated. It is also important to note that in the case of
solid solution formation, the characteristic sorption curve (sorption isotherm) of ammonia
is not a linear combination of the sorption curves of individual components.

During the formation of a solid solution of salts, it becomes possible to vary the
sorption characteristics of the system. The effect of changing the reaction temperature can
be used to “tune the properties” of the system to the requirements of the process in which
it is used. For a system based on a binary salt system BaCl2-BaBr2, a series of studies was
carried out, and at first, the fundamental possibility of shifting the sorption equilibrium
was shown due to the formation of a solid solution of salts in the pores of the matrix
(silica gel [35] and expanded vermiculite [36])—the position of the step on the isobars
corresponding to the chemical reaction between salt and ammonia shifted towards high
temperatures with an increase in the concentration of barium bromide in the composite.
Then, taking into account the change in the sorption equilibrium during the formation of a
solid solution in the matrix pores, composites specialized for applications of adsorption
cooling [37] and ice making [38] were synthesized. It was shown that the synthesized
materials do indeed meet the initially specified requirements. However, for sorbtives such
as water and alcohols, only the principal possibility of shifting the equilibrium [35,39] by
the formation of a salts’ solid solution (CaCl2-CaBr2; LiCl-LiBr) inside the pores of the
matrix was previously shown, without specifying for which applications this effect could
be used.

The purpose of this work is to study in detail the thermodynamic parameters (enthalpy
and entropy) of water sorption on the composites based on the CaCl2-CaBr2 binary salt
system. Thermodynamic parameters of the sorption equilibrium for such a system are
important both from fundamental and chemical engineering points of view. In order to
achieve the stated aim of the work, the following tasks were solved: (1) sorbents with
different molar salt contents were synthesized, (2) for the synthesized composites, the
sorption equilibrium with water vapour was studied by the volumetric method, (3) based
on sorption data, the effect of the composition of the samples on their sorption properties
was analysed, and (4) recommendations are given on the composition of the optimal sorbent
for two practical applications (air conditioning in hot climates and air drying). A flowchart
of the study is presented in Figure 2.
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2. Materials and Methods
2.1. Materials and Synthesis

Commercial silica gel Davisil Gr. 646 (the average pore diameter dav =15 nm (BET),
the specific surface area Ssp = 300 m2/g (BET), the pore volume Vp = 1.18 cm3/g) was
used as a host matrix. Calcium chloride and bromide were purchased from Aldrich and
used as delivered. The mixed CaCl2 + CaBr2 aqueous solutions were prepared with
different molar ratio CaCl2/CaBr2 = 1:0, 3:1, 1:1, 0:1. The composites were synthesized by
an “incipient wetness” impregnation method. The silica gel was dried at 160 ◦C for two
hours, impregnated with an appropriate amount of mixed salts solution and dried again
at 160 ◦C until the sample weight became constant. A number of composites (CaCl2 +
CaBr2)/SiO2 were synthesized; the molar content of calcium in all the samples equals
LCa = 2 mmole per 1 g of the composite. The samples were designated as CaCl2/SiO2,
(CaCl2 + CaBr2 (3:1))/SiO2, (CaCl2 + CaBr2 (1:1))/SiO2, (CaCl2 + CaBr2 (3:1))/SiO2 and
CaBr2/SiO2 (Table 1).

Table 1. The composition of the sorbents (CaCl2 + CaBr2)/SiO2, CCaCl2, CCaBr2, CSiO2—the weight
content of CaCl2, CaBr2 and SiO2, respectively.

Sample Mole CaCl2/Mole CaBr2 CCaCl2, wt % CCaBr2, wt % CSiO2, wt %

CaBr2/SiO2 0/1 0 41 59
(CaCl2 + CaBr2 (1:1))/SiO2 1/1 11 21 68
(CaCl2 + CaBr2 (3:1))/SiO2 3/1 17 10 73

