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Abstract: Rapid growth in various industrial fields has introduced a series of new environmental
risks. The textile industry is one of the major industries that is influenced by rapid advancements
in technological sectors. The development in textile dying technologies has presented new types
of dyes that are toxic to the ecosystem. Azo dyes are the main artificial dyes used in textiles, food,
and other applications. Typically, these dyes are introduced into the environment as wastewater
discharged from factories. The discharged influence penetrates the ecosystem and causes deadly
diseases to human and animals. Several studies present activated carbon as a proper solution to
eliminating the presence of azo dyes in the environment. However, various types of azo dye have
different properties and chemical structures. Thus, there is a crucial need for more studies on the
application of activated carbons to eliminate the presence of azo dyes in the environment. This paper
discusses the toxic effects of azo dyes on the environment and human health. Moreover, this work
presents a general review of the preparation of activated carbon and the parameters that influence
the adsorption performance.

Keywords: activated carbon; azo dye; toxicity; wastewater; lignocellulosic biomass

1. Introduction

The significant development of industrial sectors has led to the formation of several
new synthetic substances such as dyes and pigments. In scientific terminology, dyes are
types of colorants that have high solubility in a chosen medium. In contrast, pigments are
insoluble colorants [1]. Moreover, dyes are organic chemicals with a molecular structure
that can reflect light within the visible spectrum. The textile and paint industries are mainly
responsible for the release of dyes and pigments in the aqueous system. It is estimated
that 7.5 metric tons of dyes are discharged annually into the ecosystem [2]. Increasing
amounts of dye are released annually, generating textile waste. Recently, various studies
have been conducted on different types of synthetic chemical substances to create dyes
with high resistivity to light, humidity, sweat, oxidizing agents, and microbes [3]. As a
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result, the natural decomposition of textile wastes has become strenuous for the ecosystem.
Textile wastes contain several environmental contaminants, such as fabrics, microplastics,
surfactants, heavy metals, auxiliary compounds, toxic dyes, etc. [2,4].

The industrial applications of dyes are influenced by the chemical structure and
properties of the manufactured dye. In general, the structure of dyes consists of aromatic
rings connected with different types of functional groups containing π-electrons. The
presence of the π-electron is associated with the absorbance of light within the spectrum
of 380–700 nm (Figure 1). Chromophores and auxochrome are considered as the primary
groups that influence the properties of synthetic dyes. Chromophores encapsulate the
atoms that absorb the light energy, whereas auxochrome changes the color of the dye [5].
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2. Classification of Dyes

The functional groups play a pertinent role in influencing the chemical and physical
properties of the dyes. The structure of the dyes is complicated due to the presence of vari-
ous cationic and anionic groups attached to the aromatic rings. Nevertheless, the complex
structure of the dyes is the basis of a classification used by several studies (Figure 2).
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Generally, dyes can be classified according to surface charge or chemical structure. The
primary classes of dyes are further divided into ionic and non-ionic dyes based on the type
of ionic charge. Depending on chemical structure, the dyes can contain nitro, azo, indigoid,
quinone-imine, cyanine, oxazine, diarylmethane and phthalein groups [2]. Ionic dyes,
which involve cationic and anionic dyes, are the most used types of dyes. Indeed, anionic
dyes are frequently adopted in the textile field due to their tendency to form covalent
bonds with the surface of fabrics [2]. Conversely, cationic dyes have limited applications
as they are biologically active dyes. Thus, cationic dyes are typically used for biomedical
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applications such as tumor detection [2]. The anionic dye family includes azo dyes, nitro,
anthraquinone, nitroso, etc. However, cationic dyes contain azine, xanthene, oxazine, azo,
anthraquinone, cyanine, acridine, etc. Generally, ionic dyes are carcinogenic. However,
anionic dyes have higher toxicity due to their tendency to cause mutagenic diseases such
as allergies and asthma [2,6].

Further classification of dyes is illustrated by Liu et al., 2020, in which dyes are catego-
rized into two classes according to chemical structure and application [7]. The chemical
structure class includes azo dyes, anthraquinone dyes, indigo dyes, phthalocyanine dyes,
sulfur dyes, Jia Chuan dyes, triaryl methane dyes, and heterocyclic dyes. On the other
hand, the application class involves dyes such as reactive dyes, acid dyes, direct dyes,
insoluble azo dyes, insoluble vat dyes, soluble vat dyes, sulfur dyes, acid mordant dyes
and acid medium dyes, oxidation dyes, polycondensation dyes, disperse dyes, basic dyes,
and cationic dyes, fluorescent dyes, fluorescent brighteners [7]. Among the several types of
synthetic dye, azo dyes are thecommonly used for industrial applications. The high toxicity
of the azo dyes is driven by the presence of amin and benzidine compounds, which cause
carcinogenic diseases [7].

2.1. Structure and Properties of Azo Dyes

Azo dyes are the most prevalent chemical dyes used intensively in the textile industry.
Indeed, it is estimated that more than 50% of all dyes used in the industry are azo dyes,
and this percentage is also increasing [8]. Thus, most dyestuffs used in the textile industry
belong to the azo dyes family. The synthesis of azo dyes revolves around two methods,
diazotization and coupling [2,3,8]. The structure of the azo dyes is composed of one or
more azo bonds (−N=N−) connected to one or multiple aromatic rings [8–10]. Various
modification techniques are adopted during the synthesis process to alter the coloration
properties of the azo dye. Moreover, modification techniques are used to modify the particle
size to enhance the dispersibility [8]. Azo dyes are used widely in paper manufacturing,
textile industries, cosmetics, and printing due to their simple modification techniques.

According to Benkhaya et al., 2020, azo dyes can be classified into two classes based on
the number of azo linkages and reactive functional groups [8]. Azo dyes can be prepared
through different methods, such as oxidation of primary amines, reduction of nitroaromatic
compounds, condensation of hydrazine and quinones, etc. [8]. Nevertheless, the primary
approach to synthesizing azo dyes is via diazotization and coupling. Essentially, aromatic
primary amine is diazotized and coupled with amine or phenol as electron-rich nucle-
ophiles [2,3,8]. During azo dye synthesis, chemicals with aromatic heterocycles, benzene
rings, or aliphatic groups are added to form bonds with azo groups to obtain the desired
color of the dye [8]. In addition, the chemical structure of azo dyes consists of solubilizing,
chromophore, and auxochrome groups, forming a covalent bond with several types of
textile substrates. Their physicochemical properties and the simplicity of their synthesis
are the main factors behind the intensive use of these dyes in various industries.

Anionic azo dyes have a strong tendency to form covalent bonds with synthetic fibers,
cellulosic fibers, and protein fibers. The strong tendency is influenced by the presence of
different functional groups that can bind with the hydroxyl groups in cellulosic fibers or
amine groups in polyamide fibers [7]. Despite the behavior of azo dyes of forming bonds
with several types of fabrics, the reaction between the fabrics and dyes is time consuming.
Therefore, a huge percentage of used azo dyes do not stick to the surface of fabrics during
the dying process. As a result, an excessive number of azo dyes are discharged into the
ecosystem in the form of polluted water [9]. Typically, water contaminated with azo dyes
is released into natural water resources such as rivers, coastal areas, and groundwater
reservoirs [2,3,8]. As a result of easy accessibility and low cost, natural water resources are
used as disposal areas. Generally, azo dyes are highly durable and do not degrade rapidly
due to their robust chemical structure. As a result, the natural decomposition of azo dyes
has a detrimental effect on the ecosystem.



Separations 2023, 10, 506 4 of 29

Nonetheless, an enormous amount of discharged industrial effluents worldwide
contains a high percentage of azo dyes [3,9]. In some countries, toxic dyestuff waste is
discharged into coastal areas, destroying the aquatic ecosystem. Indeed, industrial effluents
containing a high percentage of azo dyes are considered one of the primary xenobiotic
compounds affecting the water ecosystem [2]. Discharging water contaminated with azo
dyes directly into natural water resources can also affect the soil ecosystem. Hence, azo
dyes can reach farming areas and leak into the food chain and the human body. The
environmental concerns about the mutagenic and carcinogenic effects of azo dyes have
drawn the attention of several researchers and institutes [10–12]. The environmental
pollution of toxic dyes and dyestuffs is monitored by the Ecological and Toxicological
Association of Dyes and Organic Pigments Manufacturers (ETAD), established in 1974 [13].
The primary goal of ETAD is to protect human health and the environment from dyestuffs
by minimizing the amount of discharged contaminated water in the ecosystem. The
acceptable standards for the daily consumption of dyes vary according to the type of dye
and its physio-chemical properties. Ionic dyes are extremely toxic to the environment, and
prolonged exposure to dyes through ingestion can cause severe health effects on the human
body [7].

