Enhancing Uranium Extraction Efficiency Using Protonated Amines and Quaternary Ammoniums-Based Ionic Liquids: Mechanistic Insights and Nonlinearities Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation and Analysis
2.3. Extraction Experiments
3. Results and Discussion
3.1. Effect of the Amount of Sulphates in the Aqueous Phase
3.2. Characterizing the Extracted Species
3.2.1. NTf2 Participation in the Uranium Complex
3.2.2. UV-Vis Spectroscopy and EXAFS, Study of First Neighbors
3.2.3. FT-IR Spectroscopy: Looking at the Second Coordination Sphere and Beyond
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crouse, D.J.; Brown, K.B. The Amex Process for Extracting Thorium Ores with Alkyl Amines. Ind. Eng. Chem. 1959, 51, 1461–1464. [Google Scholar] [CrossRef]
- Sato, T.; Watanabe, H.; Suzuki, H. Liquid-Liquid Extraction of Molybdenum(VI) from Aqueous Acid Solutions by High-Molecular Weight Amines. Solvent Extr. Ion Exch. 1986, 4, 987–998. [Google Scholar] [CrossRef]
- Sato, T.; Watanabe, H. The Extraction of Zirconium(IV) from Sulfuric Acid Solutions by Long-Chain Alkyl Quaternary Ammonium Compound. Sep. Sci. Technol. 1982, 17, 625–634. [Google Scholar] [CrossRef]
- Chagnes, A.; Fosse, C.; Courtaud, B.; Thiry, J.; Cote, G. Chemical Degradation of Trioctylamine and 1-Tridecanol Phase Modifier in Acidic Sulfate Media in the Presence of Vanadium (V). Hydrometallurgy 2011, 105, 328–333. [Google Scholar] [CrossRef]
- Solgy, M.; Taghizadeh, M.; Ghoddocynejad, D. Adsorption of Uranium(VI) from Sulphate Solutions Using Amberlite IRA-402 Resin: Equilibrium, Kinetics and Thermodynamics Study. Ann. Nucl. Energy 2015, 75, 132–138. [Google Scholar] [CrossRef]
- Kumar, P.; Pal, A.; Saxena, M.K.; Ramakumar, K.L. Supercritical Fluid Extraction of Uranium and Thorium from Solid Matrices. Desalination 2008, 232, 71–79. [Google Scholar] [CrossRef]
- Smolinski, T.; Wawszczak, D.; Deptula, A.; Lada, W.; Olczak, T.; Rogowski, M.; Pyszynska, M.; Chmielewski, A.G. Solvent Extraction of Cu, Mo, V, and U from Leach Solutions of Copper Ore and Flotation Tailings. J. Radioanal. Nucl. Chem. 2017, 314, 69–75. [Google Scholar] [CrossRef]
- Quijada-Maldonado, E.; Olea, F.; Sepúlveda, R.; Castillo, J.; Cabezas, R.; Merlet, G.; Romero, J. Possibilities and Challenges for Ionic Liquids in Hydrometallurgy. Sep. Purif. Technol. 2020, 251, 117289. [Google Scholar] [CrossRef]
- Yan, Q.; Cai, Y.; Wang, Z.; Dong, X.; Yuan, L.; Feng, W.; Chen, J.; Xu, C. Separation of Americium from Lanthanide by a Task-Specific Ionic Liquid Decorated with 2,6-Bis-Triazolyl-Pyridine Moiety. Sep. Purif. Technol. 2022, 299, 121752. [Google Scholar] [CrossRef]
- Brown, K.B.; Coleman, C.F.; Crouse, D.J.; Denis, J.O.; Moore, J.G. The Use of Amines as Extractants for Uranium from Acidic Sulfate Liquors. A Preliminary Report; United States Atomic Energy Commission: Germantown, MD, USA, 1954; pp. 1–122. [CrossRef]