CaCl2/SiO2 1/0 23 0 77

2.2. Sorption Isotherms’ Measurement

The isotherms of water sorption on the composites were measured by a standard
volumetric method at a constant temperature T = 65 ◦C. The main parts of the experimental
rig (Figure 3a) are the adsorber (volume Vad = 174 mL, Figure 3b), the buffer tank (volume
Vb = 28.436 L), the evaporator, and the system of connecting pipes and taps. All of these
parts were placed in a thermally insulated box maintained at T = 35 ◦C in order to avoid
condensation. To keep the adsorber temperature constant, a liquid thermostat Julabo F25
was used. The temperatures were measured using a K-type thermocouple with an accuracy
of ±0.2 ◦C. In order to collect experimental data, the analog-to-digital converter ADAM4019
was used.
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Figure 3. (a) Schematic diagram of the installation for measuring the water sorption isotherms:
1—adsorber, 2—buffer tank, 3—evaporator, 4—heating box, 5—thermostat, 6—vacuum pump,
7—nitrogen trap, 8—digital pressure gauge, K1—needle valve, K2—ball valve.; (b) photo of ad-
sorber.

The sample (300–500 mg), previously dried at 160 ◦C, was placed in the adsorber,
and evacuated at 90 ◦C for two hours in order to remove residual water adsorbed on the
composite. For system evacuation, a vacuum pump with a nitrogen trap was used. In order
to prevent the sample from blowing out of the adsorber at the beginning of the evacuation,
an Edwards LV10K needle valve K1 was used. After the pressure was reduced to 3–4 mbar,
the ball valve K2 (Edwards IBV16MKS) was opened. Then the sample was cooled down to
a fixed temperature, and after that the sample was cooled to 65 ◦C using a liquid thermostat.
The water in the evaporator was subjected to double degassing. The interval between the
first and second stages of degassing was about 12 h. Before the start of the experiment,
water vapours were let into the previously evacuated buffer volume. The change in the
pressure in the system was determined using a digital pressure gauge (Baratron 622D) with
an accuracy of ±(0.1–0.3) mbar depending on the measured value.

After establishing a constant pressure P1 in the buffer tank, the latter was connected to
the adsorber. This caused a pressure drop in the system to the value of P2, due to both gas
expansion and the sorption process. The system was kept until the equilibrium was reached
for 3–20 h. The value of the pressure drop due to gas expansion Pex was calculated from
the mass balance when the gas was passed from the buffer tank to the adsorber without a
sorbent. The sorption uptake was calculated as the equilibrium number of sorbed moles
related to one Ca2+ mole N(P,T) = [m(P,T)/M]/(madLCa) where M is a molar weight of H2O
and LCa is the molar content of calcium. The accuracy of the adsorption measurements was
∆N = ±0.06 mole H2O/mole Ca2+.

2.3. Sorption Isosteres’ Measurement

The sorption equilibrium of the composites with water vapour was studied by the
isosteric sorption method [40]. The isosteres are lines of constancy of the composition of
the “composite—sorbed substance” system [23,41,42]. In other words, with a simultaneous
change in the temperature of the sorbent and the vapour pressure of the liquid above it,
it is possible to maintain a constant amount of liquid absorbed by the sorbent. Thus, in
the case of air conditioning cycles, the sorbent’s regeneration stage and obtaining cold are
isobaric, whereas the intermediate stages are isosteric [43]. Indeed, at this moment, the
sorbent is disconnected from the evaporator and condenser; therefore, despite the change
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in the temperature of the sorbent, the amount of absorbed substance does not change. The
isosteres of water were measured at temperature ranges T = 60–135 ◦C; the pressure ranges
were P(H2O) = 4–135 mbar. The main components of the experimental rig are an adsorber
(110 ± 0.1 mL) filled with composite, an evaporator, a pressure gauge (Setra 769), pipes, a
system of valves (Edwards IBV16MKS, Edwards LV10K needle valve) and a vacuum pump
(Edwards RV8) (Figure 4). It is important to note that the volume of pipes (“Dead volume”
of the setup) should be minimized because a decrease in the dead volume results in an
increase in measurement accuracy. Indeed, if the pipes’ volume is properly minimized, the
ratio between the amount of water in a gaseous state and in an adsorbed state is minimized
too.
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Figure 4. The scheme of experimental setup for measuring the isosteres of water sorption:
1—adsorber, 2—electric oven, 3—pressure gauge, 4—evaporator, 5—heat pump, 6—nitrogen
trap, 7—heating box, K1—needle valve, K2—ball valve.

