HPLC/DAD Analysis and Antioxidant Activity of Adlay Sprouts and Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Apparatus
2.3. Sample Extraction
2.4. Total Polyphenol Content
2.5. Total Flavonoid Content
2.6. ABTS+ Radical Scavenging Assays
2.7. DPPH Radical Scavenging Assays
2.8. Preparation of Samples and Standard Solutions for HPLC Analysis
2.9. HPLC Conditions
2.10. Calibration Curve
2.11. Statistical Analysis
3. Results
3.1. Total Polyphenol and Total Flavonoid Contents
3.2. Antioxidant Activity
3.3. HPLC Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pourmorad, F.; Hosseinimehr, S.J.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006, 5, 1142–1145. [Google Scholar]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant activity of milk and dairy products. Animals 2022, 12, 245. [Google Scholar] [CrossRef]
- Huang, D.J.; Hsien-Jung, C.; Chun-Der, L.I.N.; Yaw-Huei, L.I.N. Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Bot. Bull. Acad. Sin. 2005, 46, 99–106. [Google Scholar]
- Sun, Y.M.; Wang, R.X.; Yuan, S.L.; Lin, X.J.; Liu, C.B. Theoretical study on the antioxidant activity of curcumin. Chin. J. Chem. 2004, 22, 827–830. [Google Scholar] [CrossRef]
- Halliwell, B. Antioxidant characterization: Methodology and mechanism. Biochem. Pharmacol. 1995, 49, 1341–1348. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Dapkevicius, A.; Venskutonis, R.; van Beek, T.A.; Linssen, J.P. Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J. Sci. Food Agric. 1998, 77, 140–146. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT-Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Proestos, C.; Boziaris, I.S.; Nychas, G.J.; Komaitis, M. Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 2006, 95, 664–671. [Google Scholar] [CrossRef]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Szabo, M.; Idiţoiu, C.; Chambre, D.; Lupea, A. Improved DPPH determination for antioxidant activity spectrophotometric assay. Chem. Pap. 2007, 61, 214–216. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Simić, A.; Manojlović, D.; Šegan, D.; Todorović, M. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules 2007, 12, 2327–2340. [Google Scholar] [CrossRef]
- Gurning, K.; Lumbangaol, S.; Situmorang, R.F.; Silaban, S. Determination of phenolic contents and antioxidant activity test of ethanol extract of Sirih merah (Piper crocatum Ruiz & Pav.) leaves using the DPPH method. J. Pendidik. Kim. 2021, 13, 137–142. [Google Scholar]
- Liu, J.; Yong, H.; Yao, X.; Hu, H.; Yun, D.; Xiao, L. Recent advances in phenolic–protein conjugates: Synthesis, characterization, biological activities and potential applications. RSC Adv. 2019, 9, 35825–35840. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.H.; Bang, S.I.; Shin, H.; Cho, E.J.; Lee, S. Antioxidant activity of edible sprouts and phytosterol contents by HPLC/UV analysis. Hortic. Environ. Biotechnol. 2022, 63, 769–778. [Google Scholar] [CrossRef]
- Król, E.; Douglas, A.; Dardente, H.; Birnie, M.J.; van Der Vinne, V.; Eijer, W.G.; Gerkema, M.P.; Hazlerigg, D.G.; Hut, R.A. Strong pituitary, and hypothalamic responses to photoperiod but not to 6-methoxy-2-benzoxazolinone in female common voles (Microtus arvalis). Gen. Comp. Endocrinol. 2012, 179, 289–295. [Google Scholar] [CrossRef]
- Berger, P.J.; Negus, N.C.; Sanders, E.H.; Gardner, P.D. Chemical triggering of reproduction in Microtus montanus. Science 1981, 214, 69–70. [Google Scholar] [CrossRef]
