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Abstract: B-doped zinc oxide/copper oxide composites prepared using a simple method showed
high photocatalytic hydrogen production activity in the presence of aqueous sulfide solutions. Co-
modification of the CuO composite with B-doping caused an increase in the charge separation
efficiency and light absorption capacity. The sacrificial effect was thermodynamically enhanced by
manipulating the composition of the sulfide solution. A maximum hydrogen production activity
of 224 µmol g−1 h−1 was achieved under 450 nm light irradiation in a photocatalytic system with
optimized B doping, a CuO composite, and a sulfide sacrificial agent concentration.

Keywords: photocatalysis; ZnO; visible light; B-doped; CuO; purification of sulfide effluent

1. Introduction

Sulfur occurs in various chemical forms in nature, such as in the ground and seawater.
Industrial anthropogenic activities, such as oil refining, mining, and natural gas processing,
result in the discharge of significant amounts of sulfides in wastewater [1,2]. The presence
of toxic sulfides in wastewater results in high biological oxygen demand and poses a threat
to the biological environment in the water [3]. Thus, if discharged to water bodies without
treatment, they can cause serious environmental problems, including damage to aquatic
life [4]. In light of this, the treatment of sulfides in wastewater is often attempted using
various chemical treatment processes, such as adsorption, coagulation, chemical oxidation,
and biological processes, in order to avoid associated environmental problems. However,
most chemical technologies require large chemical dosages and consume large amounts
of energy, making them either expensive to operate or environmentally unfriendly [5–9].
Photocatalysts are non-toxic and stable and use light as the driving energy to mineralize
organic pollutants. Therefore, the photocatalytic approach using sunlight as the light source
is sustainable and cost-effective [10–14]. ZnO is a typical semiconductor with a direct
band gap that can be utilized as a photocatalyst and has been used for the photocatalytic
degradation of several dye pollutants and photocatalytic H2 production [15–20]. However,
their photocatalytic efficiency is limited by their low energy utilization under visible
light, small specific surface area for active sites, and susceptibility to photogenerated
electron–hole charge pair recombination. Several works were undertaken to improve the
photocatalytic activity of ZnO using heterojunction and doping methods to overcome these
drawbacks, improve the chemical behavior, and achieve efficiencies suitable for practical
applications [21–25].