The composite sorbent of the dry weight mad = 50.0 ± 0.1 g was placed inside the
adsorber, evacuated for 2 h to the residual pressure 0.1 mbar at 90 ◦C and cooled down to
an ambient temperature (Julabo F25). The adsorber was connected with the evaporator and
the sample was saturated with a certain amount of sorbtive up to fixed uptake N. Then the
measuring cell was disconnected from the evaporator and kept for 12 h to reach uniform
sorbate distribution inside the adsorber. Then the adsorber temperature was increased
to a fixed value that resulted in the rise of the pressure over the adsorbent. The pressure
and temperature were monitored continuously until the equilibrium was reached and the
pressure P = f(T) was registered. The criterion for the equilibrium was constant pressure
(±0.1 mbar) in the system for 2 h. During the measurements under increasing temperatures,
some amount of the sorptive desorbed from the sample into the empty volume of the
apparatus (the “dead volume”). As the temperature increases, the change in the content of
the water is 0.05 mol/mol salt, respectively. Thus, the water content in the sorbent can be
considered constant within the specified accuracy.

The plotting of experimental data in the Clausius–Clapeyron coordinates makes it
possible to determine the values of the enthalpy and entropy of sorption depending on the
content of the water in the sorbent in accordance with the equation:

ln(P) = A + B/T (1)

where A = −∆S/R, B = ∆H/R (∆S—isosteric entropy of sorption, ∆H—isosteric enthalpy
of sorption, R—universal gas constant). The accuracy of measuring the heat of sorption
was ±3 kJ/mol, and the accuracy of entropy was ±3 J/(mol·K).
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3. Results

There are three steps in the sorption isotherm of CaBr2/SiO2 (Figure 5). The first
step takes place in the pressure range P = 0–0.5 mbar and corresponds to the formation of
monohydrate CaBr2·H2O. With a further increase in pressure, the monohydrate reacts with
one more water molecule at P = 1.5–3 mbar, forming the di-hydrate in accordance with the
reaction CaBr2 + 2H2O = CaBr2·2H2O. Then the di-hydrate reacts with two more water
molecules, forming tetrahydrate CaBr2·2H2O + 2H2O = CaBr2·4H2O. The further pressure
rise results in a gradual increase in sorption at P > 11 mbar. Such behaviour corresponds to
the formation of the salts’ water solution inside the matrix pore.
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)—CaCl2/SiO2 obtained at T =
65 ◦C.

Due to the lower affinity of CaCl2 to water, the sorption isotherm for the CaCl2/SiO2
composite is shifted towards a higher pressure with regards to that for CaBr2/SiO2. For
the isotherm of water sorption by the composite based on CaCl2, one can observe a step
corresponding to the reaction CaCl2 + 2H2O = CaCl2·2H2O at P = 5–7 mbar followed by a
plateau with N ≈ 2 mol/mol and a further rise in uptake at P ≥ 20 mbar.

The isotherms of water sorption on the binary salt composites (CaCl2 + CaBr2 (1:1))/SiO2
and (CaCl2 + CaBr2 (3:1))/SiO2 (Figure 5) are located between the isotherms of composites
based on the single salts. For the composite (CaCl2 + CaBr2 (3:1))/SiO2 (blue), the transition
corresponding to the reaction CaClxBr2−x + 2H2O = CaClxBr2−x·2H2O is slightly shifted to-
wards a lower pressure ∆P = 1 mbar relative to the same transition for the sample CaCl2/SiO2.
At higher uptakes N = 2–4 mole/mole, a shift in pressure achieves 5–6 mbar. For the sample
(CaCl2 + CaBr2 (1:1))/SiO2 (green), there is a change in the equilibrium pressure of the mono-
hydrate formation by the transition CaClxBr2−x + H2O = CaClxBr2−x·H2O, relative to the
corresponding pressure for CaBr2/SiO2. This transition is shifted towards higher pressures
by ∆P = 0–2 mbar. It is interesting to note that the sorption isotherms of composites (CaCl2 +
CaBr2 (1:1))/SiO and CaBr2/SiO2 are virtually identical in the pressure range 2 ≤ P ≤ 8 mbar
where N = 1.5–2.5 mol/mol. The transition corresponding to the formation of a solution is
shifted to higher pressures with ∆P = 6–7 mbar.