- Lu, Z.; Dourdain, S.; Pellet-Rostaing, S.; Arrachart, G.; Giusti, F. Mélanges de Sels d’ammonium Quaternaire Pour l’extraction de l’uranium(VI) de Solutions Aqueuses d’acide Sulfurique. Patent FR3116936 A1 WO2022117942 (A1), 3 June 2022. [Google Scholar]
- Guerinoni, E.; Dourdain, S.; Lu, Z.; Giusti, F.; Arrachart, G.; Couturier, J.; Hartmann, D.; Pellet-Rostaing, S. Highly Efficient Diluent-Free Solvent Extraction of Uranium and Comparative Life Cycle Assessment with the Conventional Solvent. Accept. Hydrometall. 2023. [Google Scholar]
- Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. GSC 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef] [PubMed]
- Keshapolla, D.; Srinivasarao, K.; Gardas, R.L. Influence of Temperature and Alkyl Chain Length on Physicochemical Properties of Trihexyl- and Trioctylammonium Based Protic Ionic Liquids. J. Chem. Thermodyn. 2019, 133, 170–180. [Google Scholar] [CrossRef]
- Billard, I.; Ouadi, A.; Gaillard, C. Is a Universal Model to Describe Liquid–Liquid Extraction of Cations by Use of Ionic Liquids in Reach? Dalton Trans. 2013, 42, 6203–6212. [Google Scholar] [CrossRef] [PubMed]
- Dukov, I.L.; Atanassova, M. Effect of the Diluents on the Synergistic Solvent Extraction of Some Lanthanides with Thenoyltrifluoroacetone and Quaternary Ammonium Salt. Hydrometallurgy 2003, 68, 89–96. [Google Scholar] [CrossRef]
- Dietz, M.L.; Dzielawa, J.A.; Laszak, I.; Young, B.A.; Jensen, M.P. Influence of Solvent Structural Variations on the Mechanism of Facilitated Ion Transfer into Room-Temperature Ionic Liquids. Green Chem. 2003, 5, 682–685. [Google Scholar] [CrossRef]
- Billard, I.; Ouadi, A.; Jobin, E.; Champion, J.; Gaillard, C.; Georg, S. Understanding the Extraction Mechanism in Ionic Liquids: UO22+/HNO3/TBP/C4-MimTf N as a Case Study. Solvent Extr. Ion Exch. 2011, 29, 577–601. [Google Scholar] [CrossRef]
- Wionczyk, B.; Apostoluk, W. Solvent Extraction of Chromium(III) from Alkaline Media with Quaternary Ammonium Compounds. Part I. Hydrometallurgy 2004, 72, 185–193. [Google Scholar] [CrossRef]
- Rout, A.; Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R. Ionic Liquid Extractants in Molecular Diluents: Extraction Behavior of Europium (III) in Quarternary Ammonium-Based Ionic Liquids. Sep. Purif. Technol. 2012, 95, 26–31. [Google Scholar] [CrossRef]
- Jaree, A.; Khunphakdee, N. Separation of Concentrated Platinum(IV) and Rhodium(III) in Acidic Chloride Solution via Liquid–Liquid Extraction Using Tri-Octylamine. J. Ind. Eng. Chem. 2011, 17, 243–247. [Google Scholar] [CrossRef]
- Biswas, S.; Basu, S. Extraction of Zirconium(IV) from Hydrochloric Acid Solutions by Tri-Octylamine and Neutral Donors. J. Radioanal. Nucl. Chem. 2006, 242, 253–258. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Yang, A.; Lv, P.; Zhang, L.; Li, Y.; Yang, Y. Extraction and Separation on Au(III) and Pt(IV) from HCl Media Using Novel Piperazine-Based Ionic Liquid as an Ionic Exchanger. J. Mol. Liq. 2022, 353, 118846. [Google Scholar] [CrossRef]