2.2. Toxicity Aspects of Azo Dyes

Industrial applications are the primary reason behind excessive dye manufacturing.
Many developing countries receive benefits directly from the development of the textile
industry, which is one of the factors promoting dye production. [14]. The dyeing of textiles
has been practiced in India for centuries and is believed to be the oldest art form in the
world. Currently, the textile industry is dominated by countries like China, Bangladesh,
and India. The global clothes and fashion market is worth around 1.7 trillion dollars [14].
Although the economic aspects of the textile industry are significant to many countries,
the cost of these benefits impacts the environment and human health. In other words, the
negative environmental and health impacts are the actual cost of the enormous growth
of the dye industry. The global textile industry consumes a huge amount of water and
discharges several types of contaminants. It is estimated that 10–25% of dyes used in the
textile industry are lost during the dying process. In addition, 2–20% of the dye wastes are
discharged directly into natural water resources [15,16].

2.3. The Environmental Impact of Azo Dye

Generally, azo dyes are almost non-biodegradable due to their complex chemical struc-
ture. Therefore, when azo dyes are discharged as aqueous effluents into the environment,
they can cause severe damage to the ecosystem in the long and short term. The presence of
azo dye in polluted water can increase the biological oxygen demand (BOD) and chemical
oxygen demand (COD) [3,15–17]. Essentially, azo dyes reduce the penetration of the light
into the aquatic system and therefore interrupt the photosynthesis process. Moreover,
the presence of azo dyes in the aquatic environment changes the pH level and causes
disintegration of organic and inorganic chemicals. Despite the prolonged existence of dyes
in human history, the knowledge of the xenobiotic and recalcitrant nature of synthetic
dyes such as those of the azo family is limited [17]. Despite this, the toxicity of azo dyes
appears in a variety of forms, since it is not confined to a particular ecosystem. Table 1
summarizes the environmental and health impacts of azo dyes. The ecosystems are strongly
interconnected, leading to the diffusion of azo dyes from one ecosystem to another. The
environmental impact of toxic dyes is illustrated by Figure 3.
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Table 1. Environmental and health impacts of common dyes.

Dye Classes Environmental and Health
Impact Example Ref.

Azo

-Cause bladder and liver cancer.
-Reduced fertility of male and
female mice.
-Increase the chemical oxygen
demand (COD).

-Tartrazine
-Congo Red
-Sudan Red
-Sunset Yellow

[1]

Anthraquinone

-Bind to enzyme and protein fibers
-Cause inhabitation of blood
albumin.
-Increase the chemical oxygen
demand (COD).

-Alizarin Red S
-Reactive Brilliant Blue R
-Reactive Blue 4

[1]

Acridine

-Cause damage to DNA structure.
-Have mutagenic effects.
-Increase the chemical oxygen
demand (COD).
-Inhibit the growth of some
microbes.

-Basic Yellow 9
-Acridine Orange [2,3]

Indigoid

-Increase the chemical oxygen
demand (COD).
-Inhibit the growth of some
bacteria.
-Extremely slow degradation in the
environment

-Indigo Carmine
-Ciba Blue 2B [4]

Phthalein -Increase the chemical oxygen
demand (COD).

-Thymolphthalein
-Phenolphthalein
-Dixylenolphthalein

[5]

Triphenylmethane -Increase the chemical oxygen
demand (COD).

-Malachite Green
-Crystal Violet
-Light Green SF

[6,7]

Xanthene
-Increase the chemical oxygen
demand (COD).
-Inhibit enzymatic activities.

-Rhodamine 6G
-Rhodamine 123
-Fluorescein
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The interactions between dyes and several types of adsorbents and molecules in
medium are mainly influenced by the dissociation constants and pKa and pKb
values [10,11]. The pKa and pKb values of dyes will contribute to the reaction between the
functional groups on the surface of the solid adsorbent and solutions. pKa and pKb values
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vary according to the type of the dye. For instance, the azo dyes typically have a pKa value
between 4 and 5. Thus, azo dyes can partially disassociate in neutral solutions. Because
of the impact of pKa and pKb values on the adsorption behavior, several studies have
been conducted under different conditions on azo dyes. One study showed that polymeric
composites can be used for the removal of methylene blue dye [10]. The study used math-
ematical models to demonstrate the impact of pKa values on the adsorption mechanism.
According to the study, pKa value impacts the interaction of methylene blue with the
functional groups where the nitrogen atoms present in the dye structure are reactive. Thus,
methylene blue exhibited three chemical forms, mono-protonated (MBH), di-protonated
(MBH2+), and tri-protonated (MBH3

2+), for 2.6 < pKa < 8.33, and pKa < 2.6, respectively.
Methylene blue becomes negatively charged at pKa above 8.33. As a result, the new forms
of methylene blue interacted with the adsorbent through electrostatic attraction [9].

2.4. The Health Impact of Azo Dyes

The recalcitrant and xenobiotic natures of azo dyes can be shown to impact human
and animal health in the form of severe pathologies. Indeed, azo dyes are considered
carcinogenic and mutagenic organic chemicals [17–27]. Short-term exposure to azo dyes
does not significantly impact human and animal health [18]. In contrast, long-term exposure
to toxic dyes increases the bioaccumulation of these chemicals on human and animal bodies,
causing several types of deadly diseases [22–27]. Typically, azo dyes reach human and
animal bodies through interaction with the contaminated environment. Bioaccumulation of
azo dyes occurs over time through oral exposure or inhalation in polluted ecosystems [17].
From the environmental perspective, humans are exposed to azo dyes from contaminated
agricultural crops, aquatic biota, and air (Figure 4). Several toxic compounds, such as
benzidine and amin, are diffused into the environment through azo dyes in contaminated
water. Indeed, benzidine and amin are associated with carcinogenic diseases such as
bladder cancer, intestinal cancer, and skin cancer [17].
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Above all, exposure to azo dyes via ingestion can lead to inhibition of enzymatic
activities and severe damage to the central nervous system [3,17]. Besides humans, animals
are also affected directly due to the contamination of water containing azo dyes (Figure 5).
For instance, one study reported the detection of bladder tumors in dogs exposed to
aromatic amines discharged from azo dyes [3]. Other studies revealed that long-term
exposure of rats to an azo dye known as acid yellow 36 (metanil yellow) could cause
toxic hepatitis and critical damage to the brain [14,26]. A further study was conducted on
goats exposed to metanil yellow through contaminated food and water. The study found
that metanil yellow can alter enzymatic activities and damage the heart tissue, causing
cardiotoxicity [27]. In recent decades, several studies have been conducted to illustrate
the environmental and health impacts of azo dyes. These studies aim to show the critical
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effects of consuming azo dyes and provide a brief analysis of the techniques adopted to
eliminate the presence of azo dyes in the environment.
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Researchers conducted a study on the effect of azo dyes in the Noyyal river, India [2].
The study revolved around the impact of azo dyes on microbial communities and bacterial
diversity around the river and agricultural areas. The study reported a dramatic increase in
the biological activities of bacteria and microorganisms in areas with a high percentage of
azo dyes. Moreover, the study revealed that prolonged exposure to azo dyes had increased
the abundance of Saccharibacteria (TM 7) and Proteobacteria by 36.4% and 25.4%, respectively.
Although these bacteria reduce the percentage of azo dyes via consumption, they are
considered extremely toxic to human health and the environment. The azo dyes increase
the percentage of Saccharibacteria dramatically, which causes an imbalance in the ecosystem.
Saccharibacteria is also associated with several periodontal diseases [28].