The probable explanation of the abovementioned change in the equilibrium pressure
of reactions is the formation of the solid solution of calcium halides inside silica gel pores.
Indeed, the dissolution of CaBr2 in the crystalline lattice of CaCl2 results in the broadening
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of the spacing parameter that probably promotes the incorporation of water molecules in
the lattice and the decrease in the equilibrium pressure of the solvate formation from the
salt.

From the isosteres of water sorption on composites CaBr2/SiO2, (CaCl2 + CaBr2
(1:1))/SiO2 and CaCl2/SiO2 at uptakes N = 1.5, 3.6 ± 0.05 mole/mole (Figure 6), the
isosteric entropy and enthalpy of sorption were found (Table 2).
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each other. However, there is a trend of the increasing modulus of the enthalpy of the 
sorption with an increasing CaBr2 content in the sample. The water sorption entropy also 
increases with the increase in the CaBr2 content in the composite. For water content N = 
1.5 mole/mole, the thermodynamic parameters (Table 2) of the sorption equilibrium for 
composites CaBr2/SiO2 and (CaCl2 + CaBr2 (1:1))/SiO2 are very close, which is consistent 
with the water sorption isotherms of the abovementioned composites in the pressure 
range 2 ≤ P ≤ 8 mbar (Figure 5). The enthalpy and entropy obtained for N = 1.5 mole/mole 
are higher than those for N = 3.6 mole/mole. This fact is consistent with the published data 
[44] for CaCl2/SiO2—the water system. It was shown that an increase in N from 1 to 10 
results in a decrease in the heat of sorption from 63.1 to 43.9 kJ/mol. This phenomenon can 
be explained by the fact that the first portions of water tend to occupy the most energeti-
cally favourable sites, and as a result, the higher heat of sorption is observed. It is worth 
noting that the data from isosteric experiments agree well with the data obtained by the 
measurement of sorption isotherms (Figure 5). 

The observed shift in the solvate formation positions with the change in the 
CaCl2/CaBr2 ratio illustrates that the use of the binary salt system to form solid solutions 
can be an effective tool to manage the sorption properties of the composites “salt inside 
porous matrix” in order to meet the requirements of particular applications. 
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Table 2. The enthalpy and entropy of water sorption on (CaCl2 + CaBr2)/SiO2 composites at N = 1.5,
3.6 ± 0.05 mole/mole.

Sample N, Mole/Mole ± 0.05 ∆H, kJ/Mole ∆S, J/(Mole·K)

CaBr2/SiO2 3.6 −51 ± 3 −115 ± 3
CaClxBr2−x/SiO2-1:1 3.6 −48 ± 3 −108 ± 3

CaCl2/SiO2 3.6 −46 ± 3 −109 ± 3
CaBr2/SiO2 1.5 −55 ± 3 −114 ± 3

CaClxBr2−x/SiO2-1:1 1.5 −55 ± 3 −115 ± 3

In the case of the water content in the samples, N = 3.6 ± 0.05 mole/mole, the isosteric
enthalpies for samples CaBr2/SiO2, (CaCl2 + CaBr2 (1:1))/SiO2 and CaCl2/SiO2 are close
to each other. However, there is a trend of the increasing modulus of the enthalpy of
the sorption with an increasing CaBr2 content in the sample. The water sorption entropy
also increases with the increase in the CaBr2 content in the composite. For water content
N = 1.5 mole/mole, the thermodynamic parameters (Table 2) of the sorption equilibrium for
composites CaBr2/SiO2 and (CaCl2 + CaBr2 (1:1))/SiO2 are very close, which is consistent
with the water sorption isotherms of the abovementioned composites in the pressure range
2 ≤ P ≤ 8 mbar (Figure 5). The enthalpy and entropy obtained for N = 1.5 mole/mole are
higher than those for N = 3.6 mole/mole. This fact is consistent with the published data [44]
for CaCl2/SiO2—the water system. It was shown that an increase in N from 1 to 10 results
in a decrease in the heat of sorption from 63.1 to 43.9 kJ/mol. This phenomenon can be
explained by the fact that the first portions of water tend to occupy the most energetically
favourable sites, and as a result, the higher heat of sorption is observed. It is worth
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noting that the data from isosteric experiments agree well with the data obtained by the
measurement of sorption isotherms (Figure 5).