Doping zinc oxide with non-metallic elements, such as nitrogen, carbon, and boron,
enhances the photocatalytic activity by extending the light absorption wavelength and
suppressing the recombination of photogenerated electron–hole pairs through the manip-
ulation of the band structure due to the formation of impurity positions [26–28]. Boron
has emerged as a very promising nonmetal candidate for integration and diffusion into
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the semiconductor lattice in the widely studied dopant arena due to its attractive physic-
ochemical properties, including being lightweight, having high chemical resistance, and
characteristic semiconducting properties. Compared with the other nonmetallic ions men-
tioned earlier, boron has the smallest ionic radius (0.023 nm), allowing for its seamless
incorporation into the semiconductor crystal framework. Furthermore, boric acid serves as
an environmentally friendly and cost-effective source of boron, is easy to handle, and is
already widely used in a variety of industrial processes. In particular, the electron config-
uration of boron is electron deficient due to the vacancy of one p orbital. As a result, the
chemical environment surrounding each boron atom is governed by its electron-deficient
nature, which is expected to promote charge separation in photocatalytic reactions. CuO
exhibits impressive physical and chemical properties, including adequate redox potential,
electrochemical activity, excellent thermal conductivity, and outstanding stability in solu-
tion. CuO has also attracted significant attention as a promising alternative to precious
metals in the area of photocatalytic hydrogen production due to its excellent photocat-
alytic performance, abundant availability, cost-effectiveness, easy synthesis, and various
structural variations. CuO is composed of Cu 3d and O 2p shells, with conduction band
(CB) and valence band (VB) edges, which allows for the effective absorption of visible
light across the infrared spectrum. This opens up the possibility of a synergistic combi-
nation with wide bandgap semiconductor photocatalysts. Heterojunction photocatalysts
have a superior ability to extend the photoresponse range and promote the separation of
photogenerated charge carriers compared with single-phase photocatalysts by forming
band bends [29,30]. Choi et al. researched a cost-effective and environmentally friendly
photocatalytic approach that was responsive to light and was employed to investigate
the enhancement of hydrogen production efficiency in ZnO through copper doping via
water–methanol solution decomposition. The author synthesized efficient nanocomposites
of ZnO doped with varying copper proportions (0.0, 0.01, 0.03, 0.05 mol %) using the
sol–gel method and assessed their H2 evolution. The incorporation of Cu did not alter the
hexagonal wurtzite structure of the ZnO nanoparticles. Furthermore, the introduction of
Cu into ZnO resulted in a reduction of the energy bandgap from 3.19 eV to 3.00 eV. Notably,
the rate of photoinduced electron and hole recombination decreased with increasing Cu
doping levels. The ZnO catalyst incorporating Cu exhibited an increase in H2 production,
rising from 7.49 µmol g−1 to 41.55 µmol g−1. This enhancement in H2 production with
Cu-doped ZnO nanoparticles is attributed to the decreased recombination rate of electrons
and holes during the photocatalytic hydrogen production [31]. Monzoor et al. utilized a
conventional hydrothermal method to synthesize ZnO nanoparticles (CuxZnyO) incorpo-
rating various levels of Cu (0.1, 0.5, 1.0, and 5.0 mol%). It was ascertained that Cu ions are
effectively integrated into the ZnO framework, resulting in a reduction in crystallite size as
the Cu ion content increases. The study revealed that the introduction of Cu ions into ZnO
leads to an augmentation in photocatalytic activity, which is primarily attributed to the
broadening of the light absorption spectrum and a decrease in the recombination rate of
photogenerated charge carriers. Significantly, the H2 production activity of the Cu-doped
ZnO catalyst surpasses that of the pure ZnO catalyst. Among the various samples tested,
the Cu0.01 Zn0.99 O catalyst with 1.0 mol% Cu exhibits the highest H2 production activity.
This improved H2 production activity in the CuxZnyO catalyst can be attributed to the
extended lifetime of excited electrons and the reduced recombination rate of electrons and
holes during the photocatalytic reaction [32]. Sun et al. successfully synthesized a novel
series of Bi1.5Zn1-xCuxTa1.5O7 (Cu-α-BZT) photocatalysts with a pyrochlore structure using
the solid-state reaction technique. The products underwent characterization to assess their
phase structure, morphology, optical properties, energy levels, and specific surface area.
The unadulterated α-BZT exhibited substantial photocatalytic activity when subjected to
UV irradiation. Furthermore, the incorporation of copper through the doping process
improved the photocatalytic performance of α-BZT. The UV-visible spectrum of the Cu-
α-BZT sample demonstrated visible light responsiveness, which can be attributed to the
transition from the donor level generated by copper impurities to the conduction band of
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α-BZT. It is noteworthy that Cu-α-BZT displayed optimal activity when the doping amount
(x) was 0.01 as a molar ratio, achieving an impressive 45 µmol h−1 g−1 of photocatalytic
hydrogen evolution [33]. Li et al. presented a straightforward technique for producing
hollow-structured Cu/TiO2 photocatalysts utilizing templates from metal-organic frame-
works (MOFs). This approach allows for the adjustment of the photocatalyst’s composition,
crystalline phase, cocatalyst size, and more by simply modifying the MOF core processing
conditions, which include room-temperature etching, simultaneous etching and reduction,
and high-temperature calcination, providing remarkable versatility. In comparison with
the commonly employed calcination method, simultaneous etching and reduction not only
better preserves the octahedral-shaped shell and crystalline phase but also prevents the
formation of carbon residues and the agglomeration of cocatalysts. These factors collec-
tively contribute to enhanced photocatalyst efficiency. The octahedral shell photocatalysts