Tartrazine is a yellow anionic azo dye used in many applications (Figure 6). Certainly,
tartrazine is used intensively in the textile, food, cosmetics, and pharmaceutical industries.
Tartrazine dye has several commercial names, such as yellow alimentary 4, yellow acid
23, (4E)-5-oxo-1-(4-sulphonatophenyl)-4-[(4-sulphonatophenyl) hydrazono]-3-pyrazole car-
boxylate, or E102 [29,30]. The dye can be found as a coloring agent in ice creams, sweets,
chewing gum, jelly, custard powder, etc. [30]. Moreover, it is used in the pharmaceutical in-
dustry as a coloring agent for shells of gelatin capsules [30]. Despite the broad applications
of tartrazine dyes in food and pharmaceutical industries, the World Health Organization
(WHO) has classified the dye as a toxic chemical. The World Health Organization (WHO)
has set a maximum daily tartrazine intake of 0–10 mgkg−1 of body weight [29]. Studies
revealed that consuming tartrazine through contaminated food or water can cause multiple
diseases, such as thyroid cancer, asthma, and migraines [28–30]. The carcinogenic nature of
tartrazine dye is influenced by the tendency to interact with protein structure [29].
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Congo Red and Disperse Red 1 are two red azo dyes used widely in the textile industry
(Figure 7). Like other dyes, wastewater contaminated with Congo Red or Disperse Red 1 is
typically discharged directly into the environment. The health and environmental impacts
of Congo Red and Disperse Red 1 are covered by multiple studies. Fernandes et al. have
conducted an extensive study on the effects of Disperse Red 1 on reproductive health [31].
They exposed sexually mature male mice to small dosages of Disperse Red 1 through forced
feeding. Subsequently, they tracked the health performance of the mice for specific periods
between 8.3 and 24.9 days. The data revealed a dramatic reduction in mouse fertility. The
obtained data showed a direct relationship between the consumption of Disperse Red 1
and the detection of testicular diseases. Additionally, the consumption of Disperse Red 1
dye is associated with the detection of DNA damage in mice and Salmonella spp. [25,31].
In further studies, Congo Red has shown a similar toxicity effect on mouse health. In fact,
Congo Red affected the reproductive system of both male and female mice [31].
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Sudan dyes are classes of lipophilic azo dyes that produce colors in the range of
yellow, orange, and red [25]. Sudan dyes are extremely harmful to human health and cause
carcinogenic and teratogenic effects [25,32]. Several countries in the European Union have
banned the use of Sudan dyes [32]. Moreover, Japan and the United States have suspended
using Sudan dyes in many applications [32]. Despite the strict regulations on monitoring
the use of Sudan dyes in many countries, several industries have continued using the dyes
illegally as coloring agents for food and textile dying. Sudan dyes and their derivatives
are used in spice mixtures, sauces, paprika powder, chili powders, etc. [25,32]. The family
of Sudan dyes includes Sudan I, II, III, IV, Sudan Orange B, Sudan Red G, Sudan Red 7B,
and Sudan Black B (Figures 8 and 9) [25,32]. Sudan, I dye, also known as Solvent Yellow,
is among the most widely adopted dyes in the food industry [25]. The toxicity associated
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with Sudan dyes is related to the diffusion of metabolic substances such as aniline and
1-amino-2-napthol in human and animal bodies. Compared to other types of azo dyes,
the chemical structure of Sudan dyes is affected by the action of intestinal flora, therefore
releasing metabolic substances within the digestive system [25,32]. Studies show that
consuming Sudan dyes through contaminated water or food may cause spleen and bladder
tumors [25,32]. The health impact of azo dyes on mice is illustrated by Figure 10. Despite
the strict banning of Sudan dyes in the European Union, 20 medical cases are reported
annually associated with consuming imported products containing the dyes [32].
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Several chemical and physical methods have been studied to eliminate the azo dyes
discharged into the environment. Some of these methods include ion-exchange, chemical
precipitation, coagulation and flocculation, reverse osmosis, membrane filtration, biological
degradation, and adsorption [2,30]. The primary objective of these studies is to develop
a highly efficient azo dye removal technique at a low cost. Despite its simplicity, the
adsorption methodology has shown the best performance in removing several types of
azo dyes from contaminated water compared to other methods [30]. Due to its unique
physicochemical properties, activated carbon is used as an adsorbent to remove the azo
dye. From an economic perspective, the preparation costs of activated carbon are lower
than other adsorbents, such as metal oxides or biosorbents. Nevertheless, conducting more
studies on activated carbon is crucial as it cannot be efficient for absorbing every type of
azo dye. The modification of activated carbon properties relies on several factors, such
as the type of precursor used in the synthesis process and the type of activation agent.
This paper reviews multiple studies conducted on preparing activated carbon for azo dye
removal. Additionally, the methodology adopted for preparing activated carbon is covered
to compare the efficiency of removing the azo dyes from contaminated water.

3. Treatments Methods for Dye-Contaminated Effluents

A thorough understanding of the techniques and design of any process for removal of
azo dyes is essential. There are multiple techniques applied for contaminant removal from
water/wastewater. These techniques cover all stages of the water/wastewater treatment
plant, including initial, primary, secondary, and tertiary treatment [33]. The development
of each stage is influenced by the increase in demand for high-quality water. To illustrate,
some urban cities and industries treat water to the secondary or even more advanced stage.
According to Rajasulochana and Preethy, the development of water treatment techniques
is affected by different factors, such as the cost of the process, types of contaminants and
their concentration in water, the heterogeneity of discharged pollutants, and the required
level of purity [34]. Hence, it is impossible to treat most of the contaminants in a single
stage [34]. In general, this overview covers the techniques used in the advanced stages to
remove dyes from wastewater. The data obtained from the sources of dyes help to cate-
gorize the contaminates associated with water pollution, hence using suitable techniques
in the removal process [33]. The water treatment technologies used in dye removal are
classified into two types: physicochemical and biological treatment processes [1,5,6,35].
The physicochemical processes involve technologies such as membrane filtration (separa-
tion), ion exchange, reverse osmosis, chemical precipitation, coagulation and flocculation,
electrochemical treatment, photocatalytic, and adsorption [36]. The treatment techniques
can be combined to form hybrid water treatment techniques. Usually, hybrid techniques
have more removal efficiency and can solve environmental problems handled by using
conventional techniques.

3.1. Coagulation and Flocculation

Many water treatment plants use coagulation and flocculation as water clarification
techniques. Historically, coagulation and flocculation have been used to supply clean
water (sweet water) [37–39]. However, coagulation is used for water clarification and
not for water purification due to the lack of knowledge about germs and waterborne
diseases [37–39]. Coagulation and flocculation must be distinguished from the precipitation
process. Basically, the coagulation process is the removal of non-settleable minute particles
from an aqueous solution by neutralizing the solution [39]. Usually, coagulation is used
to remove colloidal impurities. The addition of coagulants such as alum neutralizes
the solution, and then particles flocculate together, forming micro flocs [39]. Moreover,
chemicals such as polymers are added to enhance the flocculation and form larger particles
known as macro flocs [38,39]. In simple words, the basic principle behind coagulation
and flocculation is the accumulation of microparticles to form settleable or floatable macro
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particles. The agglomerated particles are removed from water via sedimentation and
filtration. Figure 11 illustrates the steps of the coagulation and flocculation process.
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Although coagulation and flocculation are the most used treatment methods, the
removal performance of the methods is low compared to other techniques [39]. The ef-
ficiency of coagulation is influenced by different factors such as the type and dosage of
coagulants/flocculants, stirring speed and time, temperature and settling time, retention
time (RT), and pH level of the solution [39–41]. The properties of applied coagulants are
the vital factor in determining the coagulation efficiency [39,41]. Some of the coagulants
used in the water treatment field are magnesium, iron derivatives, lime, and aluminum salt.
According to Mathuram et al., ferrous sulphate, ferric chloride, and ferric chloride sulphate
showed high efficiency as coagulants in removing several types of dye [42]. Typically,
coagulation is mixed with other water treatment techniques such as electrochemical pro-
cesses and adsorption to enhance the treatment efficiency [43]. Electrocoagulation involves
the use of metal electrodes submerged in polluted water. The electrodes dissolve metal
ions which adsorb the dye molecules and precipitate to form sediments (Figure 12) [44,45].
Furthermore, magnesium carbonate and hydrated lime are utilized to adsorb azo dyes and
form coagulants [46,47].
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Wang et al., published an interesting study on the application of the coagulation
process for removing different types of azo dyes from water [48]. They used cucurbituril
for coagulation and targeted three different azo dyes, Congo Red, acid red 1, and orange
II [8]. The obtained results demonstrated the tendency of the coagulants to remove Congo
Red and acid red 1. The reported removal rate for these dyes was above 95% under pH 6.
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Furthermore, the result showed that the removal percentage is influenced by pH, contact
time, and the structure of the dyes [48].

Even though chemical coagulants have several advantages in terms of cost and sim-
plicity, they produce a significant amount of toxic contaminants and impurities. Moreover,
the process can be costly in the case of adopting electrocoagulation, as it consumes high
electricity [44]. Thus, there is a crucial need to develop non-toxic, highly efficient coagulants
to eliminate the presence of toxic substances in water.