- Xue, W.; Liu, R.; Liu, X.; Wang, Y.; Lv, P.; Yang, Y. Selective Extraction of Nd(III) by Novel Carboxylic Acid Based Ionic Liquids without Diluent from Waste NdFeB Magnets. J. Mol. Liq. 2022, 364, 119919. [Google Scholar] [CrossRef]
- Hu, Q.; Zhao, J.; Wang, F.; Huo, F.; Liu, H. Selective Extraction of Vanadium from Chromium by Pure [C8mim][PF6]: An Anion Exchange Process. Sep. Purif. Technol. 2014, 131, 94–101. [Google Scholar] [CrossRef]
- Zuo, Y.; Liu, Y.; Chen, J.; Li, D.Q. The Separation of Cerium(IV) from Nitric Acid Solutions Containing Thorium(IV) and Lanthanides(III) Using Pure [C8mim]PF6 as Extracting Phase. Ind. Eng. Chem. Res. 2008, 47, 2349–2355. [Google Scholar] [CrossRef]
- Ouadi, A.; Klimchuk, O.; Gaillard, C.; Billard, I. Solvent Extraction of U(VI) by Task Specific Ionic Liquids Bearing Phosphoryl Groups. Green Chem. 2007, 9, 1160–1162. [Google Scholar] [CrossRef]
- Rout, A.; Binnemans, K. Solvent Extraction of Neodymium(III) by Functionalized Ionic Liquid Trioctylmethylammonium Dioctyl Diglycolamate in Fluorine-Free Ionic Liquid Diluent. Ind. Eng. Chem. Res. 2014, 53, 6500–6508. [Google Scholar] [CrossRef]
- Sukhbaatar, T.; Duvail, M.; Dumas, T.; Dourdain, S.; Arrachart, G.; Solari, P.L.; Guilbaud, P.; Pellet-Rostaing, S. Probing the Existence of Uranyl Trisulfate Structures in the AMEX Solvent Extraction Process. Chem. Commun. 2019, 55, 7583–7586. [Google Scholar] [CrossRef]
- Marták, J.; Schlosser, Š. Density, Viscosity, and Structure of Equilibrium Solvent Phases in Butyric Acid Extraction by Phosphonium Ionic Liquid. J. Chem. Eng. Data 2017, 62, 3025–3035. [Google Scholar] [CrossRef]
- Hanke, K.; Kaufmann, M.; Schwaab, G.; Havenith, M.; Wolke, C.T.; Gorlova, O.; Johnson, M.A.; Kar, B.P.; Sander, W.; Sanchez-Garcia, E. Understanding the Ionic Liquid [NC4111][NTf2] from Individual Building Blocks: An IR-Spectroscopic Study. Phys. Chem. Chem. Phys. 2015, 17, 8518–8529. [Google Scholar] [CrossRef]
- Servaes, K.; Hennig, C.; Billard, I.; Gaillard, C.; Binnemans, K.; Görller-Walrand, C.; Van Deun, R. Speciation of Uranyl Nitrato Complexes in Acetonitrile and in the Ionic Liquid 1-Butyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide. Eur. J. Inorg. Chem. 2007, 2007, 5120–5126. [Google Scholar] [CrossRef]
- Görller-Walrand, C.; Jaegere, S.D. Étude comparative des spectres d’absorption de complexes d’uranyle en solution et a l’état solide. Complexes de symétrie Cs, D2h (6) ET D3h (6). J. Chim. Phys. 1972, 69, 726–736. [Google Scholar] [CrossRef]
- Hennig, C.; Kraus, W.; Emmerling, F.; Ikeda, A.; Scheinost, A.C. Coordination of a Uranium(IV) Sulfate Monomer in an Aqueous Solution and in the Solid State. Inorg. Chem. 2008, 47, 1634–1638. [Google Scholar] [CrossRef] [PubMed]
