Determining Polycyclic Aromatic Compounds in Bird Feathers Using Pressurized Fluid Extraction
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Processing by Pressurized Fluid Extraction (PFE)
2.3. GC-MS/MS Conditions
2.4. Method Performance Characteristics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, M.A.; Ahrens, L.; Johansson, S.; Gustavsson, J.; Laudon, H.; Wiberg, K. Seasonal Trends and Retention of Polycyclic Aromatic Compounds (PACs) in a Remote Sub-Arctic Catchment. Environ. Pollut. 2023, 333, 121992. [Google Scholar]
- Marvin, C.H.; Berthiaume, A.; Burniston, D.A.; Chibwe, L.; Dove, A.; Evans, M.; Tomy, G.T. Polycyclic Aromatic Compounds in the Canadian Environment: Aquatic and Terrestrial Environments. Environ. Pollut. 2021, 285, 117442. [Google Scholar]
- Huang, X.; Li, Z.; Zhang, T.; Zhu, J.; Wang, X.; Nie, M.; Zou, X. Research Progress in Human Biological Monitoring of Aromatic Hydrocarbon with Emphasis on the Analytical Technology of Biomarkers. Ecotoxicol. Environ. Saf. 2023, 257, 114917. [Google Scholar] [PubMed]
- Kieta, K.A.; Owens, P.N.; Petticrew, E.L.; French, T.D.; Koiter, A.J.; Rutherford, P.M. Polycyclic Aromatic Hydrocarbons in Terrestrial and Aquatic Environments Following Wildfire: A Review. Environ. Rev. 2022, 31, 141–167. [Google Scholar]
- Toxic Substances List: Schedule 1. Available online: https://www.canada.ca/en/environment-climate-change/services/canadianenvironmental-protection-act-registry/substances-list/toxic/schedule-1.html (accessed on 2 August 2023).
- Burger, J.; Gochfeld, M. Marine Birds as Sentinels of Environmental Pollution. Ecohealth 2004, 1, 263–274. [Google Scholar]
- Egwumah, F.A.; Egwumah, P.O.; Edet, D.I. Paramount Roles of Wild Birds as Bioindicators of Contamination. Int. J. Avian Wildl. Biol. 2017, 2, 00041. [Google Scholar]
- Anbazhagan, V.; Partheeban, E.C.; Arumugam, G.; Selvasekaran, V.; Rajendran, R.; Paray, B.A.; Al-Mfarij, A.R. Avian Feathers as a Biomonitoring Tool to Assess Heavy Metal Pollution in a Wildlife and Bird Sanctuary from a Tropical Coastal Ecosystem. Environ. Sci. Pollut. Res. 2021, 28, 38263–38273. [Google Scholar]
- Li, Y.; Gao, K.; Duo, B.; Zhang, G.; Cong, Z.; Gao, Y.; Jiang, G. Analysis of a Broad Range of Perfluoroalkyl Acids in Accipiter Feathers: Method Optimization and Their Occurrence in Nam Co Basin, Tibetan Plateau. Environ. Geochem. Health 2018, 40, 1877–1886. [Google Scholar]
- Jaspers, V.L.; Covaci, A.; Herzke, D.; Eulaers, I.; Eens, M. Bird Feathers as a Biomonitor for Environmental Pollutants: Prospects and Pitfalls. TrAC Trends Anal. Chem. 2019, 118, 223–226. [Google Scholar]
- Miller, A.; Elliott, J.E.; Wilson, L.K.; Elliott, K.H.; Drouillard, K.G.; Verreault, J.; Idrissi, A. Influence of Overwinter Distribution on Exposure to Persistent Organic Pollutants (POPs) in Seabirds, Ancient Murrelets (Synthliboramphus antiquus), Breeding on the Pacific Coast of Canada. Environ. Pollut. 2020, 259, 113842. [Google Scholar]