3.2. Photocatalytic Degradation

Photocatalysis is an advanced abiotic oxidation method used to remove contaminants
from wastewater. Indeed, the photocatalysis process is preferred over other techniques due
to its unique advantages, such as eliminating contaminants under harsh conditions in a
short time [49]. Studies have revealed that photocatalysis is highly efficient for removing
endocrine-disrupting chemicals (EDCs) from water [12]. The process is conducted under
light radiation where photocatalyst and electron–holes pairs form. The photocatalyst
formation and the electron–holes pairs are associated with the degradation of pollutants in
water [12] (Figure 13).
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There are several types of photocatalyst used in water treatment, such as titanium
dioxide (TiO2), iron (Fe), zinc oxide (ZnO), and copper oxide (CuO). TiO2 is highly pop-
ular among other photocatalysts as it has high efficiency in degrading different organic
contaminants. In addition, TiO2 is inexpensive and environmentally friendly. Nonethe-
less, photocatalytic degradation has multiple disadvantages that limit the scope of its
applications. For instance, the photocatalytic process is considered costly for large-scale
applications. Moreover, the operation of the photocatalytic process is extremely difficult
as the process is pH dependent. Photocatalysts have the tendency to form an aggregation
of nanomaterials; therefore, it is usually combined with other chemicals and techniques.
Although the process is considered eco-friendly to some extent, the process produces highly
toxic byproducts.

Mabuea et al., performed research on photocatalyst applications for azo dye degra-
dation [50]. The study covered the use of the transition metal carbides molybdenum and
tungsten, along with a multiwalled carbon nanotube (MWCNT) for the photocatalytic
degradation process. Molybdenum and tungsten were coated with transition metals like
iron (Fe), cobalt (Co), and nickel (Ni), which enhances the decomposition performance. The
transition metal carbides were used for Congo Red azo dye degradation under sunlight
irradiation [50]. The process was repeated in the dark where no photocatalytic reaction is
initiated, and under the light but in the absence of a photocatalyst. The results revealed
that the MWCNT doped with Ni and Co had the highest decomposition efficiency, which
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was 97.1%. The results demonstrated that the performance of the photocatalytic process is
better compared to photolysis for decomposing Congo Red azo dye [50].

3.3. Ion Exchange

Ion exchange is a form of sorption process used widely for water treatment to reduce
the level of ionic chemical species and hardness of water. Basically, ion exchange is a
process in which two ions with similar charges are interchanged between two electrolytes
or electrolyte particles and complex [51]. The ion exchange process is influenced by
the coulombic attraction [51]. In the water treatment field, the ion exchange process is
used for decontamination, separation, and purification [51,52]. Typically, the ion exchange
technique is combined with other techniques such as membrane separation, coagulation and
flocculation, and adsorption to improve the removal efficiency. The synthetic compounds
used as ion exchangers are known as resins. These compounds are solid, insoluble, and
contain weakly bonded ions on the surface. When ions in the solution pass through the
exchange resin, the ion exchange process occurs between ions on the resin surface and ions
in the solution [51,53]. The process continues until the ion exchange reaches equilibrium.
However, when equilibrium is established, and resins are saturated, backwashing is applied
to regenerate the resins and remove accumulated ions and contaminants [53]. The ion
exchange process can be explained using the following formula:

A+B− + X+ + Y− -> X+B− + A+ + Y− (1)

where A+ is the exchangeable ion on the ion exchanger, and X+ and Y− are ions in the
aqueous solution. Ion exchange resins are classified into two types: gel and porous resins.
Gel resins have the cross-linked structure of a polymer. The polymer is connected in the
form of a matrix and has different functional groups uniformly distributed among the
structure [51–53]. The unique structure of the polymer helps in increasing the volume of
ions attached to the functional groups. These functional groups work as ion active sites
where the exchange process occurs. The increased volume of the diffused ions means more
ions in the solution will attach with the large number of active sites on the resin. Porous
resins have pore surfaces where ions can attach easily. The porosity of porous resin varies
according to the size of the structure. Porous resins can be microporous, mesoporous, and
macroporous. The size of the resin affects the surface area, hence affecting the ion exchange
capacity of the resin. A higher surface area means more ions diffuse and are attached to
the resin.

Different cationic and anionic resins are used to remove ionic dyes, such as methylene
blue, methyl orange, and malachite green [54]. However, the removal efficiency of the ion
exchangers relies on several factors, such as the concentration of the dyes in the targeted
aqueous solution, and the amount of the ion exchangers. Basically, the removal percentage
of ionic dyes from contaminated water increases with decreased concentration of dye and
increased amount of resin. Recently, anionic ion exchangers have been used widely to
remove azo dyes from wastewater [54]. Although the ion exchange process has shown
great performance in eliminating different types of pollutants from water, it is considered a
very expensive process. Moreover, the ion exchange process produces highly toxic sludges
that need to be carefully discharged. Additionally, ion exchange has time-consuming and
costly operational processes. Thus, the adsorption process and membrane filtration are
combined with ion exchange to eliminate some of the limitations of the technique and to
increase the removal performance.

3.4. Electrochemical Technique

The electrochemical method has shown promising results in many fields and appli-
cations, such as batteries, sensors, soil treatment, and fuel cell technology. In general,
electrochemical techniques have been used in water and wastewater treatment to eliminate
water contaminants [55]. The concept of using electrochemical techniques for water remedi-
ation revolves around applying an electrical current to start a chemical reaction to generate
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new substances. Usually, electrochemical techniques are used in combination with other
water treatment techniques, such as coagulation, flotation, adsorption, and membrane
filtration. Some of the most popular techniques used for dye removal are electrocoagula-
tion, electrochemical reduction, indirect electro-oxidation, photo-assisted electrochemical,
and electrodialysis [7,33,53,55,56]. As a result of the variety of electrochemical methods
available today, we can change the controlling parameters independently to improve the
effectiveness of treatment. In other words, electrochemical treatment of dye-contaminated
water needs a minimum amount of energy.

Generally, electrochemical oxidation of dye-contaminated water is conducted via
either direct anodic oxidation, or chemical reaction. In direct anodic oxidation, the reaction
occurs during the oxidation and reduction processes. Indeed, direct anodic oxidation has
inefficient decontamination performance. On the other hand, a chemical reaction occurs
during the generation of electro-species [55]. Typically, during the chemical reaction, some
of the organic dyes transform into biodegradable composites such as carboxylic acids, or
totally oxidize into CO2 and inorganic ions [55]. Although electrochemical techniques
have high removal efficiency for dye particles, they are considered extremely expensive
techniques and usually require pre-treatment of the contaminated effluents.

3.5. Membrane Filtration

A wide variety of membrane technologies have been used extensively in the field
of water treatment. It is true that membrane technologies have demonstrated significant
growth in the field of water treatment compared to other methods of treatment. The
attention drawn toward membrane technologies is driven by the fact that it requires low
energy, low-to-no chemical usage, and inexpensive operational cost [57,58]. Therefore, it is
considered environmentally friendly, with some limitations. The limitations of membrane
technologies are caused by membrane fouling with toxic sludge production.

Generally, based on chemical structure, membrane technologies can be classified into
two types: organic and inorganic membranes. Furthermore, the membrane can also be
classified as isotropic and anisotropic membranes. Primarily, isotropic membranes are
uniformly composed membranes with poor porous structure. Whereas an anisotropic
membrane is composed of a non-uniformed structure with multiple layers [57,59]. Organic
membranes consist mainly of organic polymers and can have different pore sizes. On the
other hand, inorganic membranes are synthesized from materials such as metals, silica, and
ceramics. Membranes can be further classified based on the size of the pores into macro
membranes, micromembranes, and nanomembranes, which all contribute to multiple
processes such as microfiltration, ultrafiltration, nanofiltration, and reverse osmosis.

For dye removal, nanofiltration and reverse osmosis are considered the most effi-
cient types of membrane techniques. This is due to the proper nano size of the pores
in the membrane, which catch the azo dye particles more efficiently compared to ultra-
or microfiltration techniques. It has been found that a membrane with a weight cut-off
lower than 10,000 Daltons is suitable for eliminating dye molecules from water [12,40].
Although membrane filtration is considered a cost-efficient technique for removing con-
taminants from water, there are some limitations that restrict its application up to a certain
extent. For instance, the membrane process is affected by the flow rate of the medium
and requires scheduled cleaning to remove the concentrated waste. Moreover, membrane
filtration has poor contaminant removal efficiency compared to other techniques [57,58].
Nonetheless, membrane filtration techniques are usually used with other methods such
as electrochemical, adsorption, or ion exchange as hybrid techniques. Membrane hybrid
techniques are considered more reliable and efficient as they reduce the limitations of the
water treatment methods.