- Lipovskii, A.A.; Kuzina, M.G. The Infrared Absorption Spectra and Structure of Tridecylammonium Sulphate, Tridecylammonium Hydrogensulphate, and Tridecylammonium Dioxotrisulphatouranate (VI). Russ. J. Inorg. Chem. 1965, 10, 740–745. [Google Scholar]
[MTOA]2[SO4] + [MTOA][NTf2] | [MTOA][Cl] + [MTOA][NTf2] | [Aliquat336]2[SO4] + [Aliquat336][NTf2] | [MTOA][NTf2] + [TOAH]2[SO4] | [TOAH]2[SO4] + [TOAH][NTf2] | |
---|---|---|---|---|---|
Ratio (%) | 25 | 25 | 50 | 50 | 90 |
DU | 100 | 70 | 78 | 196 | 128 |
x[TOAH]2[SO4] = 25% | x[TOAH]2[SO4] = 50% | x[TOAH]2[SO4] = 100% | TOA + Dodecane | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | R (Å) | σ2 (Å2) | N | R (Å) | σ2 (Å2) | N | R (Å) | σ2 (Å2) | N | R (Å) | σ2 (Å2) | |
U-Oyl | 2 a | 1.776 | 0.001 | 2 a | 1.784 | 0.002 | 2 a | 1.788 | 0.002 | 2 a | 1.775 | 0.001 |
U-Oeq | 6 a | 2.472 | 0.007 | 6 a | 2.489 | 0.008 | 6 a | 2.485 | 0.010 | 6 a | 2.470 | 0.007 |
U-S | 3 a | 3.136 | 0.003 | 3 a | 3.158 | 0.004 | 3 a | 3.157 | 0.005 | 3 a | 3.145 | 0.004 |
S02 | 0.737 ± 0.062 | 0.783 ± 0.058 | 0.758 ± 0.066 | 0.723 ± 0.057 | ||||||||
∆E0 (eV) | 4.576 ± 0.698 | 6.075 ± 0.841 | 6.262 ± 1.118 | 4.606 ± 0.948 | ||||||||
R-factor | 0.039 | 0.042 | 0.060 | 0.048 | ||||||||
ss-yl | 0.00093 ± 0.00053 | 0.00224 ± 0.00055 | 0.00170 ± 0.00059 | 0.00119 ± 0.00053 | ||||||||
Nbi | 3 a | 3 a | 3 a | 3 a | ||||||||
ss_obi | 0.00729± 0.00109 | 0.00836 ± 0.00112 | 0.00959 ± 0.00172 | 0.00741 ± 0.00098 | ||||||||
ss_sbi | 0.00288± 0.00055 | 0.00432 ± 0.00071 | 0.00520 ± 0.00102 | 0.00367 ± 0.00076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerinoni, E.; Dourdain, S.; Dumas, T.; Arrachart, G.; Giusti, F.; Lu, Z.; Solari, P.-L.; Pellet-Rostaing, S. Enhancing Uranium Extraction Efficiency Using Protonated Amines and Quaternary Ammoniums-Based Ionic Liquids: Mechanistic Insights and Nonlinearities Analysis. Separations 2023, 10, 509. https://doi.org/10.3390/separations10090509
Guerinoni E, Dourdain S, Dumas T, Arrachart G, Giusti F, Lu Z, Solari P-L, Pellet-Rostaing S. Enhancing Uranium Extraction Efficiency Using Protonated Amines and Quaternary Ammoniums-Based Ionic Liquids: Mechanistic Insights and Nonlinearities Analysis. Separations. 2023; 10(9):509. https://doi.org/10.3390/separations10090509
Chicago/Turabian StyleGuerinoni, Elise, Sandrine Dourdain, Thomas Dumas, Guilhem Arrachart, Fabrice Giusti, Zijun Lu, Pier-Lorenzo Solari, and Stéphane Pellet-Rostaing. 2023. "Enhancing Uranium Extraction Efficiency Using Protonated Amines and Quaternary Ammoniums-Based Ionic Liquids: Mechanistic Insights and Nonlinearities Analysis" Separations 10, no. 9: 509. https://doi.org/10.3390/separations10090509
APA StyleGuerinoni, E., Dourdain, S., Dumas, T., Arrachart, G., Giusti, F., Lu, Z., Solari, P. -L., & Pellet-Rostaing, S. (2023). Enhancing Uranium Extraction Efficiency Using Protonated Amines and Quaternary Ammoniums-Based Ionic Liquids: Mechanistic Insights and Nonlinearities Analysis. Separations, 10(9), 509. https://doi.org/10.3390/separations10090509