created in this manner exhibit distinct performance variations in charge separation and
photocatalytic hydrogen production under different configurations, enabling the identifi-
cation of the most effective photocatalyst design. The optimized Cu/TiO2 photocatalyst
demonstrated a high hydrogen production rate of 62.16 µmol g−1 h−1 under UV light [34].
Chen et al. employed an in situ growth method to create a novel composite photocatalyst
composed of CuS and g-C3N4. CuS nanoparticles, with an average diameter of approx-
imately 10 nm, were effectively dispersed on the surface of g-C3N4, underscoring the
potential of g-C3N4 nanosheets as a promising substrate for the in situ growth of nanoscale
materials. Within this system, electrons originating from the valence band (VB) of g-C3N4
were directly transferred to the CuS cluster, leading to the partial reduction of CuS to Cu2S.
The latter acted as both an electron sink and a cocatalyst, thereby enhancing the separa-
tion and mobility of CuS clusters. As a result of this efficient interfacial charge transfer,
the CuS/g-C3N4 composite demonstrated a significantly improved visible-light-driven
photocatalytic hydrogen generation through water splitting when compared with pure
g-C3N4. The peak photocatalytic activity was observed in the case of a 2 wt% CuS/g-C3N4
composite photocatalyst, achieving a hydrogen production rate approximately 13.76 times
higher than that of pure g-C3N4, which was primarily due to the enhanced interplay of
charge carriers [35]. Xing et al. fabricated nanocomposites of 2D MoSe2/TiO2 using a
straightforward hydrothermal method, employing two-dimensional MoSe2 nanosheets
and P25 as precursor materials. It was demonstrated that the inclusion of MoSe2 effectively
augmented the light absorption capacity of the resulting nanocomposite. Moreover, the
MoSe2/TiO2 heterojunction exhibited minimal electron and hole recombination. Photocat-
alytic hydrogen evolution assessments revealed that the hydrogen production rate for the
sample containing 0.1 wt % MoSe2 was 4.9 µmol h−1, which represented a twofold increase
in comparison with pristine TiO2 [36]. Xing et al. developed a BCN-TiO2(A+R) nanocom-
posite with a one-step calcination process, using NTA and BCN as the precursor materials,
resulting in a combination of anatase and rutile phases. This composite exhibited a unique
heterojunction and phase junction, leading to a close interface and extensive contact area
between the two semiconductor components, thereby broadening the range of visible light
absorption. Consequently, BCN-TiO2(A+R), which features a blend of anatase and rutile
phases, produces an extended charge carrier lifetime and enhanced photocarrier separation
efficiency owing to the synergistic effects of the heterojunction and phase junction, akin to
pure TiO2. In comparison, the electron lifetime was increased by a factor of 11, resulting in
remarkable photocatalytic hydrogen production with a rate of 68.5 µmol h−1 g−1. This rate
surpasses the photocatalytic performance of TiO2(A+R) and pure BCN by approximately
7.5 and 12.2 times, respectively [37]. Utilizing a one-step hydrothermal method, Tanaka
et al. showcased the environmentally friendly and straightforward synthesis of their high-
performance TiO2/GS photocatalyst. This catalyst demonstrates the ability to leverage a
sulfide solution as a sacrificial agent, capturing photogenerated holes for the purpose of
photocatalytic hydrogen production. Notably, this method allows for the simultaneous
reduction of graphene oxide (GO) and the generation of TiO2. XRD results reveal that the
presence of graphene sheets (GS) inhibits crystal growth and facilitates the formation of
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the rutile phase. The TiO2/GS photocatalyst obtained using this process exhibits superior
activity compared with P25. This enhancement was attributed to the favorable electronic
conductivity of GS and the establishment of a chemical bond between TiO2 and GS. The
researchers anticipated that the photocatalytic activity of TiO2/GS can be further improved
by optimizing parameters such as the initial TiCl4 concentration and hydrothermal con-
ditions [38]. Tanaka et al. synthesized mesoporous ZnS and ZnO nanoplates using the
calcination of a solvothermally prepared ZnS(en)0.5 complex (en = ethylenediamine), with
ethylenediamine serving as the exclusive solvent. The heating of the ZnS(en)0.5 complex
resulted in the formation of mesoporous nanoplates with a wurtzite-type ZnS structure,
which further oxidized into ZnO platelets. The transformation process from ZnS(en)0.5
to ZnS to ZnO appeared to be topotic, indicating structural and pseudomorphic crystal-
lographic relationships between the three solid phases. The photocatalytic performance
of the material was assessed for hydrogen production from a Na2S/Na2SO3 aqueous
solution and the decomposition of the azo dye Acid Red 14. ZnS calcined at 500 ◦C ex-
hibited the highest hydrogen production rate using water decomposition under visible
light irradiation. In contrast, ZnO demonstrated the highest hydrogen production rate
when calcined at 550–600 ◦C, showcasing its efficacy in the photocatalytic decomposition
of the dye under UV irradiation [39]. Y.M. Hunge et al. embarked on the synthesis of
a revolutionary binary photocatalyst, namely, the MoS2/ZnO composite, by employing
a sophisticated hydrothermal route. This novel composite was designed to leverage the
unique properties of molybdenum disulfide (MoS2) and zinc oxide (ZnO), combining them
synergistically to create a photocatalyst with enhanced visible light absorption capabilities.
The integration of MoS2, which is a lower bandgap semiconductor, with ZnO was found
to significantly augment the visible light absorption efficiency of the latter, as revealed
by comprehensive optical studies. The MoS2/ZnO composite thus formed emerged as a
highly efficient visible-light-induced photocatalyst, demonstrating exceptional prowess in
the decomposition of organic compounds and hydrogen production. The hydrogen pro-
duction rates were measured at 22, 39, and an impressive 235 µmol g−1 h−1 for ZnO, MoS2,
and the MoS2/ZnO composite, respectively. This remarkable enhancement in hydrogen
production efficiency in the presence of the MoS2/ZnO composite underscores its potential
as a promising candidate for sustainable energy applications [40].