3.6. Electrodialysis Process

Electrodialysis is an advanced hybrid treatment method used in several wastewater
treatment plants around the world. In fact, electrodialysis is one of the great examples
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of hybrid treatment methods in the water treatment field. Basically, electrodialysis is a
combination of electrochemical and ion exchange methods [56]. Primarily, the electrodial-
ysis method is used for the desalination of brackish water to remove salt. Additionally,
it has been used as a removal process for heavy metal ions and ionic dyes [55,56]. In
electrodialysis, the electric potential generated via the electrochemical process is used to
drive electrolyte ions through a series of selective ion exchange membranes. Hence, the
electric potential is considered as a driving force of the process [55]. The selectivity and the
chemical structure of the ion exchange membranes in the electrodialysis method are like the
ion exchange resins [55,56]. However, the difference can be observed in the mechanical re-
quirement of the membrane process. The simple structure of the electrodialysis cell consists
of two conductive electrodes separated via two ion exchange membranes. The separation
of the membranes divides the electrodialysis cell into three compartments where chemical
reactions occur. When a direct current (DC) is applied to the electrodialysis cell, cations and
anions in the solution start to move towards their perspective electrodes (cathode and an-
ode). During the transportation of the cations and anions, they pass through ion exchange
membranes that help in ion removal and separate the compartment of the electrodialysis
cell by ions volume [56]. The concentration of ionic contaminants decreased in the middle
compartment. However, the concentration is higher close to the anode and cathode sides.
During the process, cations can only pass through a cation exchange membrane, while
anions pass thought an anion exchange membrane. Usually, the electrodialysis method
involves a formation of acid and alkaline layers near the anode and cathode, respectively.
As a result, additional hydrogen and hydroxide ions move to the middle compartment.
In the middle compartment, hydrogen and hydroxide ions neutralize and form water.
Selective ion exchange membranes are used to reduce the negative effect of the movement
of hydrogen and hydroxide ions and hence increase the current efficiency.

3.7. Biodegradation Techniques

In the last few decades, the adoptability of biodegradation techniques for water treat-
ment has increased dramatically. The rapid development in biodegradation techniques
is mainly driven by the special characteristics of the techniques, such as the low oper-
ational cost, high removal efficiency, and the generation of a reduced amount of toxic
byproduct [60]. Biodegradation techniques are used for the degradation or elimination of
chemicals such as heavy metals, azo dyes, microplastics, and organic toxicants. Moreover,
in some contaminated areas, microorganisms are found to be living on digesting dyes as a
source of carbon and nitrogen [12]. Nevertheless, the consumption of discharged dyes by
microbial communities in the affected areas has a negative impact on the environment. The
uncontrolled consumption of dyes by microbial communities can affect the ecosystem via
increasing the population of the microbes which will eventually destroy the ecosystem [61].
For instance, Krishnamoorthy et al. conducted a study on the impact of discharged azo
dyes on the abundance of Saccharibacteria [2]. The study was conducted on the Noyyal
River in Tamil Nadu, India. Typically, textile industries around the Noyyal river discharge
a huge amount of contaminated textile wastewater that contains a high concentration of
azo dyes. The presence of azo dyes in the river resulted in a higher population of Saccharib-
acteria and Proteobacteria. Consequently, the ecosystem of the river is becoming unstable.
Moreover, Saccharibacteria has a negative impact on human health as it is associated with
oral mucosal infectious diseases [28].

Generally, biodegradation for dye remediation can be carried out using fungi, bacteria,
algae and plants, and yeasts. The efficiency of the microorganism is determined by its
natural activity and availability [62]. The biodegradation of the azo dyes is mainly influ-
enced by the used cell or enzymes. However, the degradation process can also involve
the use of microbial biomass, which is more efficient in eliminating the toxic dyes [62].
The biodegradation process decomposes the dye particles completely. However, it is a
time-consuming process and is often not efficient for a large volume of contaminated water.
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3.8. Adsorption

The importance of the adsorption method in the water treatment field is crucial. IN
particular, the adsorption method is involved with other treatment methods such as pre-
cipitation, coagulation, and ion exchange to treat industrial wastewater and groundwater.
Basically, adsorption in water treatment is a process used to remove dissolved contaminants
via adhering them to a surface of solid particles [63]. In other words, adsorption is a process
of diffusing and adhering atoms, molecules, or ions onto the surface of solid particles. The
adhesion of the particles occurs due to the existence of imbalanced forces between the solid
surface and the contaminated particles [63]. The solid surface that attracts molecules is
known as an absorbent, and the particles which are adsorbed are known as adsorbates. The
adsorption process can be illustrated by the following formula, where A is adsorbate, B is
adsorbent, and AB is the output when A is adsorbed by B:

A + B↔ AB (2)

The adsorption method is preferable due to its simplicity and flexibility. In fact,
operations using the adsorption process are very simple compared to other treatment
methods. Adsorbents are added directly to the water sources or by mixing basins. In
addition, the adsorption treatment process is safe, cheap, and can be used to remove
various types of contaminants (organic, inorganic, and biological) [7,33,63]. The special
characteristics of the adsorption method are affected by several factors such as the aqueous
solution properties, type of adsorbate, adsorbent type, structure of the pollutant, operating
conditions, contaminant disposal, and particle regeneration [63,64].

In general, there are two types of adsorption: chemical adsorption—chemisorption—
and physical adsorption—physisorption [63,65]. Basically, chemical adsorption is defined
as the adhesion of particles to the solid surface via chemical bonds such as ionic, covalent,
or metallic bonds [63]. In contrast, physical adsorption involves the adhesion of particles to
a solid surface via physical bonds such as the van der Waals force [63]. Physical adsorption
differs significantly from chemical adsorption in terms of their bond strength.

In order to develop the optimum adsorbent, a full understanding of the method and
the behavior of the interaction between adsorbents and adsorbates is mandatory. Lately,
attention has been drawn toward using activated carbon to treat textile dye wastewater.
Activated carbon has various advantages and is considered in multiple applications due to
its unique features (Table 2).

Table 2. Advantages and disadvantages of some dye elimination techniques.

Technique Advantages Disadvantages

Coagulation and flocculation -Inexpensive.
-Simple operation procedures.

-Produces huge amount of
toxic sludge.
-Poor efficiency.
-Requires long operation time.

Photocatalytic degradation
-Highly efficient.
-Can be used under harsh
conditions.

-Extremely expensive.
-Produces highly toxic
byproducts.

Adsorption
-High removal efficiency.
-Inexpensive.
-Simple operation procedures.

-Requires treatment for
adsorbents.
-Not efficient with all types of
dye.

Ion exchange
-Inexpensive.
-Produce small amount of
byproduct.

-Not efficient with all types of
dye.
-Requires long time.

Membrane filtration
-Efficient with all types of
dyes.
-Requires short time.

-Expensive process.
-Produces a high volume of
toxic sludge.
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3.9. Application of Activated Carbon for Dye Removal from Wastewater

Activated carbon, also known as activated charcoal, is a carbonaceous material com-
posed of many open pores on the surface (Figure 14). Activated carbon is used in many
applications, like the automotive field, to filter the interior air of the vehicle, in gasoline
tanks to eliminate the amount of discharged toxic substances, and as electrodes for the
batteries and electrochemical capacitors [66]. Activated carbon is part of the graphite family,
and therefore it is amorphous in nature. Activated carbon has remarkable properties, such
as a unique pore structure, high surface area, and chemical polarity. These properties de-
pend on the type of the precursor and the preparation process [67–69]. The enlarged surface
area and porous texture are formed via exposing turbostratic carbon to different chemical
reactions (Figure 14) [69]. The chemical reaction interacts with the surface molecules of
activated carbon and produces gases. Consequently, gases escape from the surface and
create pores. The chemical reaction involved in activated carbon preparation is known
as activation.
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Figure 14. Pore structure and distribution on activated carbon.

In recent decades, commercial activated carbon has been used for multiple applications.
However, commercial activated carbon is not cost-effective because it is produced from
non-renewable sources such as coal and petroleum. Thus, efforts are geared towards
using eco-friendly, renewable, and, most importantly, inexpensive sources of precursors
for producing activated carbon. Biomass precursors have been introduced as a highly
effective alternative. As a result, biomass based on agricultural wastes is used to synthesize
new forms of activated carbons [69]. There are many types of agricultural wastes that
can be used as precursors for activated carbons. For instance, palm kernel shells, waste
coffee beans, cassava peel waste, rice husk, sugarcane bagasse, olive husk, hazelnut shells,
almond shells, walnut shells, and many more [66,67,69].

