A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Chemicals and Stock Solutions
2.2. Instrumentation and Chromatographic Conditions
2.3. Screening and Optimization of the DLLME Conditions
2.4. Analytical Performance and Recovery from Tap Water Samples
3. Results and Discussion
3.1. Selection of Cyanopropyl Silicone Polymer (OV 225) as an Extraction Medium for DLLME
3.2. Screening and Optimization of the DLLME Conditions
3.3. Analytical Performance and Recovery from Tap Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Leong, M.I.; Chang, C.C.; Fuh, M.R.; Huang, S.D. Low Toxic Dispersive Liquid–Liquid Microextraction Using Halosolvents for Extraction of Polycyclic Aromatic Hydrocarbons in Water Samples. J. Chromatogr. A 2010, 1217, 5455–5461. [Google Scholar] [CrossRef]
- Grau, J.; Azorín, C.; Benedé, J.L.; Chisvert, A.; Salvador, A. Use of Green Alternative Solvents in Dispersive Liquid-Liquid Microextraction: A Review. J. Sep. Sci. 2022, 45, 210–222. [Google Scholar] [CrossRef]
- Abdelaziz, M.A.; Saleh, A.M.; Mansour, F.R.; Danielson, N.D. A Gadolinium-Based Magnetic Ionic Liquid for Dispersive Liquid–Liquid Microextraction of Ivermectin from Environmental Water. J. Chromatogr. Sci. 2022, 61, 988–994. [Google Scholar] [CrossRef]
- Abdallah, I.A.; Hammad, S.F.; Bedair, A.; Abdelaziz, M.A.; Danielson, N.D.; Elshafeey, A.H.; Mansour, F.R. A Gadolinium-Based Magnetic Ionic Liquid for Supramolecular Dispersive Liquid–Liquid Microextraction Followed by HPLC/UV for the Determination of Favipiravir in Human Plasma. Biomed. Chromatogr. 2022, 36, e5365. [Google Scholar] [CrossRef]
- Rykowska, I.; Ziemblińska, J.; Nowak, I. Modern Approaches in Dispersive Liquid-Liquid Microextraction (DLLME) Based on Ionic Liquids: A Review. J. Mol. Liq. 2018, 259, 319–339. [Google Scholar] [CrossRef]
- Yu, H.; Merib, J.; Anderson, J.L. Faster Dispersive Liquid-Liquid Microextraction Methods Using Magnetic Ionic Liquids as Solvents. J. Chromatogr. A 2016, 1463, 11–19. [Google Scholar] [CrossRef]
- Abdelaziz, M.A.; Mansour, F.R.; Danielson, N.D. A Gadolinium-Based Magnetic Ionic Liquid for Dispersive Liquid–Liquid Microextraction. Anal. Bioanal. Chem. 2021, 413, 205–214. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, L.; Chen, X.; Xu, Y.; Gao, X.; Zhao, J. Three-Dimensional (3D) Thermal Controlled Polymer for Simplified Dispersive Liquid-Liquid Microextraction in Phthalic Acid Easters Detection of Straw. Microchem. J. 2022, 181, 107668. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, L.; Chen, X.; Zhao, J.; Wang, Y. Application of the Liquid–Liquid Dispersed Microextraction Based on Phase Transition Behavior of Temperature Sensitive Polymer to Rapidly Detect 5 BPs in Food Packaging. Food Chem. 2021, 347, 128960. [Google Scholar] [CrossRef]
- Colas, A.; Curtis, J. Silicone Biomaterials: History and Chemistry & Medical Applications of Silicones. In Biomaterials Science. An Introduction to Materials in Medicine; Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Eds.; Academic Press: San Diego, CA, USA, 2004; pp. 80–86. [Google Scholar]
- Kocúrová, L.; Balogh, I.S.; Šandrejová, J.; Andruch, V. Recent Advances in Dispersive Liquid–Liquid Microextraction Using Organic Solvents Lighter than Water. A Review. Microchem. J. 2012, 102, 11–17. [Google Scholar] [CrossRef]
- Mousavi, L.; Tamiji, Z.; Khoshayand, M.R. Applications and Opportunities of Experimental Design for the Dispersive Liquid–Liquid Microextraction Method—A Review. Talanta 2018, 190, 335–356. [Google Scholar] [CrossRef]
- Shafiei-Navid, S.; Hosseinzadeh, R.; Ghani, M. Solid-Phase Extraction of Nonsteroidal Anti-Inflammatory Drugs in Urine and Water Samples Using Acidic Calix[4]Arene Intercalated in LDH Followed by Quantification via HPLC-UV. Microchem. J. 2022, 183, 107985. [Google Scholar] [CrossRef]
- Olcer, Y.A.; Demirkurt, M.; Demir, M.M.; Eroglu, A.E. Development of Molecularly Imprinted Polymers (MIPs) as a Solid Phase Extraction (SPE) Sorbent for the Determination of Ibuprofen in Water. RSC Adv. 2017, 7, 31441–31447. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Chimuka, L. Determination of Ibuprofen, Naproxen and Diclofenac in Aqueous Samples Using a Multi-Template Molecularly Imprinted Polymer as Selective Adsorbent for Solid-Phase Extraction. J. Pharm. Biomed. Anal. 2016, 128, 210–215. [Google Scholar] [CrossRef]
