Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Characterization
3.2. Morphological Analysis
3.3. Optical Analysis
3.4. Photocatalytic Activity
3.5. Proposed Hydrogenation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henshaw, P.; Medlar, D.; McEwen, J. Selection of a support medium for a fixed-film green sulphur bacteria reactor. Water Res. 1999, 33, 3107–3110. [Google Scholar] [CrossRef]
- Poulton, S.W.; Krom, M.D.; Rijn, J.V.; Raiswell, R. The use of hydrous ion (III) oxides for the removal of hydrogen sulphide in aqueous systems. Water Res. 2002, 36, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Baskaran, V.; Nemati, M. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 2009, 44, 73–94. [Google Scholar] [CrossRef]
- Altas, L.; Buyukgungor, H. Sulphide removal in petroleum wastewater by chemical precipitation. J. Hazard. Mater. 2008, 153, 462–469. [Google Scholar] [CrossRef]
- Syed, M.; Soreanu, G.; Falletta, P.; Béland, M. Removal of hydrogen sulfide from gas streams using biological processes—A review. Can. Biosyst. Eng. 2006, 48, 2. [Google Scholar]
- Klok, J.B.; de Graaff, M.; van den Bosch, P.L.F.; Boelee, N.C.; Keesman, K.J.; Janssen, A.J. A physiologically based kinetic model for bacterial sulfide oxidation. Water Res. 2013, 47, 483–492. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Zuhair, S.; Lobaney, A.A.; Mahlouf, S. Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J. Environ. Manag. 2009, 91, 180–185. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Amin, N.K.; Ashtoukhy, E.E. Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater. 2009, 163, 711–716. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Selvakumar, M.; Ganesh Babu, S.; Induja, S.; Karuthapandian, S. CuO/ZnO nanorods: An affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants. J. Alloys Compd. 2017, 701, 562–573. [Google Scholar] [CrossRef]
- Kang, W.; Jimeng, X.; Xitao, W. The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl. Surf. Sci. 2016, 360, 270–275. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, J.; Peng, T. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl. Catal. B Environ. 2016, 181, 220–227. [Google Scholar] [CrossRef]
- Kuriakose, S.; Satpati, B.; Mohapatra, S. Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys. Chem. 2014, 16, 12741–12749. [Google Scholar] [CrossRef] [PubMed]
- Hui, A.; Ma, J.; Liu, J.; Bao, Y.; Zhang, J. Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity. J. Alloys Compd. 2017, 696, 639–647. [Google Scholar] [CrossRef]
- Sharma, S.; Mehta, S.K.; Kansal, S.K. N doped ZnO/C-dots nanoflowers as visible light driven photocatalyst for the degradation of malachite green dye in aqueous phase. J. Alloys Compd. 2017, 699, 323–333. [Google Scholar] [CrossRef]
- Ullah, R.; Dutta, J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 2008, 156, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, X.T.; Zhao, W.X.; Wang, K.; Sang, H.X.; He, Z. Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods. J. Alloys Compd. 2013, 568, 84–91. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.J.; Li, Y.M.; Wang, Y.; Li, J.H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–384. [Google Scholar] [CrossRef]
- Jia, T.K.; Wang, W.M.; Long, F.; Fu, Z.Y.; Wang, H.; Zhang, Q.J. Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. J. Alloys Comp. 2009, 484, 410–415. [Google Scholar] [CrossRef]
