Organic Solvent Nanofiltration and Data-Driven Approaches
Abstract
:1. Introduction
2. Mechanistic Transport Models
2.1. Maxwell–Stefan Theory
Parameter | Total | ||||
Amount | N | 1 | N |
2.2. How to Solve the Differential Equations
2.2.1. Binary Systems
2.2.2. Membrane Boundary and Non-Ideal Thermodynamics
2.2.3. Rejection Calculation
2.3. More Specific Models
2.3.1. Irreversible Thermodynamics Models
- Kedem–Katchalsky model
- Spiegler–Kedem model
2.3.2. Pore Flow Models
- Nernst–Planck equation
- Extended Nernst–Planck equation
- Empirical -models
2.3.3. Solution–Diffusion Models
- The classical and simplified SD models
- Extended SD models
- Solution–Diffusion with imperfections
2.4. Challenges of Mechanistic Models in OSN
3. Data Collection
3.1. Data Availability
3.2. Data as Driver for Models
3.2.1. Data Density
3.2.2. Data Structure: Descriptors of the Input Space
4. Data-Driven Modeling
4.1. Data-Driven Modeling in Water Membrane Separation
4.2. Data-Driven Modeling in OSN
4.2.1. Drivers for Data-Driven OSN
4.2.2. Data-Driven OSN: State of the Art
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Rundquist, E.M.; Pink, C.J.; Livingston, A.G. Organic solvent nanofiltration: A potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chem. 2012, 14, 2197–2205. [Google Scholar] [CrossRef]
- Nanofiltration—An Overview of Technology Development, Status and Trends, D16E; Frost & Sullivan: San Antonio, TX, USA, 2008.
- Marchetti, P.; Jimenez Solomon, M.F.; Szekely, G.; Livingston, A. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef] [PubMed]
- Galizia, M.; Bye, K.P. Advances in organic solvent nanofiltration rely on physical chemistry and polymer chemistry. Front. Chem. 2018, 6, 511. [Google Scholar] [CrossRef]
- Hu, J.; Kim, C.; Halasz, P.; Kim, J.F.; Kim, J.; Szekely, G. Artificial intelligence for performance prediction of organic solvent nanofiltration membranes. J. Membr. Sci. 2021, 619, 118513. [Google Scholar] [CrossRef]
- Claessens, B.; Hitsov, I.; Verliefde, A.; Nopens, I. Analyzing transport in ceramic membranes for organic solvent nanofiltration using Maxwell-Stefan theory. Chem. Eng. Sci. 2022, 264, 118133. [Google Scholar] [CrossRef]
- Goebel, R.; Skiborowski, M. Machine-based learning of predictive models in organic solvent nanofiltration: Pure and mixed solvent flux. Sep. Purif. Technol. 2020, 237, 116363. [Google Scholar] [CrossRef]
- Goebel, R.; Glaser, T.; Skiborowski, M. Machine-based learning of predictive models in organic solvent nanofiltration: Solute rejection in pure and mixed solvents. Sep. Purif. Technol. 2020, 248, 117046. [Google Scholar] [CrossRef]
- Ignacz, G.; Szekely, G. Deep learning meets quantitative structure–activity relationship (QSAR) for leveraging structure-based prediction of solute rejection in organic solvent nanofiltration. J. Membr. Sci. 2022, 646, 120268. [Google Scholar] [CrossRef]
- Xu, Q.; Gao, J.; Feng, F.; Chung, T.S.; Jiang, J. Synergizing machine learning, molecular simulation and experiment to develop polymer membranes for solvent recovery. J. Membr. Sci. 2023, 678, 121678. [Google Scholar] [CrossRef]
- Gallo-Molina, J.P.; Claessens, B.; Buekenhoudt, A.; Verliefde, A.; Nopens, I. Capturing unmodelled phenomena: A hybrid approach for the prediction of the transport through ceramic membranes in organic solvent nanofiltration. J. Membr. Sci. 2023, 686, 122024. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Vandezande, P.; Gevers, L.; Vankelecom, I. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef] [PubMed]
- Mason, E.; Lonsdale, H. Statistical-mechanical theory of membrane transport. J. Membr. Sci. 1990, 51, 1–81. [Google Scholar] [CrossRef]