Our previous work has provided a low-cost, highly active method for hydrogen pro-
duction using B-doped zinc oxide/zinc sulfide/copper sulfide photocatalysts, combining
the nonmetal doping and heterojunction methods, which were prepared using the photo-
catalytic reaction of B-doped zinc oxide and copper oxide in sulfide solutions. However,
optimization under previous visible light irradiation had not been performed. In this study,
the optimal conditions for catalyst preparation and the sacrificing agent under visible light
irradiation were investigated.

2. Materials and Methods

In this experiment, all chemicals were of analytical purity and used without further
purification. The B/CuO/ZnO photocatalyst series was prepared using a one-step thermal
method. Various ratios of zinc acetate dihydrate, copper acetate monohydrate, oxalic acid,
and boric acid were mechanically well mixed and heat treated in an electric furnace at
500 ◦C for 3 h under an air atmosphere. ZnO, B/ZnO, and CuO/ZnO were prepared in a
similar procedure for comparison.

Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku RINT Ultima-IV
diffractometer using a Cu source at a scanning speed of 0.02◦/s to identify the chemical
structures of the prepared photocatalysts. To determine the binding states of the elements,
the bond energy was measured via X-ray photoelectron spectroscopy (XPS) with a PHI
Quantera SXM photoelectron spectrometer using an Al Kα radiation source. The measured
binding energy was corrected using the C1s peak (284.8 eV) as a reference to eliminate the
effects of shifts due to sample charging. The superficial shape of the photocatalyst was
observed using a Hitachi S-4000 scanning electron microscope (SEM). The internal structure
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was also investigated using a JEOL JEM1011 transmission electron microscope (TEM). To
investigate the light absorption characteristics and energy band gap of the photocatalyst,
the UV-vis diffuse reflection spectrum (DRS) was recorded using a Shimadzu UV-2450
spectrophotometer using BaSO4 as a reference standard equipped with an integrating
sphere attachment. Using a Shimadzu RF-5300PC, the photoluminescence (PL) spectrum
of each photocatalyst was detected with an excitation wavelength of 330 nm. To calculate
the band gap energy, a classical extrapolation approach was used with the following
Equation (1):

αhν = A(hν − Eg)n (1)

where hν, α, A, and Eg represent the discrete photon energy, optical absorption coefficient,
Planck’s constant, and photonic energy band gap, and n = 1/2 for a direct band gap
semiconductor.

The photocatalytic hydrogen production experiment was performed in a closed system
using a 125 mL Pyrex reactor. An LED lamp (λ = 450 nm, 5.1 mW/cm2) was used as a
side-illuminated visible light source. All photocatalytic hydrogen production experiments
were performed in a 40 mL solution kept at 50 ◦C with a 50 mg catalyst and a Na2SO3/Na2S
mixed sacrifice. The reaction system was purged with nitrogen for 30 min before the photo-
catalytic experiments to remove the dissolved oxygen. The generated H2 was measured
using an online gas chromatograph system (GC) with the thermal conductivity detector
(TCD) maintained at 50 ◦C (Table 1).