- Tuzemen, E.S.; Kara, K.; Elagoz, S.; Takci, D.K.; Altuntas, I.; Esen, R. Structural and electrical properties of nitrogen-doped ZnO thin films. Appl. Surf. Sci. 2014, 318, 157–163. [Google Scholar] [CrossRef]
- Zhou, D.Z.; Li, B.; Wang, H.L.; Salik, M.; Wu, H.H.; Hu, Z.F.; Gao, S.; Peng, Y.; Yi, L.; Zhang, X.; et al. Fabrication and electrical characterization of Li–N dual doped ZnO thin film transistor. Appl. Surf. Sci. 2014, 305, 474–476. [Google Scholar] [CrossRef]
- Haibo, O.; Feng, H.J.; Cuiyan, L.; Liyun, C.; Jie, F. Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties. Mater. Lett. 2013, 111, 217–220. [Google Scholar] [CrossRef]
- Wang, F.; Liang, L.; Shi, L.; Liu, M.; Sun, J. CO2-assisted synthesis of mesoporous carbon/C-doped ZnO composites for enhanced photocatalytic performance under visible light. Dalton Trans. 2014, 43, 16441–16449. [Google Scholar] [CrossRef] [PubMed]
- Dindar, B.; Guler, A.C. Comparison of facile synthesized N doped, B doped and undoped ZnO for the photocatalytic removal of Rhodamine B. Environ. Nanotechnol. Monit. Manag. 2018, 10, 457–466. [Google Scholar] [CrossRef]
- Gomathisankar, P.; Hachisuka, K.; Katsumata, H.; Suzuki, T.; Funasaka, K.; Kaneco, S. Photocatalytic Hydrogen Production from Aqueous Na2S + Na2SO3 Solution with B-Doped ZnO. ACS Sustain. Chem. Eng. 2013, 1, 982–988. [Google Scholar] [CrossRef]
- Gomathisankar, P.; Hachisuka, K.; Katsumata, H.; Suzuki, T.; Funasaka, K.; Kaneco, S. Photocatalytic hydrogen production from aqueous Na2SO3 + Na2S solution with B/CuO/ZnO under visible light irradiation. RSC Adv. 2013, 3, 20429–20436. [Google Scholar] [CrossRef]
- Malwal, D.; Gopinath, P. CuO-ZnO nanosheets with p–n heterojunction for enhanced visible light mediated photocatalytic activity. Chemistry 2017, 2, 4866–4873. [Google Scholar] [CrossRef]
- Samad, A.; Furukawa, M.; Katsumata, H.; Suzuki, T.; Kaneco, S. Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst. J. Photochem. Photobiol. A Chem. 2016, 325, 97–103. [Google Scholar] [CrossRef]
- Chang, Y.-C. Complex ZnO/ZnS nanocable and nanotube arrays with high performance photocatalytic activity. J. Alloys Compd. 2016, 664, 538–546. [Google Scholar] [CrossRef]
- Kadam, S.R.; Mate, V.R.; Panmand, R.P.; Nikam, L.K.; Kulkarni, M.V.; Sonawane, R.S.; Kale, B.B. A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Adv. 2014, 4, 60626–60635. [Google Scholar] [CrossRef]
- Chen, L.-C.; Tu, Y.-J.; Wang, Y.-S.; Kan, R.-S.; Huang, C.-M. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J. Photochem. Photobiol. A 2008, 199, 170–178. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Ahmed, E.; Ahmad, M.; Ahmad, I.; Rana, A.M.; Ali, A.; Ghouri, M.I.; Manzoor, M.S.; Aziz, M.T. Enhanced Photocatalytic Activity of Hydrogen Evolution through Cu Incorporated ZnO Nano Composites. Mater. Sci. Semicond. Process 2020, 120, 105278. [Google Scholar] [CrossRef]
- Choi, S.; Do, J.Y.; Lee, J.H.; Ra, C.S.; Kim, S.K.; Kang, M. Optical Properties of Cu-Incorporated ZnO (CuxZnyO) Nanoparticles and Their Photocatalytic Hydrogen Production Performances. Mater. Chem. Phys. 2018, 205, 206–209. [Google Scholar] [CrossRef]
- Sun, J.; Chen, G.; Pei, J.; Jin, R.; Li, Y. A novel Bi1.5Zn1−xCuxTa1.5O7 photocatalyst: Water splitting properties under visible light and its electronic structures. Int. J. Hydrogen Energy 2012, 37, 16960–16966. [Google Scholar] [CrossRef]