- Epstein, W.W.; Rowsemitt, C.N.; Berger, P.J.; Negus, N.C. Dynamics of 6-methoxybenzoxazolinone in winter wheat: Effects of photoperiod and temperature. J. Chem. Ecol. 1986, 12, 2011–2020. [Google Scholar] [CrossRef]
- Wang, H.X.; Ng, T.B. Demonstration of antifungal and anti-human immunodeficiency virus reverse transcriptase activities of 6-methoxy-2-benzoxazolinone and antibacterial activity of the pineal indole 5-methoxyindole-3-acetic acid. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 132, 261–268. [Google Scholar] [CrossRef]
- Wang, H.X.; Liu, F.; Ng, T.B. Examination of pineal indoles and 6-methoxy-2-benzoxazolinone for antioxidant and antimicrobial effects. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 130, 379–388. [Google Scholar] [CrossRef]
- Numata, M.; Yamamoto, A.; Moribayashi, A.; Yamada, H. Antitumor components isolated from the Chinese herbal medicine Coix lachryma-jobi. Planta Med. 1994, 60, 356–359. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, J.; Park, S.H.; Seo, E.K.; Han, A.R.; Lee, S.K.; Kim, Y.S.; Hong, J.H.; Seok, J.H.; Lee, C.J. Suppressive effects of coixol, glyceryl trilinoleate and natural products derived from Coix lachryma-jobi var. ma-yuen on gene expression, production, and secretion of airway MUC5AC mucin. Arch. Pharm. Res. 2015, 38, 620–627. [Google Scholar]
- Ding, Y.; Zhang, G.; Ni, C.; Yu, G.; Cheng, J.; Zheng, H. Understanding the mechanism of change in morphological structures, visualization features, and physicochemical characteristics of adlay seeds (Coix lacryma-jobi L.): The role of heat soaking. J. Cereal Sci. 2020, 91, 102892. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, M.; Zhang, H.; He, D.; Kong, Y.; Chen, L.; Song, H. Transcriptome and proteome analyses of the molecular mechanisms associated with Coix seed nutritional quality in the process of breeding. Food Chem. 2019, 272, 549–558. [Google Scholar] [CrossRef]
- Wu, T.T.; Charles, A.L.; Huang, T.C. Determination of the contents of the main biochemical compounds of adlay (Coxi lachrymal-jobi). Food Chem. 2007, 104, 1509–1515. [Google Scholar] [CrossRef]
- Yang, S.H.; Peng, J.; Lui, W.B.; Lin, J. Effects of adlay species and rice flour ratio on the physicochemical properties and texture characteristic of adlay-based extrudates. J. Food Eng. 2008, 84, 489–494. [Google Scholar] [CrossRef]
- Zhu, F. Coix: Chemical composition and health effects. Trends Food Sci. Technol. 2017, 61, 160–175. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Yang, J.H.; Chang, H.L.; Lee, Y.L.; Mau, J.L. Antioxidant properties of methanolic extracts from monascal adlay. Food Chem. 2006, 97, 375–381. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Ge, H.; Wu, C.; Pang, J.; Miao, S. Multi-scale structure, pasting and digestibility of adlay (Coix lachryma-jobi L.) seed starch. Food Hydrocoll. 2019, 89, 885–891. [Google Scholar] [CrossRef]
- Chen, H.J.; Lo, Y.C.; Chiang, W. Inhibitory effects of adlay bran (Coix lachryma-jobi L. var. ma-yuen Stapf) on chemical mediator release and cytokine production in rat basophilic leukemia cells. J. Ethnopharmacol. 2012, 141, 119–127. [Google Scholar]
- Chiang, W.; Cheng, C.Y.; Chiang, M.T.; Chung, K.T. Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. J. Agric. Food Chem. 2000, 48, 829–832. [Google Scholar] [CrossRef]
- Tsai, C.; Yang, L.; Hsu, H. Ingestion of adlay may reduce liver fat accumulation in hamsters fed high fat diets. Food Sci. 1999, 26, 265–276. [Google Scholar]