- Kardynal, K.J.; Jardine, T.D.; Genier, C.S.; Bumelis, K.H.; Mitchell, G.W.; Evans, M.; Hobson, K.A. Mercury Exposure to Swallows Breeding in Canada Inferred from Feathers Grown on Breeding and Non-Breeding Grounds. Ecotoxicology 2020, 29, 876–891. [Google Scholar]
- Fernie, K.J.; Marteinson, S.C.; Chen, D.; Eng, A.; Harner, T.; Smits, J.E.; Soos, C. Elevated Exposure, Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons by Nestling Tree Swallows (Tachycineta bicolor) through Multiple Exposure Routes in Active Mining-Related Areas of the Athabasca Oil Sands Region. Sci. Total Environ. 2018, 624, 250–261. [Google Scholar]
- Cruz-Martinez, L.; Fernie, K.J.; Soos, C.; Harner, T.; Getachew, F.; Smits, J.E. Detoxification, Endocrine, and Immune Responses of Tree Swallow Nestlings Naturally Exposed to Air Contaminants from the Alberta Oil Sands. Sci. Total Environ. 2015, 502, 8–15. [Google Scholar]
- Wallace, S.J.; De Solla, S.R.; Head, J.A.; Hodson, P.V.; Parrott, J.L.; Thomas, P.J.; Langlois, V.S. Polycyclic Aromatic Compounds (PACs) in the Canadian Environment: Exposure and Effects on Wildlife. Environ. Pollut. 2020, 265, 114863. [Google Scholar] [PubMed]
- Covaci, A.; Schepens, P. Chromatographic Aspects of the Analysis of Selected Persistent Organochlorine Pollutants in Human Hair. Chromatographia 2001, 53, S366–S371. [Google Scholar]
- Dauwe, T.; Jaspers, V.; Covaci, A.; Schepens, P.; Eens, M. Feathers as a Nondestructive Biomonitor for Persistent Organic Pollutants. Environ. Toxicol. Chem. 2005, 24, 442–449. [Google Scholar] [PubMed]
- Van den Steen, E.; Covaci, A.; Jaspers, V.L.B.; Dauwe, T.; Voorspoels, S.; Eens, M.; Pintxen, R. Experimental Evaluation of the Usefulness of Feathers as a Non-Destructive Biomonitor for Polychlorinated Biphenyls (PCBs) Using Silastic Implants as a Novel Method of Exposure. Environ. Int. 2007, 33, 257–264. [Google Scholar] [PubMed]
- Jaspers, V.L.B.; Voorspoels, S.; Covaci, A.; LePoint, G.; Eens, M. Evaluation of the Usefulness of Bird Feathers as a Non-Destructive Biomonitoring Tool for Organic Pollutants: A Comparative and Meta-Analytical Approach. Environ. Int. 2007, 33, 328–337. [Google Scholar] [PubMed]
- Jaspers, V.L.; Voorspoels, S.; Covaci, A.; Eens, M. Can Predatory Bird Feathers Be Used as a Non-Destructive Biomonitoring Tool of Organic Pollutants? Biol. Lett. 2006, 2, 283–285. [Google Scholar]
- Eulaers, I.; Covaci, A.; Herzke, D.; Eens, M.; Sonne, C.; Moum, T.; Jaspers, V.L. A First Evaluation of the Usefulness of Feathers of Nestling Predatory Birds for Non-Destructive Biomonitoring of Persistent Organic Pollutants. Environ. Int. 2011, 37, 622–630. [Google Scholar]