- Mohd Marsin, F.; Wan Ibrahim, W.A.; Abdul Keyon, A.S.; Sanagi, M.M. Box–Behnken Experimental Design for the Synthesis of Magnetite–Polypyrrole Composite for the Magnetic Solid Phase Extraction of Non-Steroidal Anti-Inflammatory Drug Residues. Anal. Lett. 2018, 51, 2221–2239. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Yang, W.; Gu, F.; Xu, H.; Wang, T.; Sun, D.; Hou, X. Magnetic Nanoparticle of Metal-Organic Framework with Core-Shell Structure as an Adsorbent for Magnetic Solid Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs. Talanta 2019, 194, 514–521. [Google Scholar] [CrossRef]
- Parrilla Vázquez, M.M.; Parrilla Vázquez, P.; Martínez Galera, M.; Gil García, M.D.; Uclés, A. Ultrasound-Assisted Ionic Liquid Dispersive Liquid–Liquid Microextraction Coupled with Liquid Chromatography-Quadrupole-Linear Ion Trap-Mass Spectrometry for Simultaneous Analysis of Pharmaceuticals in Wastewaters. J. Chromatogr. A 2013, 1291, 19–26. [Google Scholar] [CrossRef]
- Toledo-Neira, C.; Álvarez-Lueje, A. Ionic Liquids for Improving the Extraction of NSAIDs in Water Samples Using Dispersive Liquid–Liquid Microextraction by High Performance Liquid Chromatography-Diode Array–Fluorescence Detection. Talanta 2015, 134, 619–626. [Google Scholar] [CrossRef]
- Mlunguza, N.Y.; Ncube, S.; Mahlambi, P.N.; Chimuka, L.; Madikizela, L.M. Adsorbents and Removal Strategies of Non-Steroidal Anti-Inflammatory Drugs from Contaminated Water Bodies. J. Environ. Chem. Eng. 2019, 7, 103142. [Google Scholar] [CrossRef]
- Patel, P.N.; Samanthula, G.; Shrigod, V.; Modh, S.C.; Chaudhari, J.R. RP-HPLC Method for Determination of Several NSAIDs and Their Combination Drugs. Chrom. Res. Int. 2013, 2013, 242868. [Google Scholar] [CrossRef]
- Wabaidur, S.M.; AlOthman, Z.A.; Siddiqui, M.R.; Mohsin, K.; Bousiakou, L.G.; Karikas, G.A. UPLC–MS Method for the Simultaneous Determination of Naproxen, Fluvastatin and Ibuprofen in Waste Water Samples. J. Ind. Eng. Chem. 2015, 24, 302–307. [Google Scholar] [CrossRef]
- Desmazieres, B.; Buchmann, W.; Terrier, P.; Tortajada, J. APCI Interface for LC- and SEC-MS Analysis of Synthetic Polymers: Advantages and Limits. Anal. Chem. 2008, 80, 783–792. [Google Scholar] [CrossRef]
Name | Chemical Structure | Classification | Log P * | Log D * (pH = 2) | pKa * |
---|---|---|---|---|---|
Silicone OV-225 | Extraction medium | ** | ** | N/A | |
Silicone OV-105 | Extraction medium | ** | ** | N/A | |
Silicone OV-275 | Extraction medium | ** | ** | N/A | |
Naproxen (NAP) | Analyte | 2.876 ± 0.239 | 2.88 | 4.84 ± 0.30 | |
Diflunisal (DIF) | Analyte | 3.652 ± 0.530 | 3.37 | 2.94 ± 0.10 | |
Indomethacin (IND) | Analyte | 4.251 ± 0.796 | 4.25 | 3.96 ± 0.30 | |
Ibuprofen (IBU) | Analyte | 3.502 ± 0.227 | 3.50 | 4.41 ± 0.10 | |
4-pentylbenzoic acid (internal standard | Internal standard | 4.034 ± 0.210 | 4.03 | 4.35 ± 0.10 |
Analyte | Linear Range (ng/mL) | r | Slope ± Error (10−3) | LOQ (ng/mL) | Error (%) (Indicated Level) | RSD (%) (Same Level as Error) | RSD (%) (at LOQ) |
---|---|---|---|---|---|---|---|
Naproxen | 5–250 | 0.9995 | 11.0 ± 0.1 | 5.0 | −0.5 (100 ng/mL) | 0.7 | 4.5 |
Diflunisal | 10–500 | 0.9997 | 6.22 ± 0.05 | 10.0 | −0.4 (400 ng/mL) | 6.7 | 9.6 |
Indomethacin | 25–1250 | 0.9998 | 3.23 ± 0.02 | 25.0 | −0.8 (500 ng/mL) | 0.4 | 3.1 |
Ibuprofen | 75–3000 | 0.9999 | 0.977 ± 0.004 | 75 | −0.06 (3000 ng/mL) | 1.9 | 10.8 |
Analyte | Added (ng/mL) | Mean Found ± Standard Deviation (ng/mL) | RSD (%) | Recovery (%) |
---|---|---|---|---|
Naproxen | 15 | 15.6 ± 0.3 | 1.9 | 103.9 |
200 | 195 ± 6 | 3.1 | 97.3 | |
Diflunisal | 30 | 34 ± 3 | 8.8 | 112.5 |
200 | 200 ± 9 | 4.5 | 100.1 | |
Indomethacin | 75 | 85 ± 3 | 3.5 | 97.5 |
1000 | 975 ± 23 | 2.4 | 113.6 | |
Ibuprofen | 225 | 208 ± 3 | 1.5 | 92.3 |
1500 | 1529 ± 2 | 0.2 | 101.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaziz, M.A.; Danielson, N.D. A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction. Separations 2024, 11, 18. https://doi.org/10.3390/separations11010018
Abdelaziz MA, Danielson ND. A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction. Separations. 2024; 11(1):18. https://doi.org/10.3390/separations11010018
Chicago/Turabian StyleAbdelaziz, Mohamed A., and Neil D. Danielson. 2024. "A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction" Separations 11, no. 1: 18. https://doi.org/10.3390/separations11010018
APA StyleAbdelaziz, M. A., & Danielson, N. D. (2024). A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction. Separations, 11(1), 18. https://doi.org/10.3390/separations11010018