The type of the precursor influences the properties of the produced activated carbon,
such as the surface area, porosity, and particle size [69]. Activated carbon is classified
according to particle size into three types, Powdered Activated Carbon (PAC), Granular
Activated Carbon (GAC), and Activated Carbon Fibers (ACF) [66]. Activated carbon is
categorized by particle size because it is difficult to distinguish its physical properties and
surface characteristics [66]. PAC has a particle size between 0.015–0.025 mm, whereas GAC
and ACF have a particle size between 0.6–3 mm and 10–20 µm, respectively [66] (Table 3).
PACs and GACs are usually used in the water treatment field, whereas ACFs are used for
gas adsorption due to their special microporous structure.
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Table 3. Comparison between PACs, GAC, and ACFs.

Activated
Carbon Particle Size BET Surface

Area (m2/g)
Pore Volume
(cm3/g)

Physical
Surface Area
(m2/g)

PACs 0.015–0.25 mm 700–1600 0.5–1.4 -
GACs 0.6–3 mm 700–1500 0.5–1.1 ~0.001
ACFs 10–20 µm 700–2500 - 0.2–2.0

Activated carbon Particle size BET surface area
(m2/g)

Pore volume
(cm3/g)

Physical surface
area (m2/g)

PACs 0.015–0.25 mm 700–1600 0.5–1.4 -
GACs 0.6–3 mm 700–1500 0.5–1.1 ~0.001
ACFs 10–20 µm 700–2500 - 0.2–2.0

Generally, PAC is best for batch adsorption, whereas GAC is best for the column
adsorption process used industrially. Nonetheless, PAC is typically used to establish the
process kinetics and isotherms initially, then based on the harder nature of the starting
biomass containing more lignin, the industry prepares GAC particles. Because softer,
cellulosic biomass such as leaves, and grass are not utilized to produce granular activated
carbon. ACF fibers are generally great for small-scale applications as they will have more
weight loss, like PAC.

The interaction between the particles of toxic dye as an adsorbate and activated
carbon as an adsorbent is mainly influenced by several possible adsorption mechanisms.
Initially, the interaction between the adsorbent and adsorbate begins with the surface
and intra-particle diffusion processes. Then, several adsorbing mechanisms may occur
at the surface of the adsorbent, such as π–π interactions, hydrogen interactions, acid–
base reactions, electrostatic interactions, hydrophobic interactions, and van der Waals
forces [69]. Typically, electrostatic attraction and ion exchange are the most common
adsorption mechanisms of dyes using activated carbon [69]. The adsorption mechanisms
are mainly influenced by the functional groups on the surface of the activated carbon and
ions in the dye solution. Thus, modification of the activated carbon surface will enhance
the reactivity and promote adsorption of more dye particles. Usually, multiple adsorption
mechanisms occur simultaneously during the adsorption process. Figure 15 shows an
example of possible mechanisms of dye adsorption.
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Synthesis of activated carbons involves two stages, thermochemical carbonization,
and activation [69]. These two stages can occur simultaneously, one-step process, or
sequentially, two-steps process. The thermochemical carbonization stage is conducted
either via hydrothermal process, pyrolysis, torrefaction, or combustion [69]. However, the
activation stage involves physical, chemical, or physiochemical activation [66]. Generally,
the carbonization process occurs in an inert atmosphere where oxygen is absent to prevent
biomass burning. Nevertheless, combustion occurs with oxygen to reduce energy content
in biomass [66,67]. The temperature required for the carbonization process is in the range of
200–400 ◦C, while for pyrolysis and hydrothermal it is between 400–850 ◦C and 200–350 ◦C,
respectively [66,69].

The product obtained from the thermochemical carbonization processes is known
as char. Indeed, char is considered an adsorbent, but it has poor adsorptive capacity.
Thus, different chemical reagents, such as acids or bases, are used to activate the surface
of the char and produce activated carbon. This process is known as chemical activation.
Usually, acids such as phosphoric, sulfuric, and hydrochloric acids are used in the activation
process [69]. The main goal of using chemical activation is to enhance the number and
size of pores on the surface of the carbon. Hence, it can catch more of the dye particles.
The adsorption capacity varies with the type of activation reagent used. Physical and
chemical activations are the most used methods in preparing activated carbon [69]. While
the physiochemical activation method combines both physical and chemical activation, it
is often used to enhance the adsorption performance for specific applications. Generally,
activation processes are used to improve the porosity of the activated carbon particles.
The generated pores are classified into macropores (>50 nm), mesopores (2–50 nm), and
micropores (<2 nm) [66]. Figure 16 shows the adsorption process of dyes molecules using
activated carbon.
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3.9.1. Renewable Bio-Based Precursors for Synthesis of Activated Carbon

Synthesizing activated carbon through renewable precursors revolves around the
adoptability of different types of lignocellulosic biomass. Lignocellulosic biomass is an
abundant natural material. Historically, lignocellulosic biomass has been used as a source
of energy. Although the efficiency of biomass as a source of energy is lower than fossil
fuel, lignocellulosic biomass is an environmentally friendly and affordable substance [69].
Additionally, lignocellulosic biomass substances are used to produce value-added products
such as fertilizers and activated carbon.

In general, lignocellulosic biomass structure is composed of three biomacromolecules:
cellulose, lignin, and hemicellulose. The complex structure of lignocellulosic biomass
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requires a higher amount of energy (temperature and pressure) for carbonization and
activation [66,67]. The percentage of each type of biomacromolecule varies based on the
different types of lignocellulosic substances. Pyrolyzing lignocellulosic biomass with a high
percentage of cellulose and hemicellulose will result in producing liquids and gases. The
treated liquids and gases are known as biofuel and biogas. On the other hand, pyrolyzing
lignocellulosic substance with high amount of lignin will produce solids in the form
of biochar, which is the precursor of activated carbon [69]. Generally, carbonization of
lignocellulosic biomass will produce biomaterials with ashes. Basically, the produced ashes
are the minerals that are part of the lignocellulosic biomass structure.

Cellulose

Cellulose is considered one of the core compounds in many organic structures. Cellu-
lose is an abundant compound and is simple to extract from lignocellulosic biomass. The
chemical structure of cellulose consists of six carbon glucose units connected in the form of
a linear polymer [70]. Additionally, the structure of cellulose contains two terminals with
different activities. The first terminal is known as the reducing end group, and it consists of
the reducing hemiacetal group in position C1 [70]. The second terminal is known as the
non-reducing group and consists of an extra secondary hydroxyl group in position C4. The
carbon glucose units in the cellulose structure are linked together via β-(1-4)-glycosides
bonds, where cellulose polymers are structured together parallelly [70–72]. Generally, cel-
lulose has poor solubility in several types of solutions due to the interconnection between
the glucose units and cellulose polymers. The interconnection of cellulose is affected by the
existence of intermolecular and intramolecular hydrogen bonds [70]. The percentage of
cellulose in biomass material varies according to the characteristic of the biomass. Typically,
biomass materials with a high percentage of cellulose are used to obtain organic fuel in
the form of biofuel. The process of producing biofuel involves thermochemical conversion
processes at low-to-medium temperatures.

Hemicellulose

Hemicelluloses are heteropolymers that are present in the plant cell wall structure
along with cellulose. Hemicelluloses have random amorphous structures that are com-
posed of multiple monosaccharide units linked together [73,74]. Thus, hemicellulose is
considered a polysaccharide with β-(1-4)-linked backbones. The primary role of hemi-
cellulose is to form a bond with cellulose and lignin to strengthen the plant cell wall.
The hemicellulose class includes xyloglucans, xylenes, mannans and glucomannans, and
β-(1→3,1→4)-glucans [73]. The core of the hemicellulose structure is pentose sugar. In
contrast to cellulose, the hemicellulose structure consists of random short chains. Therefore,
hemicellulose’s solubility is better than that of cellulose [70]. The polymers in hemicellu-
lose are classified into heteropolymers and homopolymers. The difference between the
polymer classes revolve around the type of sugar units [73]. The heteropolymers consist of
several types of sugar units, whereas homopolymer units are composed of a single type of
sugar. Like cellulose, hemicellulose is also used to produce bio-products such as biogases
and biofuel.