- Jaspers, V.L.; Covaci, A.; Deleu, P.; Eens, M. Concentrations in Bird Feathers Reflect Regional Contamination with Organic Pollutants. Sci. Total Environ. 2009, 407, 1447–1451. [Google Scholar] [CrossRef]
- Behrooz, R.D.; Esmaili-Sari, A.; Ghasempouri, S.M.; Bahramifar, N.; Covaci, A. Organochlorine Pesticide and Polychlorinated Biphenyl Residues in Feathers of Birds from Different Trophic Levels of Southwest Iran. Environ. Int. 2009, 35, 285–290. [Google Scholar] [CrossRef]
- Martínez-López, E.; Espín, S.; Barbar, F.; Lambertucci, S.A.; Gómez-Ramírez, P.; García-Fernández, A.J. Contaminants in the Southern Tip of South America: Analysis of Organochlorine Compounds in Feathers of Avian Scavengers from Argentinean Patagonia. Ecotoxicol. Environ. Saf. 2015, 115, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Jaspers, V.L.B.; Covaci, A.; Van den Steen, E.; Eens, M. Is External Contamination with Organic Pollutants Important for Concentrations Measured in Bird Feathers? Environ. Int. 2007, 33, 766–772. [Google Scholar] [CrossRef]
- Hosry, L.E.; Sok, N.; Richa, R.; Mashtoub, L.A.; Cayot, P.; Bou-Maroun, E. Sample Preparation and Analytical Techniques in the Determination of Trace Elements in Food: A Review. Foods 2023, 12, 895. [Google Scholar] [CrossRef] [PubMed]
- Acampora, H.; White, P.; Lyashevska, O.; O’Connor, I. Presence of Persistent Organic Pollutants in a Breeding Common Tern (Sterna hirundo) Population in Ireland. Environ. Sci. Pollut. Res. 2017, 24, 13025–13035. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Jaspers, V.L.; Eens, M.; De Coen, W. The Relationship between Perfluorinated Chemical Levels in the Feathers and Livers of Birds from Different Trophic Levels. Sci. Total Environ. 2009, 407, 5894–5900. [Google Scholar] [CrossRef] [PubMed]
- Acampora, H.; White, P.; Lyashevska, O.; O’Connor, I. Contrasting Congener Profiles for Persistent Organic Pollutants and PAH Monitoring in European Storm Petrels (Hydrobates pelagicus) Breeding in Ireland: A Preen Oil Versus Feathers Approach. Environ. Sci. Pollut. Res. 2018, 25, 16933–16944. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gomez, X.; Simal-Gandara, J.; Alvarez, L.E.F.; Lopez-Beceiro, A.M.; Perez-Lopez, M.; Martinez-Carballo, E. Non-Invasive Biomonitoring of Organic Pollutants Using Feather Samples in Feral Pigeons (Columba livia domestica). Environ. Pollut. 2020, 267, 115672. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Q.; Ni, C.; Zhang, L. Non-Destructive Bioindicator of Little Egret (Egratta garzetta) to Assess the Pollution of Highly Toxic Organic Pollutants in Poyang Lake Wetland. Wetlands 2019, 39, 137–150. [Google Scholar] [CrossRef]