The observed shift in the solvate formation positions with the change in the CaCl2/CaBr2
ratio illustrates that the use of the binary salt system to form solid solutions can be an effective
tool to manage the sorption properties of the composites “salt inside porous matrix” in order
to meet the requirements of particular applications.

4. Discussion

As was shown above, by varying the ratio of salts in the pores of the matrix one can
purposefully change the thermodynamic characteristics of the sorption equilibrium of the
system “working fluid—sorbent”. Let us consider the prospects of this conception for
designing the optimal sorbent for air conditioning and dehumidification applications.

4.1. Air Conditioning for Hot Climate

The air conditioning adsorption cycle [43] is determined by three temperatures
(Figure 6): (1) the target refrigeration temperature (evaporator temperature Tev), (2) the
ambient temperature (condenser temperature Tcon), and (3) the regeneration temperature
(Treg). Usually, the typical adsorption air conditioning cycle considered in the literature op-
erates at an ambient temperature Tcon = 30–35 ◦C [43,45]. As was shown in the Introduction
(Figure 1b), in the case of a hotter climate (Tcon = 45 ◦C), the use of an adsorbent specialized
for these conditions is required. In this work, the cycle of adsorption air conditioning
in a hot climate (Tev = 5 ◦C, Tcon = 45 ◦C, Treg = 110 ◦C) was considered. To assess the
prospects of various working pairs under cycle conditions, it is necessary to calculate the
Polanyi boundary potentials for the stages of adsorption (3–4 Figure 7a) and desorption
(1–2, Figure 7a):

∆Fa = −RTcon ln
(

Pev/P0(Tcon)
)

, (2)

where P0(Tcon)—saturated pressure of working fluid at temperature Tcon.

∆Fd = −RTreg ln
(

Pcon/P0(Treg
))

(3)

where P0(Treg)—saturated pressure of working fluid at temperature Treg.
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Boundary values of the Polanyi potential ∆Fa = 6.3 kJ/mol and ∆Fd = 8.9 kJ/mol form
a window of the cycle (pink area Figure 7b). The composite based on single salt CaCl2
can be used at Tcon = 30–35 ◦C [46]. However, from the experimental data (Figure 7b) it is
clear that at Tcon = 45 ◦C this composite demonstrates the lowest uptake change (∆N*-blue)
among the tested materials. It can be seen that in the given range of adsorption potential
values, the composite sorbent with a salt ratio of 1:1 exchanges the largest amount of water
(∆N*-red).

It is important to note that it is known in the literature that widespread working
pairs allow a cooling effect of 10–17 ◦C to be reached at an ambient temperature of about
30 ◦C. However, the proposed material can be used in a much hotter climate (at an ambient
temperature of 45 ◦C) and provides a cooling effect of 5 ◦C (Table 3).

Table 3. Literature data on working pairs and cycles’ condition for adsorption chilling.

Working Pair Cooling Temperature
Tev, ◦C

Ambient Temperature
Tcon, ◦C

Regeneration
Temperature Treg, ◦C Reference

Silica gel/water 17 30 85 [47]
SAPO34-water 9 30 130 [48]
SAPO34-water 7 30 82 [49]

Zeolite 13X/CaCl2)/water 14 31 85 [50]
Zeolite (SAPO-34)/water 10 30 85 [51]

Silica gel RD-2060;
zeolite AQSOA-Z02 10 30 95 [52]

Zeolite 13X/CaCl2 − water 14 28 85 [53]
activated carbon-methanol 5 30 100 [54]

The bulk density of such a sorbent is 0.53 g/cm3. Knowing the bulk density of the
material, it is possible to estimate how much sorbent can be loaded into the adsorber heat
exchanger. Paper [55] discusses the possibility of optimizing the geometry of a finned flat
tube (FFT) heat exchanger (Figure 8) for the application of adsorption cooling by varying
the distance between the primary and secondary heat-removing elements. A real heat
exchanger with a geometry close to the optimal geometry calculated in [55] is presented
in [56]. Let us estimate the amount of sorbent based on a binary salt system that can be
loaded into such a heat exchanger (Table 4).
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With a total volume of the core of such a heat exchanger of 140 cm3, the free volume
available for loading the adsorbent is 97 cm3. In this case, the amount of sorbent in the heat
exchanger will be as high as 97 cm3 × 0.59 g/cm3 = 57 g. It is important to note that the
sorbent will exchange about 0.1 g of water per gram of sorbent even at such extremely hot
climate conditions.