Table 1. Experimental conditions.

Photocatalyst ZnO, B/ZnO, CuO/ZnO, B/CuO/ZnO (50 mg)
Doping amount B: 0~10 wt% Cu/(Cu + Zn) = 0~20 wt%

Medium 0~0.8 M Na2S + 0~0.6 M Na2SO3 solution (40 mL)
Reactor Pyrex glass vessel (volume: 125 mL)

Temperature 50 ◦C
Irradiation time 3 h

Light source LED lamp (450 nm, ~5.1 mW/cm2)
Analysis Gas chromatography (TCD)

3. Results
3.1. Structural Characterization

Figure 1 shows the XRD results of the ZnO, B/ZnO, CuO/ZnO, and B/CuO/ZnO
before and after the photocatalytic reaction in a sulfide solution. The hexagonal ZnO-
indexed JCPDS card number 361,451 was observed in the sample containing ZnO before
the photocatalytic reaction. A weak peak assigned to the CuO-indexed JCPDS card number
450,937 was observed for the feed containing CuO. The photocatalyst after the photocat-
alytic reaction had diffraction peaks that closely matched the (002), (110), and (112) crystal
planes of the hexagonal structure of ZnS shown in JCPDS:05-0492. Also, due to the low
CuO content, no CuO peak was detected and no other impurities were observed. The
ZnO and CuO/ZnO had peaks corresponding to (100), (002), (101), (103), and (112) planes,
respectively. On the other hand, no ZnO peak was observed for B/ZnO and B/ZnO/CuO.
The crystallite sizes calculated using the Scherrer equation are shown in Table 2. It can
be seen that B/ZnO and B/ZnO/CuO had smaller crystal sizes compared with ZnO and
ZnO/CuO. Compared with the XRD spectra before irradiation shown in Figure 1, the de-
crease in crystallinity of ZnO and CuO was attributed to the sulfidation of the photocatalyst.
These results suggest that boron doping caused interactions within the sample structure,
reducing the crystal size and promoting surface sulfides.
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Figure 1. XRD patterns of ZnO, B/ZnO, CuO/ZnO, and B/CuO/ZnO (a) before and (b) after the
photocatalytic reaction in sulfide solution.

Table 2. Crystal size of ZnO, B/ZnO, CuO/ZnO, and B/CuO/ZnO before and after photocatalytic
reaction in sulfide solution.

Catalyst 2θ (deg) Crystal Size (nm)

ZnO 36.321 28.3

B/ZnO 36.149 12.6

CuO/ZnO 36.248 26.4

B/CuO/ZnO 36.26 9.77

ZnO after 36.208 31.7

BZnO after 28.53 6.80

CuO/ZnO after 36.246 21.4

B/CuO/ZnO after 28.92 3.42

To determine the chemical state of each element of the B/CuO/ZnO composite, the
sample surface was investigated using XPS and is shown in Figure 2. For comparison,
we present the XPS results of the photocatalyst before the photocatalytic reaction in the
sulfide solution (Figure S1). The obtained spectrum showed a peak at the binding energy
of 1020.4 eV associated with Zn 2p. The positions of the peaks at 161.6 eV and 162.1 eV
of S 2p belonged to S 2p3/2 and S 2p1/2, representing ZnS, Cu2S, and CuS. The Cu 2p
XPS spectrum showed a prominent peak at 932.8 eV corresponding to 2p3/2. In the XPS
spectrum results showing B 1s, no obvious peak was observed due to the small amount
of B doping. The O 1s spectrum showed a peak at 531.0 eV attributed to ZnO and CuO.
On the other hand, all the constituent elements were confirmed in the photocatalyst before
the photocatalytic reaction in the sulfide solution. The decrease in the B and O peaks after
the photocatalytic reaction in the sulfide solution compared with before was due to the
sulfidation of the photocatalyst.