- Li, R.; Wu, S.; Wan, X.; Xu, H.; Xiong, Y. Cu/TiO2 octahedral-shell photocatalysts derived from metal–organic framework@semiconductor hybrid structures. Inorg. Chem. Front. 2016, 3, 104. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Fan, M.; Hong, Y.; Hu, B.; Yu, L.; Shi, W. In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer. Int. J. Hydrogen Energy 2017, 42, 12210. [Google Scholar] [CrossRef]
- Wu, L.; Shi, S.; Li, Q.; Zhang, X.; Cui, X. TiO2 nanoparticles modified with 2D MoSe2 for enhanced photocatalytic activity on hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 720–728. [Google Scholar] [CrossRef]
- Xing, X.; Zhu, H.; Zhang, M.; Xiao, L.; Li, Q.; Yang, J. Effect of heterojunctions and phase-junctions on visible-light photocatalytic hydrogen evolution in BCN-TiO2 photocatalysts. Chem. Phys. Lett. 2019, 727, 11–18. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Cui, X.; Jiang, Z. A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy 2011, 37, 811–815. [Google Scholar] [CrossRef]
- Jang, J.S.; Yu, C.J.; Choi, S.H.; Ji, S.M.; Kim, E.S.; Lee, J.S. Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity. J. Catal. 2008, 254, 144–155. [Google Scholar] [CrossRef]
- Yadav, A.A.; Kang, S.-W.; Lim, S.J.; Kim, H. Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J. Photochem. Photobiol. A 2023, 434, 114250. [Google Scholar]
Photocatalyst | ZnO, B/ZnO, CuO/ZnO, B/CuO/ZnO (50 mg) |
Doping amount | B: 0~10 wt% Cu/(Cu + Zn) = 0~20 wt% |
Medium | 0~0.8 M Na2S + 0~0.6 M Na2SO3 solution (40 mL) |
Reactor | Pyrex glass vessel (volume: 125 mL) |
Temperature | 50 °C |
Irradiation time | 3 h |
Light source | LED lamp (450 nm, ~5.1 mW/cm2) |
Analysis | Gas chromatography (TCD) |
Catalyst | 2θ (deg) | Crystal Size (nm) |
---|---|---|
ZnO | 36.321 | 28.3 |
B/ZnO | 36.149 | 12.6 |
CuO/ZnO | 36.248 | 26.4 |
B/CuO/ZnO | 36.26 | 9.77 |
ZnO after | 36.208 | 31.7 |
BZnO after | 28.53 | 6.80 |
CuO/ZnO after | 36.246 | 21.4 |
B/CuO/ZnO after | 28.92 | 3.42 |
Photocatalyst | Medium | Light Source | H2 Generation (µmol h−1 g−1) | Ref. |
---|---|---|---|---|
Cu/ZnO | Methanol | UV light | 6.9 | [31] |
Cu/ZnO | Methanol | 365 nm | 5.84 | [32] |
Bi1.5Zn0.99 Cu0.01Ta1.5O7 | Na2S + Na2SO3 | Xe lamp 300 W | 45 | [33] |
Cu/TiO2 | Methanol | Xe lamp 300 W | 62 | [34] |
CuS/g-C3N4 | Triethanolamine | Xe lamp 300 W | 17.2 | [35] |
MoSe2/TiO2 | Methanol | Xe lamp 300 W | 4.9 | [36] |
BCN/TiO2 | Triethanolamine | Xe lamp 300 W | 68.5 | [37] |
TiO2/graphene | Na2S + Na2SO3 | UV light | 108 | [38] |
ZnS:C | Na2S + Na2SO3 | Hg lamp 500 W | 90 | [39] |
MoS2/ZnO | Na2S + Na2SO3 | Xe lamp 300 W | 235 | [40] |
B/CuO/ZnO | Na2S + Na2SO3 | LED (450 nm) | 224 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tateishi, I.; Furukawa, M.; Katsumata, H.; Kaneco, S. Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO. Separations 2024, 11, 19. https://doi.org/10.3390/separations11010019
Tateishi I, Furukawa M, Katsumata H, Kaneco S. Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO. Separations. 2024; 11(1):19. https://doi.org/10.3390/separations11010019
Chicago/Turabian StyleTateishi, Ikki, Mai Furukawa, Hideyuki Katsumata, and Satoshi Kaneco. 2024. "Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO" Separations 11, no. 1: 19. https://doi.org/10.3390/separations11010019
APA StyleTateishi, I., Furukawa, M., Katsumata, H., & Kaneco, S. (2024). Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO. Separations, 11(1), 19. https://doi.org/10.3390/separations11010019