- Lu, X.; Liu, W.; Wu, J.; Li, M.; Wang, J.; Wu, J.; Luo, C. A polysaccharide fraction of adlay seed (Coix lachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells. Biochem. Biophys. Res. Commun. 2013, 430, 846–851. [Google Scholar] [CrossRef]
- Hsia, S.M.; Chiang, W.; Kuo, Y.H.; Wang, P.S. Downregulation of progesterone biosynthesis in rat granulosa cells by adlay (Coix lachryma-jobi L. var. ma-yuen Stapf.) bran extracts. Int. J. Impot. Res. 2006, 18, 264–274. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, Y.; Gao, Y.; Ren, G. Effect of ultrasonic treatment on immunological activities of polysaccharides from adlay. Int. J. Biol. Macromol. 2015, 80, 246–252. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, J.; Lin, Q.; Wang, Q.; Wang, J.; Yu, G. Effects of endogenous proteins and lipids on structural, thermal, rheological, and pasting properties and digestibility of adlay seed (Coix lacryma-jobi L.) starch. Food Hydrocoll. 2021, 111, 106254. [Google Scholar] [CrossRef]
- Lee, E.S.; Kim, Y.I.; Lee, J.H.; Kim, Y.G.; Han, K.S.; Yoon, Y.H.; Cho, B.O.; Park, K.; Cho, J.S. Comparison of quality, antioxidant capacity, and anti-inflammatory activity of adlay [Coix lacryma-jobi L. var. ma-yuen (Rom. Caill.) Stapf.] sprouts at several harvest time. Plants 2023, 12, 2975. [Google Scholar]
- Shin, S.; Chang, Y.; Jeon, A.; Lee, C. Effect of different greening periods on antioxidant activities of sprouts vegetables of Coreopsis tinctoria Nutt. and Saussurea pulchella (Fisch.) Fisch. Korean J. Hortic. Sci. Technol. 2009, 27, 503–510. [Google Scholar]
- Lee, J.Y.; Park, J.Y.; Park, C.G.; Kim, D.H.; Ji, Y.J.; Choi, S.J.; Oh, M.; Hwang, H.; Lee, Y.; Jeong, J.; et al. Validation of a method and evaluation of antioxidant activity for the simultaneous determination of riboflavin and coixol in Coix lacryma-jobi var. ma-yuen stapf sprouts. Korean J. Crop. Sci. 2019, 64, 452–458. [Google Scholar]
- Son, E.S.; Kim, Y.O.; Park, C.G.; Park, K.H.; Jeong, S.H.; Park, J.W.; Kim, S.H. Coix lacryma-jobi var. ma-yuen Stapf sprouts extract has anti-metastatic activity in colon cancer cells in vitro. BMC Complement. Altern. Med. 2017, 17, 486. [Google Scholar]
- Choi, J.; Kim, J.; Lee, H.D.; Cho, H.; Paje, L.A.; Shin, H.; Lee, S. Development of an analytical approach for the utilization of edible tree sprouts. Nat. Prod. Sci. 2022, 28, 27–32. [Google Scholar] [CrossRef]
- Kim, J.S.; Cuong, D.M.; Bae, Y.B.; Cho, S.K. Antioxidant and antiproliferative activities of solvent fractions of broccoli (Brassica oleracea L.) sprout. Appl. Biol. Chem. 2022, 65, 34. [Google Scholar] [CrossRef]
- Mirzadeh, M.; Arianejad, M.R.; Khedmat, L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr. Polym. 2020, 229, 115421. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Rad. Res. 1997, 26, 195–199. [Google Scholar] [CrossRef]
- Banjoo, D.R.; Nelson, P.K. Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments. J. Chromatogr. A 2005, 1066, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Bonfigli, M.; Godoy, E.; Reinheimer, M.A.; Scenna, N.J. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J. Food Eng. 2017, 207, 56–72. [Google Scholar] [CrossRef]