3.2. Morphological Analysis

The SEM images of the prepared photocatalysts in sulfide solution after light irra-
diation are shown in Figure 3. From the SEM images, the prepared photocatalysts were
observed to be rectangular secondary particles composed of nano-sized primary parti-
cles; the particle shapes of ZnO and CuO/ZnO were larger than those of B/ZnO and
B/CuO/ZnO. These results indicate that CuO loading did not change the crystal structure
of the ZnO. B doping also induced a decrease in particle size.
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alytic reaction in sulfide solution.

3.3. Optical Analysis

DRS measurements of each prepared modified photocatalyst are shown in Figure 4.
No red shift in the absorption edge was observed with boron doping alone. On the other
hand, copper oxide on the catalyst showed absorption at visible wavelengths from 450 nm
onward, and the simultaneous loading of boron and copper oxide increased the amount of
absorption. The B/CuO/ZnO photocatalyst with the largest increase in absorption showed
absorption up to around 500 nm. Photoluminescence measurements of the prepared
photocatalysts revealed fluorescence emission. The intensity of the fluorescence emission
has generally been considered to be related to exciton transitions and recombination
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from the conduction band level to the valence band. The magnitude of the peaks in the
fluorescence spectrum decreased in the order ZnO > B/ZnO > ZnO/CuO > B/CuO/ZnO
(Figure 5). These results suggest that boron and copper oxide modifications to ZnO
decreased the recombination rate of hole–electron pairs and promoted charge separation.
From the DRS measurements and Equation (1), the band gap energies of ZnO, B/ZnO,
CuO/ZnO, and B/CuO/ZnO were calculated to be 3.27, 3.54, 3.22, and 2.90 eV, respectively.
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3.4. Photocatalytic Activity

The experimental conditions were optimized to achieve highly efficient hydrogen
production via water splitting using the B/CuO/ZnO photocatalyst system under visible
light irradiation. In order to optimize the loading of CuO, the photocatalytic activities of
B/CuO/ZnO prepared at the ratios of Cu/(Cu + Zn) (%) = 0, 1, 3, 5, 8, 10, and 20 were
compared (Figure 6). A maximum photocatalytic hydrogen production of 490 µmol g−1

was achieved when Cu/(Cu + Zn) (%) = 5. The decrease in photocatalytic activity due to
the overloading of copper is thought to be due to the light-shielding effect of the copper
compound covering the surface of the photocatalyst.

The appropriate amount of boron doping was also investigated (Figure 7). Compar-
isons of 0, 0.5, 1, 2, 3, 5, and 10 wt% boron doping on the photocatalytic activities showed
that 1 wt% was the most effective.
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Figure 7. Effect of B doping amount on the photocatalytic hydrogen production with B/CuO/ZnO
(B: 0~10 wt%, Cu/(Cu + Zn) = 5 wt%, and 0.5 M Na2S + 0.4 M Na2SO3 was used as sacrificial agent).

The concentrations of aqueous sulfide solutions, which were the solvents used in
photocatalytic hydrogen production, were studied in the range of 0 to 0.8 M for Na2S and 0
to 0.6 M for Na2SO3, and the results are shown in Figures 8 and 9. These results suggest
that the optimal ratio of Na2S and Na2SO3 as sacrificial agents for photocatalytic reactions
thermodynamically promoted the chemical reactions expressed by Equations (6)–(9).

To investigate the stability of the photocatalytic activity exhibited by the prepared
photocatalyst, the amount of hydrogen production was measured after 30 h of continuous
LED light irradiation. The measurement results show that the photocatalytic activity was
hardly deactivated in 30 h (Figure 10).
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3.5. Proposed Hydrogenation Mechanism