Lignin

Lignin is a complex cross-linked polymer present in the structure of lignocellulosic
biomass materials. The primary role of lignin is to provide strength to the lignocellulosic
biomass materials [75]. In general, lignin’s structure consists of different phenyl propane
units and aromatic alcohol. Moreover, hydroxyl groups and methoxyl groups are present in
the lignin structure and are usually targeted to form other materials [69]. Hydroxyl groups
exist in the para position, whereas methoxyl groups exist in meta positions. Additionally,
the aromatic rings in the structure are linked together via carbon-to-carbon or carbon-to-
oxygen bonds. The structure of lignin is composed of multiple functional groups such as
carbonyl, hydroxyl, and methoxyl groups that influence the physiochemical properties of



Separations 2023, 10, 506 21 of 29

the material [75,76]. For instance, the presence of these groups makes the structure of lignin
strong and insoluble. The percentage of lignin in the lignocellulosic biomass materials
varies, depending on the type of biomass material. Approximately, the structure of biomass
may consist of 10% to 30% lignin. However, the structure of materials like coconut fibers
and husk may be 45% lignin, whereas hardwood contains 16% to 24% lignin, and softwood
is composed of 25% to 31%. Besides the volume of lignin in the biomass, the structure of the
lignin also can vary between the different types of lignocellulosic biomass materials [69,75].
To illustrate, lignin in hardwood relates to xylenes via a covalent bond, whereas softwood
is connected to galactoglucommannans, which is hemicellulose [75,76]. Lignocellulosic
biomass with a high percentage of lignin is used to produce carbonaceous solids such as
char and activated carbon. Hence, the quality and structure of the biomass has a significant
impact on the properties of synthesized activated carbon used for wastewater treatment.

3.9.2. Synthesis Protocol of Activated Carbon
Physical Activation Process

Physical activation involves the oxidation of char using water steam (H2O), diluted
oxygen gas (DO), carbon dioxide (CO2), and many other oxidization agents [66]. Usually,
physical activation is conducted at a temperature up to 1100 ◦C [77]. The most remarkable
oxidizing agent is carbon dioxide. Carbon dioxide is endothermic and has low reactivity
at high temperatures, forming enormous pores on the activated carbon structure [78].
Moreover, controlling the activation process using carbon dioxide is less complicated and
inexpensive. Carbon dioxide, as an activation agent, tends to form more micropores,
whereas water steam tends to expand the existing micropores. Consequently, water steam
generates activated carbons with low micropore volume and high meso- and macropore
volume [78]. Nonetheless, both carbon dioxide and steam can be very effective activating
agents, as the conditions of the activation process can also alter the pore structure of the
activated carbon [78]. The properties of water steam and carbon dioxide can be suitable
for certain types of biomass precursors with low lignin percentages [69]. The physical
activation process is commercially favorable, as it is inexpensive and requires no chemicals.
Therefore, the process is considered environmentally friendly. On the other hand, physical
activation has drawbacks that limit its scalability, such as the production of activated carbon
with low adsorption capacity, consumption of high energy, and long activation period [77].
It is essential to carefully select a suitable oxidizing agent for the used precursor to obtain
activated carbon with large pore size distribution and surface area.

Chemical Activation Process

The chemical activation process, known as wet oxidation, uses chemical agents to
dehydrate and oxidize charcoal. These activating agents can be acids, bases, or salts. Usu-
ally, the activation process is synchronized with the carbonization process at a temperature
between 400 and 900 ◦C, according to the type of precursor used and activating agents [77].
The chemical activation process is divided into three main stages. First is the impregnation
stage, in which the biochar is oxidized and dehydrated with chemicals. Subsequently, the
mixture is dried and then heated for a given period under a specific temperature. Lastly,
the mixture is washed repeatedly to remove the excess activating agent to obtain activated
carbon [77]. Although several chemicals have been studied as activating agents, only a few
can produce activated carbon with high efficiency. The activating agents with high poten-
tial are either alkaline or acidic groups. Examples of commonly used alkaline groups are
sodium hydroxide (NaOH), potassium carbonate (K2CO3), potassium hydroxide (KOH),
and calcium chloride (CaCl2). On the other hand, the most used acidic groups are sul-
phuric acid (H2SO4) and phosphoric acid (H3PO4) [79–81]. In addition to acid and alkaline
groups, some metal salts have revealed a high potential, such as zinc chloride (ZnCl2) [77].
Typically, potassium hydroxide produces activated carbon with a high surface area, though
this is also associated with the type of used precursors [66,77]. Certain variables need to be
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monitored to obtain activated carbon with a high pore size and volume, such as activation
method, carbonization temperature and time, and impregnation ratio [77].

Among the various types of chemical activators, H3PO4 has been used widely in the
large-scale manufacturing of activated carbon [81]. The intensive use of H3PO4 in the
commercial production of activated carbon is mainly influenced by several factors, such
as low environmental impact, low energy consumption, high carbon yield, and ease of
recovery [12]. Ernawati et al. documented the effect of phosphoric acid (H3PO4), salt
(NaCl), and potassium hydroxide (KOH) as activation agents [13]. The study focused on
the impact of the activation agents on the preparation of activated carbon from Tanjung
fruit peel. The results revealed that activated carbon produced using H3PO4 as an acidic
activation agent has high porosity and hence greater adsorption performance compared
to NaCl and KOH [13]. Generally, H3PO4 influences the structure of the activated carbon
via two methods. Primarily, H3PO4 initiates hydrolysis, condensation, and dehydration
reactions by acting as a catalyst. Secondly, H3PO4 may occupy some micropores on the
interior structure of activated carbon and expand the surface area due to the size of the
particles [12]. Hence, phosphoric acid can be utilized to produce activated carbon to target
specific types of contaminants.

Although chemical activation produces activated carbons with more pore size distri-
bution and high pore volume, the process has drawbacks that limit its applicability. For
instance, producing activated carbon via chemical activation requires repeated and long
washing steps to remove the excess activating agent [69]. Moreover, the process produces
toxic wastewater containing some chemical agents that can harm the environment if dis-
charged inappropriately [77]. Nonetheless, chemical activation has several advantages that
make it desirable over physical activation. For instance, chemical activation produces acti-
vated carbon with high adsorption capacity. Moreover, the process is economically viable
because it requires lower temperature and less activation time [77]. Table 4 summarizes the
list of adsorbents used to remove dyes from wastewater.

Table 4. List of some adsorbents used for the removal of dyes from wastewater.

Adsorbent Dye Removal
Capacity pH Ref.

Activated carbon Tartrazine 24.57 mgg−1 2 [9]
Pulp ash and paper sludge Reactive Blue 19 95% 12 [82]
Metal hydroxide sludge Direct Blue 85 98.7 mgg−1 10 [83]
Red mud Remazol Brilliant Blue ~72% 2 [84]
Activated red mud Acid blue 113 83.33 mgg−1 3 [85]
Activated red mud Reactive black 5 35.58 mgg−1 3 [85]

Physiochemical Activation Process

In the last decade, the development of the industrial sectors increased rapidly, and
hence new types of complex materials and toxic wastes have been introduced into the
environment. As a result, a crucial need for more efficient removal methods arose which
led to more studies in the water treatment field. Despite the application of activated carbon
for water treatment, studies have tried to enhance the adsorption performance by applying
new techniques and synthesizing new composites. Physiochemical activation is a process
that combines both chemical and physical activation to obtain activated carbon with a high
pore volume and a large surface area. Generally, physiochemical activation is achieved
via one of two approaches. The first approach involves pre-chemical treatment of biomass
materials before carbonization, followed by physical activation. In the second approach, the
biomass material is carbonized and then treated using chemical and physical activations
(Table 5). The sequence of the physiochemical treatment has a negligible impact on the
performance of the produced activated carbon. The activated carbon obtained through
physiochemical activation has a better pore structure compared to chemical or physical
activation. However, the activation process is considered costly and time-consuming.
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Table 5. Chemical, Physical, and Physiochemical activation of different types of biomass materials.