- Bird, R.; Stewart, W.; Lightfoot, E. Transport Phenomena, Revised 2nd Edition; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Taylor, R.; Krishna, R. Multicomponent Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Cussler, E. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Noordman, T.; Wesselingh, J. Transport of large molecules through membranes with narrow pores: The Maxwell-Stefan description combined with hydrodynamic theory. J. Membr. Sci. 2002, 210, 227–243. [Google Scholar] [CrossRef]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Mehta, G.; Morse, T.; Mason, E.; Daneshpajooh, M. Generalized Nernst–Planck and Stefan–Maxwell equations for membrane transport. J. Chem. Phys. 1976, 64, 3917–3923. [Google Scholar] [CrossRef]
- Bowen, W.R.; Welfoot, J.S. Modelling the performance of membrane nanofiltration—Critical assessment and model development. Chem. Eng. Sci. 2002, 57, 1121–1137. [Google Scholar] [CrossRef]
- Bye, K.P.; Galizia, M. Fundamental origin of flux non-linearity in organic solvent nanofiltration: Formulation of a thermodynamic/diffusion framework. J. Membr. Sci. 2020, 603, 118020. [Google Scholar] [CrossRef]
- Shi, B.; Peshev, D.; Marchetti, P.; Zhang, S.; Livingston, A.G. Multi-scale modelling of OSN batch concentration with spiral-wound membrane modules using OSN Designer. Chem. Eng. Res. Des. 2016, 109, 385–396. [Google Scholar] [CrossRef]
- Wright, P. Remarks on the Stefan-Maxwell equations for diffusion in a dusty gas. J. Chem. Soc. Faraday Trans. 2 1972, 68, 1951–1954. [Google Scholar] [CrossRef]
- Mason, E.; Viehland, L.A. Statistical–mechanical theory of membrane transport for multicomponent systems: Passive transport through open membranes. J. Chem. Phys. 1978, 68, 3562–3573. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Paul, D.R. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 2004, 241, 371–386. [Google Scholar] [CrossRef]
- Kedem, O.; Katchalsky, A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 1958, 27, 229–246. [Google Scholar] [CrossRef]
- Spiegler, K.; Kedem, O. Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes. Desalination 1966, 1, 311–326. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Bowen, W.R.; Mukhtar, H. Characterisation and prediction of separation performance of nanofiltration membranes. J. Membr. Sci. 1996, 112, 263–274. [Google Scholar] [CrossRef]
- Matsuura, T.; Sourirajan, S. Reverse osmosis transport through capillary pores under the influence of surface forces. Ind. Eng. Chem. Process. Des. Dev. 1981, 20, 273–282. [Google Scholar] [CrossRef]
- Niemi, H.; Palosaari, S. Flowsheet simulation of ultrafiltration and reverse osmosis processes. J. Membr. Sci. 1994, 91, 111–124. [Google Scholar] [CrossRef]
- Lonsdale, H.; Merten, U.; Riley, R. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 1965, 9, 1341–1362. [Google Scholar] [CrossRef]
- Bhanushali, D.; Kloos, S.; Bhattacharyya, D. Solute transport in solvent-resistant nanofiltration membranes for non-aqueous systems: Experimental results and the role of solute–solvent coupling. J. Membr. Sci. 2002, 208, 343–359. [Google Scholar] [CrossRef]
- Stafie, N.; Stamatialis, D.; Wessling, M. Insight into the transport of hexane–solute systems through tailor-made composite membranes. J. Membr. Sci. 2004, 228, 103–116. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021. [Google Scholar]
- Le Phuong, H.A.; Blanford, C.F.; Szekely, G. Reporting the unreported: The reliability and comparability of the literature on organic solvent nanofiltration. Green Chem. 2020, 22, 3397–3409. [Google Scholar] [CrossRef]
- Ignacz, G.; Alqadhi, N.; Szekely, G. Explainable machine learning for unraveling solvent effects in polyimide organic solvent nanofiltration membranes. Adv. Membr. 2023, 3, 100061. [Google Scholar] [CrossRef]
- Ignacz, G.; Yang, C.; Szekely, G. Diversity matters: Widening the chemical space in organic solvent nanofiltration. J. Membr. Sci. 2022, 641, 119929. [Google Scholar] [CrossRef]
- Song, K.; Li, G.; Zu, X.; Du, Z.; Liu, L.; Hu, Z. The fabrication and application mechanism of microfluidic systems for high throughput biomedical screening: A review. Micromachines 2020, 11, 297. [Google Scholar] [CrossRef]