The possible reaction mechanism in this experiment is shown in Figure 11. When
the B/CuO/ZnO photocatalyst is added to an aqueous sulfide solution, the surface is
sulfurized, resulting in ZnS and CuS. The 450 nm light used in this experiment cannot
excite ZnO (3.3 eV) or ZnS (3.6 eV) because of their wide band gaps, but it can excite the
energy gap between the conduction band of CuS and the valence band of ZnO (2.2 eV).
Therefore, upon irradiation with 450 nm light, electrons in the valence band of ZnO are
excited to the conduction band of CuS, producing photoexcited electrons and holes. The
generated holes efficiently oxidize sulfide ions and sulfurous acid ions to produce protons,
while some of the holes move into the valence band of ZnS. Photoexcited electrons also
produce hydrogen according to the following two pathways. In the first reaction pathway,
some of the electrons excited in CuS are consumed by Formula (2) to produce Cu2S, which
reduces H+ to produce H2 according to Formula (3). In the other reaction pathway, the
450 nm light excites electrons in the valence band of Cu2S to the conduction band, producing
photoexcited electrons and holes. The photoexcited electrons in the conduction band reduce
H+ to produce H2. The holes in the valence band recombine with the photoexcited electrons
in the conduction band of CuS and are consumed. The boron loaded in this experiment may
have inhibited crystal growth and reduced the crystal size, or it may have created impurity
levels in the upper valence band of ZnO, enhancing the charge separation. The purification
of sulfide wastewater and reaction equations for aqueous sulfide solutions are shown
in (4)–(9). When a semiconductor photocatalyst is irradiated with light, electrons in the
valence band are excited to the conduction band, forming hole–electron pairs (Equation (4)).
SO3

2− and S2− consume holes and promote the reduction reaction (Equations (6) and (7))
and hydrogen evolution, whereas S2

2−, which is produced by the oxidation of S2−, acts
as an optical filter and prevents light absorption (Equation (5)). SO3

2− reacts with S2
2− to
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produce S2O3
2− (Equations (8) and (9)), which does not compete with light absorption, and

thus, the coexistence of SO3
2− and S2− is important.

2CuS + 2e− → Cu2S +S2− (2)

Cu2S + 2H+ + S2− → 2CuS + H2 (3)

Photocatalyst + hν → e−CB + h+
VB (4)

2H2O + 2e−CB → H2 + 2OH− (5)

SO3
2− + H2O + 2hVB

+ → SO4
2− +2H+ (6)

2S2− + 2hVB+ → S2
2− (7)

S2
2− +SO3

2− → S2O3
2− +S2− (8)

SO3
2− +S2− + 2hVB

+ → S2O3
2− (9)
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Table 3 illustrates the comparison between the outcomes of our research and previously
studied achievements in photocatalytic hydrogen generation. The findings from our study
were either similar to or outperformed the reported results in the context of photocatalytic
hydrogen production.

Table 3. Comparison of photocatalytic hydrogen productions.

Photocatalyst Medium Light Source H2 Generation
(µmol h−1 g−1) Ref.

Cu/ZnO Methanol UV
light 6.9 [31]

Cu/ZnO Methanol 365 nm 5.84 [32]
Bi1.5Zn0.99

Cu0.01Ta1.5O7
Na2S + Na2SO3

Xe lamp
300 W 45 [33]

Cu/TiO2 Methanol Xe lamp
300 W 62 [34]

CuS/g-C3N4 Triethanolamine Xe lamp
300 W 17.2 [35]

MoSe2/TiO2 Methanol Xe lamp
300 W 4.9 [36]

BCN/TiO2 Triethanolamine Xe lamp
300 W 68.5 [37]

TiO2/graphene Na2S + Na2SO3 UV light 108 [38]

ZnS:C Na2S + Na2SO3

Hg
lamp

500 W
90 [39]

MoS2/ZnO Na2S + Na2SO3
Xe lamp
300 W 235 [40]

B/CuO/ZnO Na2S + Na2SO3
LED

(450 nm) 224 This work
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4. Conclusions

B/CuO/ZnO photocatalysts were prepared using a mechanochemical method, and
hydrogen production experiments were performed using 450 nm light in a sulfide solution.
The catalytic activity was responsive to visible light by supporting CuO on ZnO. Boron
doping promoted the sulfidation of the sample by reducing the crystallite size of ZnO
and decreasing the recombination rate of electron–hole pairs. The synergistic effect of
these two mechanisms dramatically improved the photocatalytic activity. Also, when
the concentration of sulfide solution was Na2S:Na2SO3 = 0.4 M:0.5 M, the maximum
photocatalytic hydrogen production activity of 224 µmol g−1 h−1 was achieved. The results
of this study provide certain insights into the effective utilization of sulfide wastewater.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/separations11010019/s1—Figure S1. XPS spectra survey of
B/CuO/ZnO photocatalyst before photocatalytc reaction in sulfide solution.
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