Precursor Activation Method Activation
Agent

Activation
Temperature
(◦C)

Activation
Time
(Minutes)

SBET
(m2/g)

Adsorption
Capacity
(ppm)

Pore
Volume
(cm3/g)

Reference

Barley straw Physical activation CO2 800 60 789 - 0.3268 [86]
Barley straw Physical activation Water steam 700 60 552 - 0.2304 [86]
Palm oil
shell Chemical activation Na2CO3 700 120 743.71 247.33 0.4210 [87]

Palm oil
shell Chemical activation ZnCl2 700 120 551.05 241.67 0.3137 [87]

Green
coconut shell Chemical activation ZnCl2 650 60 995.79 - 0.372 [88]

Date stone Physical activation CO2 900 120 604 28,570 0.29 [89]
Rice husk Chemical activation KOH 800 180 1505 - 0.42 [90]
Sour cherry
stones

Physio-chemical
activation

ZnCl2 with
CO2 steam 700 120 1704 - 0.984 [91]

Olive stones Chemical activation H3PO4 500 120 1218 - 0.5 [92]
Olive stones Physical activation Water steam 750 360 807 131,000 0.30 [93]
Garlic peel Chemical activation KOH 800 60 1262 - 0.65 [94]
Rice straw Chemical activation KOH 850 120 1048.3 - 0.0436 [95]
Tea waste Physical activation Water steam 800 30 995.07 - 0.287 [96]

Date seeds Physio-chemical
activation HNO3/Steam - 180 950 - - [97]

3.9.3. Activated Carbon for the Elimination of Azo Dyes

Reviewing previous studies on removing azo dyes via activated carbon will help
to find the optimum parameters of the adsorption process. Several approaches have
been published on the application of different techniques and materials for dye
elimination [98–103]. As an eco-friendly and inexpensive material, activated carbon has
demonstrated a persistent market demand. There are various parameters that can be modi-
fied to create the optimum adsorbents for certain types of azo dyes. Most of the studies on
removing azo dyes from the water via activated carbon have focused on the effect of the
activation agent type.

Researchers have studied removing tartrazine and sunset yellow azo dyes from con-
taminated water using activated carbon derived from cassava sievate [100]. In their study,
they used phosphoric acid (H3PO4) as an activation agent [100,103]. The reported optimal
removal of the dyes was 20.83 mgg−1 and 0.091 mgg−1 for tartrazine and sunset yellow,
respectively. The results were recorded at optimum conditions at a temperature between
30–40 ◦C, adsorbent dosage equal to 0.1 g, and pH in the range of 1–2. Typically, tartrazine
and sunset yellow removal from contaminated water is conducted simultaneously due to
the similarity between the two dyes in the structural formula [100].

Earlier research was conducted on the removal of tartrazine from contaminated water
using activated carbon prepared from apricot stone biomass impregnated with phosphoric
acid (H3PO4) [101]. Their study involved two approaches: a batch adsorption experiment
and a fixed-bed column experiment. In their study, they found that the most effective pa-
rameters in the batch experiment were initial dye concentration and temperature. Moreover,
the optimum adsorption capacity was reported at 76 mgg−1 after two hours. According to
their report, higher dye concentration resulted in higher adsorption capacity. Furthermore,
the temperature had a significant influence on the adsorption capacity; the higher the
temperature, the higher the adsorption capacity.

An interesting study published by Brice et al., 2021, studied the elimination of tar-
trazine from an aqueous solution using activated carbon powder [9]. The activated carbon
was produced from cola nutshell and chemically activated via phosphoric acid (H3PO4)
and potassium hydroxide (KOH). They conducted the adsorption experiment using both
chemical agents under different parameters. The study focused on the effect of adsorbent
dosage, contact time, and type of the activation agent. The pH level was fixed at 2 because
the adsorption performance was extremely weak under pH lower than 2. The character-
ization results showed that the obtained activated carbons had a mesoporous structure
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with multiple oxygen functional groups on the surface. The adsorptivity of both potassium
hydroxide-based activated carbon and phosphoric acid-based activated carbon increased
with the increase in contact time. The reported adsorption capacity was 18.196 mgg−1

and 19.256 mgg−1 for potassium-hydroxide- and phosphoric-acid-based activated carbons,
respectively. The study of adsorption isotherms is described by the Langmuir model,
where the maximum monolayer adsorption capacity was 21.5 mgg−1 and 24.5 mgg−1 for
potassium-hydroxide- and phosphoric-acid-based activate carbons [9].

Kumar et al., 2013 published a study on removing Direct Blue 5 azo dye using com-
mercial granular activated carbon [101]. According to the study, Direct Blue 5 is used
intensively for textile dying in Sanganer, India. The research focused on studying the
impact of retention time, initial concentration of the dye, and stirring time. The analytical
results revealed that granular activated carbon has a high tendency toward adsorbing
Direct Blue 5 azo dye. Additionally, the maximum monolayer adsorption capacity was
found to be 17.5 mgg−1.

Rajaram and Patil used activated carbon for the removal of Sudan Red G azo dye
from a contaminated aqueous solution [33]. The activated carbon was prepared from
two different types of precursors, mosambi peel and cotton stems. The adsorbent was
activated using sodium bicarbonate (NaHCO3). The research examined the effects of
several parameters, including adsorbent dosage, initial concentration of dye, contact time,
and pH. The results revealed that the adsorption capacity increased with the increase
in contact time and adsorbent dosage. The maximum removal percentage was 92.73%,
reported after 120 min of contact time and at an adsorbent dosage equal to 1 g/100 mL [33].

Li et al., 2016, conducted a study on the usage of activated carbon as an adsorbent for
several types of dyes [102]. The published study included an azo dye known as methyl
orange. The activated carbon was synthesized from rice husk residue and activated using
sodium hydroxide (NaOH) and phosphoric acid (H3PO4) in two steps. Like other studies,
they investigated the effects of pH, contact time, temperature, and initial concentration of
the dye. The results showed that the maximum amount of removal of methyl orange took
place at pH 3. Moreover, the adsorption capacity of the activated carbon decreased with
the increase in pH above 3. Similarly, the increase in the initial concentration of the dye
resulted in a decreased removal rate of methyl orange [102].

A recently published study by El Maguana et al. 2020 removed methyl orange azo dye
using activated carbon produced from prickly pear seed cake [104]. The synthesis process of
activated carbon involved using phosphoric acid (H3PO4) as an activation agent. This study
revealed that the activated carbon produced had an excellent adsorption performance. The
maximum adsorption capacity was found to be 336.12 mgg−1 at pH 7 and temperature
20 ◦C.

Liu and Xing, 2021, studied the adsorption process of acid red 88 azo dye from
contaminated water using activated carbon as an adsorbent [105]. The activated carbon
was prepared from the carbonization of pomelo peels and sodium hydroxide (NaOH)
activation. The study was conducted based on an orthogonal experiment to enhance the
removal capacity of the activated carbon. Several factors were studied in order to optimize
the adsorption performance. These factors included activation time, temperature, the
activation agent type, and impregnation ratio. The characterization results showed that the
structure of obtained activated carbon was amorphous and composed of micropores. The
maximum adsorption capacity was found to be 1473.59 mgg−1. The adsorption capacity
was mainly influenced by activation temperature and impregnation ratio.

Sidiqua and Priya, 2021, conducted an interesting study on removing basic yellow azo
dye from contaminated wastewater using activated carbon composite [106]. The activated
carbon was prepared from sapindus seed using sulfuric acid activation. The obtained
activated carbon was mixed with clay to form the composite adsorbent. The contact time
and pH were used as controlling variables in the adsorption experiment. The results
demonstrated that the composite adsorbent had a higher adsorption capacity compared to
pure activated carbon and clay. The reported removal percentage of composite adsorbent
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was 86% at maximum contact time, whereas the removal percentages of activated carbon
and clay were 68.5% and 38%, respectively. The analytical results revealed that the increase
in contact time assists the absorbent and enhances the removal percentage drastically [36].

4. Conclusions

It is without a doubt that azo dyes can have serious consequences for humans and the
animals surrounding the ecosystem when they are released directly into the environment.
Azo dyes are used widely in several industries, such as the textile, food, wood, paper,
cosmetic, and pharmaceutical industries. Hence, humans can be exposed to toxic dyes
through different channels. Typically, short-term exposure to some azo dyes does not show
serious health risks. The long-term exposure to azo dyes, regardless of whether they are
ingested or breathed in, can result in a few carcinogenic and mutagenic diseases. Therefore,
different water treatment techniques are studied to eliminate the pollutants from natural
water resources. Numerous studies have been conducted on the removal of toxic azo dyes
from discharged wastewater using an adsorption process. The majority of these studies
have been conducted using activated carbon synthesized from locally available biomass
materials. As presented in this work, activated carbon performance on adsorbing azo dyes
varies according to several factors. These factors include the type of biomass, activation
agent, pH, activation temperature, contact time, initial concentration of dye, adsorbent
dosage, etc. The potential of activated carbon as an adsorbent for azo dyes is very high.
There can be a great deal of research conducted on optimizing the absorptivity of activated
carbon for the absorption of specific types of azo dyes in the future.
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