- Vandezande, P.; Gevers, L.E.; Weyens, N.; Vankelecom, I.F. Compositional optimization of polyimide-based SEPPI membranes using a genetic algorithm and high-throughput techniques. J. Comb. Chem. 2009, 11, 243–251. [Google Scholar] [CrossRef]
- Cano-Odena, A.; Spilliers, M.; Dedroog, T.; De Grave, K.; Ramon, J.; Vankelecom, I. Optimization of cellulose acetate nanofiltration membranes for micropollutant removal via genetic algorithms and high throughput experimentation. J. Membr. Sci. 2011, 366, 25–32. [Google Scholar] [CrossRef]
- Kim, C.; You, C.; Ngan, D.T.; Park, M.; Jang, D.; Lee, S.; Kim, J. Machine learning-based approach to identify the optimal design and operation condition of organic solvent nanofiltration (OSN). Comput. Aided Chem. Eng. 2021, 50, 933–938. [Google Scholar] [CrossRef]
- Marchetti, P.; Livingston, A.G. Predictive membrane transport models for Organic Solvent Nanofiltration: How complex do we need to be? J. Membr. Sci. 2015, 476, 530–553. [Google Scholar] [CrossRef]
- Ignacz, G.; Beke, A.K.; Szekely, G. Data-driven future for nanofiltration: Escaping linearity. J. Membr. Sci. Lett. 2023, 3, 100040. [Google Scholar] [CrossRef]
- Yangali-Quintanilla, V.; Verliefde, A.; Kim, T.U.; Sadmani, A.; Kennedy, M.; Amy, G. Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. J. Membr. Sci. 2009, 342, 251–262. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, Y.; Peng, H.; Chen, Y.; Liao, R.Z.; Zhao, Q. Deep spatial representation learning of polyamide nanofiltration membranes. J. Membr. Sci. 2021, 620, 118910. [Google Scholar] [CrossRef]
- Galinha, C.F.; Crespo, J.G. From black box to machine learning: A journey through membrane process modelling. Membranes 2021, 11, 574. [Google Scholar] [CrossRef] [PubMed]
- Galinha, C.F.; Guglielmi, G.; Carvalho, G.; Portugal, C.A.; Crespo, J.G.; Reis, M.A. Development of a hybrid model strategy for monitoring membrane bioreactors. J. Biotechnol. 2013, 164, 386–395. [Google Scholar] [CrossRef]
- Sá, M.; Monte, J.; Brazinha, C.; Galinha, C.F.; Crespo, J.G. Fluorescence coupled with chemometrics for simultaneous monitoring of cell concentration, cell viability and medium nitrate during production of carotenoid-rich Dunaliella salina. Algal Res. 2019, 44, 101720. [Google Scholar] [CrossRef]
- Teodosiu, C.; Pastravanu, O.; Macoveanu, M. Neural network models for ultrafiltration and backwashing. Water Res. 2000, 34, 4371–4380. [Google Scholar] [CrossRef]
- Bowen, W.R.; Jones, M.G.; Welfoot, J.S.; Yousef, H.N. Predicting salt rejections at nanofiltration membranes using artificial neural networks. Desalination 2000, 129, 147–162. [Google Scholar] [CrossRef]
- Sanches, S.; Galinha, C.; Crespo, M.B.; Pereira, V.; Crespo, J. Assessment of phenomena underlying the removal of micropollutants during water treatment by nanofiltration using multivariate statistical analysis. Sep. Purif. Technol. 2013, 118, 377–386. [Google Scholar] [CrossRef]
- Barello, M.; Manca, D.; Patel, R.; Mujtaba, I.M. Neural network based correlation for estimating water permeability constant in RO desalination process under fouling. Desalination 2014, 345, 101–111. [Google Scholar] [CrossRef]
- Yeo, C.S.H.; Xie, Q.; Wang, X.; Zhang, S. Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning. J. Membr. Sci. 2020, 606, 118135. [Google Scholar] [CrossRef]
- Fetanat, M.; Keshtiara, M.; Keyikoglu, R.; Khataee, A.; Daiyan, R.; Razmjou, A. Machine learning for design of thin-film nanocomposite membranes. Sep. Purif. Technol. 2021, 270, 118383. [Google Scholar] [CrossRef]
- Tan, M.; He, G.; Li, X.; Liu, Y.; Dong, C.; Feng, J. Prediction of the effects of preparation conditions on pervaporation performances of polydimethylsiloxane (PDMS)/ceramic composite membranes by backpropagation neural network and genetic algorithm. Sep. Purif. Technol. 2012, 89, 142–146. [Google Scholar] [CrossRef]