- Carabias-Martinez, R.; Rodriguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernandez-Mendez, J. Pressurized Liquid Extraction in the Analysis of Food and Biological Samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Pissinatti, R.; Nunes, C.M.; De Souza, A.G.; Junqueira, R.G.; De Souza, S.V. Simultaneous Analysis of 10 Polycyclic Aromatic Hydrocarbons in Roasted Coffee by Isotope Dilution Gas Chromatography-Mass Spectrometry: Optimization, In-House Method Validation and Application to an Exploratory Study. Food Control. 2015, 51, 140–148. [Google Scholar] [CrossRef]
- De Witte, B.; Walgrave, C.; Demeestere, K.; Van Langenhove, H. Oxygenated Polycyclic Aromatic Hydrocarbons in Mussels: Analytical Method Development and Occurrence in the Belgian Coastal Zone. Environ. Sci. Pollut. Res. 2019, 26, 9065–9078. [Google Scholar] [CrossRef]
- Harris, K.J.; Subbiah, S.; Tabatabai, M.; Archibong, A.E.; Singh, K.P.; Anderson, T.A.; Ramesh, A. Pressurized Liquid Extraction Followed by Liquid Chromatography Coupled to a Fluorescence Detector and Atmospheric Pressure Chemical Ionization Mass Spectrometry for the Determination of Benzo (A) Pyrene Metabolites in Liver Tissue of an Animal Model of Colon Cancer. J. Chromatogr. A 2020, 1622, 461126. [Google Scholar]
- Kacmaz, S.; Zelinkova, Z.; Wenzl, T. Rapid and Sensitive Method for the Determination of Four EU Marker Polycyclic Aromatic Hydrocarbons in Cereal-Based Foods Using Isotope-Dilution GC/MS. Food Addit. Contam. Part A 2016, 33, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Merlo, T.C.; Molognoni, L.; Hoff, R.B.; Daguer, H.; Patinho, I.; Contreras-Castillo, C.J. Alternative Pressurized Liquid Extraction Using a Hard Cap Espresso Machine for Determination of Polycyclic Aromatic Hydrocarbons in Smoked Bacon. Food Control 2021, 120, 107565. [Google Scholar] [CrossRef]
- De Sanctis, A.; Mariottini, M.; Fanello, E.L.; Blanco, G.; Focardi, S.E.; Guerranti, C.; Perra, G. Evaluating Contamination in the Red-Billed Chough (Pyrrhocorax pyrrhocorax) through Non-Invasive Sampling. Microchem. J. 2013, 107, 70–75. [Google Scholar] [CrossRef]
- Magnusson, B. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Gembloux, Belgium, 2014. [Google Scholar]
- Idowu, I.; Francisco, O.; Thomas, P.J.; Johnson, W.; Marvin, C.; Stetefeld, J.; Tomy, G.T. Validation of a Simultaneous Method for Determining Polycyclic Aromatic Compounds and Alkylated Isomers in Biota. Rapid Commun. Mass Spectrom. 2018, 32, 277–287. [Google Scholar] [CrossRef]
- Moradi, V.; Halldorson, T.; Idowu, I.; Xia, Z.; Vitharana, N.; Marvin, C.; Thomas, P.J.; Tomy, G.T. Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood. Separations 2023, 10, 48. [Google Scholar] [CrossRef]
- González-Gómez, X.; Cambeiro-Pérez, N.; Martínez-Carballo, E.; Simal-Gándara, J. Screening of Organic Pollutants in Pet Hair Samples and the Significance of Environmental Factors. Sci. Total Environ. 2018, 625, 311–319. [Google Scholar] [CrossRef]