4.2. Dehumidification

The air drying process takes place in an open system. Humid air enters the reactor
filled with dry sorbent (Figure 9). The sorbent adsorbs vapours and provides air drying
down to a desired dew point. First, the sorbent becomes wet at the reactor inlet, and then
the adsorption front (the boundary between wet and dry sorbent) moves towards the end of
the reactor. When comparing two sorbents (Figure 9), characterized by a different sorption
capacity (higher uptake value—red line) under the same conditions, the preference should
be given to a material with a higher sorption capacity (sorbent 2, Figure 9a). Indeed, for a
material with a higher capacity, the adsorption front will move more slowly; thus, the time
between regenerations will increase (Figure 9b).
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The standard conditions for drying compressed air were considered. Air from the
environment at a temperature Tenv = 20 ◦C and a humidity of 50% is compressed (pressure
of water in the environment Penv = 12.4 mbar), as a result of which, the humidity increases
to 100% (pressure of saturated water vapour P0(Tenv) = 23.3 mbar), with a regeneration
temperature of 110–130 ◦C (Treg). In order to use energy rationally, there is a need to use the
lowest possible regeneration temperature. The desired dew point for laboratory compressed
air is −40 ◦C. In this case, the Polanyi potential for regeneration can be estimated as (purple
dots Figure 10):

∆Fd = −RTreg ln
(

Penv/P0(Treg
))

(4)

where P0(Treg)—saturated pressure of water at regeneration temperature Treg.
On the other hand, the Polanyi potential for different dew points can be estimated

(green symbols in Figure 10):

∆Fdew point = −RTenv ln
(

P0
(

Tdew point

)
/P0(Tenv)

)
, (5)

where P0(Tenv), P0(Tdew point)—saturated pressure of water at temperature Tenv and Tdew point,
respectively.

It can be seen (Figure 10) that in the entire considered range of Polanyi potentials, the
sorption capacity of the composite based on the double salt system exceeds the capacity of
the composite based on pure calcium chloride (∆N*(CaCl2 + CaBr2 (1:1))/SiO2), which is
greater than ∆N*(CaCl2/SiO2)) (Figure 10). On the other hand, the composite containing
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pure calcium bromide will be regenerated only at a regeneration temperature of 145 ◦C,
while only 110 ◦C is sufficient for the regeneration of a composite based on a double
salt system (Figure 10 ∆Treg). Moreover, it is important to take into consideration the
economic side of the issue—calcium chloride is a cheaper reagent than calcium bromide, so
a composite based on a binary salt system will cost less than a composite based on pure
calcium bromide.
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Boundary values of the Polanyi potential ΔFa = 6.3 kJ/mol and ΔFd = 8.9 kJ/mol form 
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5. Conclusions

Using the volumetric method, the sorption equilibrium of composite sorbents based on
calcium halides with water vapours is studied. The novelty of this work is the consideration
of the problem of the target-oriented synthesis of sorbents with predetermined sorption
properties for specific practical applications due to the formation of a CaCl2-CaBr2 solid
solution in the pores of the silica gel. It has been shown that the presence of a solid solution
of CaCl2-CaBr2 in matrix pores results in a change in the formation conditions of the binary
salt system complex with water in comparison with the same conditions for the composites
on the base of individual salts. The higher the CaBr2 molar content in the composite, the
lower the equilibrium pressure P* of the complex CaClxBr2−x·NH2O (N = 1, 2, 4) formation.
For the composite (CaCl2 + CaBr2 (1:1))/SiO2, the isosteric enthalpy and entropy of water
(∆H = −48 ± 3 kJ/mol ∆S = −108 ± 2 J/(mol·K)) sorption at uptake N = 3.6 mole/mole are
midway between the same parameters for the composites on the base of pure salts CaCl2
and CaBr2. For the example of air conditioning in a hot climate and air drying, it is shown
that by varying the molar ratio of salts inside matrix pores, it is possible to design sorption
materials with optimal properties that perfectly fit the demands of particular adsorption
applications. Thus, the use of the binary CaCl2 + CaBr2 system confined to the silica pores
can be an effective tool for designing innovative materials with predetermined sorption
properties.
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