- Dudchenko, A.V.; Mauter, M.S. Neural networks for estimating physical parameters in membrane distillation. J. Membr. Sci. 2020, 610, 118285. [Google Scholar] [CrossRef]
- Kadel, S.; Daigle, G.; Thibodeau, J.; Perreault, V.; Pellerin, G.; Lainé, C.; Bazinet, L. How physicochemical properties of filtration membranes impact peptide migration and selectivity during electrodialysis with filtration membranes: Development of predictive statistical models and understanding of mechanisms involved. J. Membr. Sci. 2021, 619, 118175. [Google Scholar] [CrossRef]
- Santos, J.; Hidalgo, A.; Oliveira, R.; Velizarov, S.; Crespo, J. Analysis of solvent flux through nanofiltration membranes by mechanistic, chemometric and hybrid modelling. J. Membr. Sci. 2007, 300, 191–204. [Google Scholar] [CrossRef]
- Karan, S.; Jiang, Z.; Livingston, A.G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015, 348, 1347–1351. [Google Scholar] [CrossRef]
- Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Soo, A.; Pathak, N.B.; Shon, H.K. Machine learning based prediction and optimization of thin film nanocomposite membranes for organic solvent nanofiltration. Sep. Purif. Technol. 2023, 304, 122328. [Google Scholar] [CrossRef]
- Thiermeyer, Y.; Blumenschein, S.; Skiborowski, M. Fundamental insights into the rejection behavior of polyimide-based OSN membranes. Sep. Purif. Technol. 2021, 265, 118492. [Google Scholar] [CrossRef]
c [mol/m] | Molar concentration | D [m/s] | Fick’s Diffusion coefficient |
[m/s] | MS diffusion coefficient | F [N/mol] | Force per mole |
[ C/mol] | Faraday constant | J [mol/(s m)] | Molar flux |
[m/s] | Volumetric flux | K [−] | Sorption coefficient |
[−] | Conductive hindrance factor | [−] | Diffusive hindrance factor |
L | Solvent permeability parameter | N [−] | Number of species |
p [Pa] | Pressure | P | Solute permeability parameter |
R [8.314 J/(K mol)] | Gas constant | [−] | Rejection of species i |
T [K] | Temperature | u [m/s] | Diffusive velocity |
x [−] | Mole fraction | z [m] | Spatial coordinate perpendicular to membrane surface |
Z [−] | Charge number | [−] | Viscous selectivity |
[−] | Activity coefficient | [−] | Membrane porosity |
[kg/(s mol)] | MS Friction coefficient | [Pa s] | Viscosity |
[−] | Ratio of solute to pore radius | [J/mol] | Chemical potential |
[m/mol] | Molar volume | [Pa] | Osmotic pressure |
[−] | Reflection Coefficient | [−] | Membrane tortuosity |
[−] | Friction coefficient | [V] | Electric potential |
Subscripts | |||
1 | Solvent | 2 | Solute |
Either solute or solvent | m | Membrane | |
Superscripts | |||
Feedside | Permeate side | ||
External side of membrane boundary | Membrane side of boundary |
Model | Parameters | Amount |
---|---|---|
MS | , , , , , | 6 |
MS—Volumetric form | , , , | 4 |
IT—Kedem–Katchalsky | , , L | 3 |
IT—Spiegler–Kedem | , , L | 3 |
PF—ext. Nernst–Planck | , , , | 4 |
PF—Nernst–Planck | , , L | 3 |
PF—-models | 1 | |
SD—Imperfections | , , | 3 |
SD—Classical | , | 2 |
SD—Simplified | L, | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccard, P.-J.; Borges, P.; Cleuren, B.; Hooyberghs, J.; Buekenhoudt, A. Organic Solvent Nanofiltration and Data-Driven Approaches. Separations 2023, 10, 516. https://doi.org/10.3390/separations10090516
Piccard P-J, Borges P, Cleuren B, Hooyberghs J, Buekenhoudt A. Organic Solvent Nanofiltration and Data-Driven Approaches. Separations. 2023; 10(9):516. https://doi.org/10.3390/separations10090516
Chicago/Turabian StylePiccard, Pieter-Jan, Pedro Borges, Bart Cleuren, Jef Hooyberghs, and Anita Buekenhoudt. 2023. "Organic Solvent Nanofiltration and Data-Driven Approaches" Separations 10, no. 9: 516. https://doi.org/10.3390/separations10090516
APA StylePiccard, P. -J., Borges, P., Cleuren, B., Hooyberghs, J., & Buekenhoudt, A. (2023). Organic Solvent Nanofiltration and Data-Driven Approaches. Separations, 10(9), 516. https://doi.org/10.3390/separations10090516