- Rutkowska, M.; Płotka-Wasylka, J.; Lubinska-Szczygeł, M.; Różańska, A.; Możejko-Ciesielska, J.; Namieśnik, J. Birds’ feathers–suitable samples for determination of environmental pollutants. TrAC 2018, 109, 97–115. [Google Scholar] [CrossRef]
Compound | Spiking Level | Inter-Day Precision RSD (%) | LOD ng g−1 | LOQ ng g−1 | |||||
---|---|---|---|---|---|---|---|---|---|
10 | 50 | 200 | |||||||
pg µL−1 | pg µL−1 | pg µL−1 | |||||||
Accuracy | Precision | Accuracy | Precision | Accuracy | Precision | ||||
(%)a | RSD (%) | (%) | RSD (%) | (%) | RSD (%) | ||||
PAHs | |||||||||
Ace | 72.97 | 13.00 | 69.87 | 5.47 | 79.44 | 16.69 | 10.52 | 1.20 | 4.01 |
(71.90) | (66.63) | (79.33) | |||||||
Acy | 94.52 | 21.40 | 84.18 | 3.58 | 87.27 | 8.71 | 10.53 | 2.59 | 8.64 |
(105.79) | (82.20) | (86.70) | |||||||
Ant | 22.5 | 75.35 | 14.09 | 46.84 | 26.29 | 31.48 | 72.15 | 4.51 | 15.03 |
(24.45) | (13.98) | (25.98) | |||||||
B[a]A | 96.12 | 20.25 | 73.30 | 2.23 | 76.07 | 8.31 | 13.36 | 2.22 | 7.41 |
(101.20) | (72.18) | (79.30) | |||||||
B[a]P | 96.07 | 28.03 | 83.27 | 8.40 | 113.48 | 19.28 | 11.67 | 3.96 | 13.20 |
(101.92) | (81.34) | (110.76) | |||||||
B[b]F | 92.62 | 19.92 | 73.84 | 1.06 | 77.93 | 6.37 | 8.37 | 2.36 | 7.88 |
(91.94) | (73.03) | (75.45) | |||||||
B[ghi]P | 87.78 | 13.15 | 75.64 | 0.92 | 75.56 | 6.40 | 5.84 | 1.48 | 4.93 |
(87.81) | (75.64) | (75.65) | |||||||
B[k]F | 103.21 | 21.98 | 93.85 | 1.40 | 84.28 | 3.54 | 6.08 | 2.32 | 7.72 |
(96.29) | (93.09) | (83.31) | |||||||
Chr | 110.04 | 19.40 | 88.02 | 0.98 | 79.55 | 4.27 | 7.51 | 2.71 | 9.02 |
(104.76) | (87.62) | (79.15) | |||||||
D[a,h]A | 83.69 | 4.33 | 79.93 | 1.53 | 75.99 | 4.88 | 5.19 | 0.46 | 1.55 |
(84.69) | (80.05) | (76.87) | |||||||
Flt | 105.26 | 25.36 | 76.31 | 3.64 | 75.39 | 7.36 | 6.53 | 4.14 | 13.79 |
(95.82) | (76.98) | (73.55) | |||||||
Flu | 102.93 | 25.96 | 80.77 | 0.52 | 76.16 | 3.68 | 3.48 | 1.32 | 4.40 |
(92.99) | (81.11) | (76.02) | |||||||
Ind | 86.76 | 15.24 | 74.72 | 1.39 | 70.50 | 3.13 | 5.88 | 1.69 | 5.64 |
(84.82) | (73.61) | (70.31) | |||||||
Nap | 128.82 | 18.63 | 100.20 | 3.94 | 79.10 | 3.27 | 10.22 | 6.2 | 20.66 |
(131.08) | (98.65) | (77.56) | |||||||
Phen | 110.32 | 16.42 | 82.77 | 3.00 | 77.86 | 6.48 | 4.54 | 2.22 | 7.40 |
(109.47) | (79.92) | (76.38) | |||||||
Pyr | 116.98 | 25.11 | 71.16 | 3.99 | 90.42 | 14.61 | 16.13 | 1.92 | 6.40 |
(104.36) | (67.52) | (91.09) | |||||||
APAHs | |||||||||
1,7-Me2-Phen | 106.12 | 4.03 | 97.68 | 5.01 | 83.81 | 7.27 | 11.43 | 0.55 | 1.83 |
(106.95) | (94.78) | (85.04) | |||||||
1,8-Me2-Phen | 88.37 | 8.33 | 91.63 | 5.49 | 87.89 | 27.59 | 11.97 | 0.94 | 3.14 |
(85.19) | (89.13) | (79.79) | |||||||
1-Me-Nap | 89.07 | 15.62 | 49.88 | 15.16 | 41.38 | 12.23 | 16.41 | 1.16 | 3.88 |
(85.31) | (48.08) | (41.19) | |||||||
1-Me-Phen | 94.49 | 5.67 | 80.05 | 3.85 | 70.26 | 7.59 | 10.00 | 0.69 | 2.29 |
(94.44) | (80.83) | (71.55) | |||||||
2,6-Me2-Phen | 104.6 | 3.78 | 94.29 | 3.43 | 82.23 | 7.62 | 9.75 | 0.51 | 1.69 |
(104.27) | (94.52) | (81.74) | |||||||
2-Me-Nap | 74.11 | 25.40 | 64.50 | 13.98 | 48.57 | 10.57 | 20.82 | 2.39 | 7.96 |
(73.23) | (61.70) | (48.20) | |||||||
2-Me-Phen | 85.16 | 13.31 | 84.98 | 3.50 | 70.31 | 7.90 | 12.50 | 1.45 | 4.84 |
(81.31) | (85.39) | (71.00) | |||||||
3,6-Me2-Phen | 100.72 | 10.15 | 95.11 | 3.01 | 84.86 | 8.55 | 9.38 | 1.31 | 4.36 |
(99.97) | (96.45) | (84.24) | |||||||
3-Me-Phen | 105.84 | 8.10 | 88.90 | 3.02 | 76.31 | 8.64 | 13.74 | 1.10 | 3.66 |
(104.92) | (89.13) | (77.63) | |||||||
9/4-Me-Phen | 102.72 | 6.12 | 89.09 | 7.95 | 74.46 | 7.53 | 10.42 | 0.81 | 2.69 |
(102.08) | (89.38) | (75.43) | |||||||
1,4-Me2-Nap | 53.18 | 10.44 | 47.40 | 11.37 | 43.62 | 10.19 | 10.96 | 0.71 | 2.37 |
(53.77) | (45.88) | (43.78) | |||||||
1,3-Me2-Phen | 103.47 | 5.25 | 93.79 | 4.92 | 81.83 | 7.15 | 8.29 | 0.70 | 2.32 |
(103.18) | (94.46) | (82.54) | |||||||
2,3,5-Me3-Nap | 56.60 | 10.83 | 56.65 | 6.89 | 51.81 | 8.49 | 9.83 | 0.79 | 2.62 |
(56.74) | (56.50) | (51.34) | |||||||
1,2,6-Me3-Phen | 108.04 | 9.56 | 123.41 | 11.05 | 103.73 | 7.33 | 9.58 | 1.32 | 4.41 |
(104.31) | (120.86) | (100.92) | |||||||
6-n-Bu-Chr | 74.32 | 34.64 | 111.09 | 20.39 | 94.44 | 7.66 | 12.59 | 13.28 | 44.26 |
(69.89) | (110.86) | (94.72) | |||||||
1.4,6,7-Me4-Nap | 38.51 | 14.24 | 40.68 | 16.69 | 48.62 | 12.13 | 10.9 | 0.70 | 2.34 |
(40.23) | (38.09) | (47.86) | |||||||
1,2,6,9-Me4-Phen | 115.37 | 12.10 | 132.56 | 7.10 | 113.25 | 5.85 | 20.60 | 1.79 | 5.96 |
(113.19) | (129.03) | (110.10) | |||||||
Retene | 120.13 | 6.88 | 115.77 | 8.63 | 99.65 | 8.84 | 11.93 | 1.06 | 3.53 |
(116.98) | (111.98) | (96.29) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, V.; Halldorson, T.; Xia, Z.; Vitharana, N.; Marvin, C.; Thomas, P.J.; Sorais, M.; Crossin, G.T.; Tomy, G. Determining Polycyclic Aromatic Compounds in Bird Feathers Using Pressurized Fluid Extraction. Separations 2023, 10, 503. https://doi.org/10.3390/separations10090503
Moradi V, Halldorson T, Xia Z, Vitharana N, Marvin C, Thomas PJ, Sorais M, Crossin GT, Tomy G. Determining Polycyclic Aromatic Compounds in Bird Feathers Using Pressurized Fluid Extraction. Separations. 2023; 10(9):503. https://doi.org/10.3390/separations10090503
Chicago/Turabian StyleMoradi, Vida, Thor Halldorson, Zhe Xia, Nipuni Vitharana, Chris Marvin, Philippe J. Thomas, Manon Sorais, Glenn T. Crossin, and Gregg Tomy. 2023. "Determining Polycyclic Aromatic Compounds in Bird Feathers Using Pressurized Fluid Extraction" Separations 10, no. 9: 503. https://doi.org/10.3390/separations10090503
APA StyleMoradi, V., Halldorson, T., Xia, Z., Vitharana, N., Marvin, C., Thomas, P. J., Sorais, M., Crossin, G. T., & Tomy, G. (2023). Determining Polycyclic Aromatic Compounds in Bird Feathers Using Pressurized Fluid Extraction. Separations, 10(9), 503. https://doi.org/10.3390/separations10090503