- Yang, Y.C.; Wei, M.C.; Huang, T.C.; Lee, S.Z.; Lin, S.S. Comparison of modified ultrasound-assisted and traditional extraction methods for the extraction of baicalin and baicalein from Radix Scutellariae. Ind. Crops Prod. 2013, 45, 182–190. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Repajić, M.; Garofulić, I.E.; Tuđen, L.; Dragović-Uzelac, V.; Levaj, B. Comparison of different extraction methods for the recovery of olive leaves polyphenols. Processes 2020, 8, 1008. [Google Scholar] [CrossRef]
- Alonso-Carrillo, N.; de los Ángeles Aguilar-Santamaría, M.; Vernon-Carter, E.J.; Jiménez-Alvarado, R.; Cruz-Sosa, F.; Román-Guerrero, A. Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Ind. Crop. Prod. 2017, 103, 213–221. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.H.; Jung, J.T.; Lee, Y.J.; Oh, M.W.; Chang, J.K.; Jeong, H.S.; Park, C.G. Changes in free sugar, coixol contents and antioxidant activities of adlay sprouts (Coix lacryma-jobi L. var. ma-yuen Stapf.) according to different growth stage. Korean J. Med. Crop Sci. 2019, 27, 339–347. [Google Scholar]
- Wang, C.Y.; Wu, S.J.; Shyu, Y.T. Antioxidant properties of certain cereals as affected by food-grade bacteria fermentation. J. Biosci. Bioeng. 2014, 117, 449–456. [Google Scholar] [CrossRef]
- Sonkar, N.; Rajoriya, D.; Chetana, R.; Venkatesh Murthy, K. Effect of cultivars, pretreatment and drying on physicochemical properties of amla (Emblica officinalis) gratings. J. Food Sci. Technol. 2020, 57, 980–992. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Shi, R.; Tang, B.; Xie, S. Coix lachryma-jobi extract ameliorates inflammation and oxidative stress in a complete Freund’s adjuvant-induced rheumatoid arthritis model. Pharm. Biol. 2019, 57, 792–798. [Google Scholar] [CrossRef]
- Weng, W.F.; Peng, Y.; Pan, X.; Yan, J.; Li, X.D.; Liao, Z.Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; et al. Adlay, an ancient functional plant with nutritional quality, improves human health. Front. Nutr. 2022, 9, 1019375. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, J.; Chen, J.; Pu, X.; Li, X.; Yang, X.; Yang, L.; Ding, Y.; Nong, M.; Zhang, S.; et al. Actional mechanisms of active ingredients in functional food adlay for human health. Molecules 2022, 27, 4808. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Coix lachryma-jobi. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2013; Volume 5, pp. 243–261. [Google Scholar]
- Zheng, J.; Bai, C.; Peng, H.; Zhao, L.; Xiong, H. Thermosensitive magnetoliposome—Novel carrier for targeted delivery and triggered release of Coix seed oil. J. Magn. Magn. Mater. 2020, 497, 166012. [Google Scholar] [CrossRef]
Sample | Plant Part | Solvent | Extraction Method |
---|---|---|---|
SPM1 | Sprouts | MeOH | Ultrasonic extraction |
SPE1 | EtOH | ||
SPM2 | MeOH | Reflux extraction | |
SPE2 | EtOH | ||
SM1 | Seeds | MeOH | Ultrasonic extraction |
SE1 | EtOH | ||
SM2 | MeOH | Reflux extraction | |
SE2 | EtOH |
Sample | Dry Sample (g) | Extract (g) | Yield (%) |
---|---|---|---|
SPM1 | 2.0 | 0.5 | 25.0 |
SPE1 | 2.0 | 0.4 | 20.0 |
SPM2 | 4.0 | 1.1 | 27.5 |
SPE2 | 4.0 | 1.0 | 25.0 |
SM1 | 2.5 | 0.2 | 8.0 |
SE1 | 2.5 | 0.3 | 12.0 |
SM2 | 5.0 | 0.3 | 6.0 |
SE2 | 5.0 | 0.3 | 6.0 |
Sample | Total Polyphenol Content (mg TAE/g Extract) | Total Flavonoid Content (mg QE/g Extract) |
---|---|---|
SPM1 | 50.91 ± 8.10 a | 6.42 ± 0.73 c |
SPE1 | 60.05 ± 4.57 a | 17.89 ± 2.16 a |
SPM2 | 62.05 ± 5.38 a | 11.72 ± 0.75 b |
SPE2 | 54.14 ± 3.80 a | 14.64 ± 2.42 ab |
SM1 | 3.02 ± 1.68 a | 5.32 ± 1.53 ab |
SE1 | 2.95 ± 2.18 a | 6.58 ± 2.40 a |
SM2 | 1.77 ± 2.02 a | 4.53 ± 0.98 ab |
SE2 | 2.49 ± 1.28 a | 1.75 ± 0.22 b |
Sample | ABTS+ (IC50, mg/mL) | DPPH (IC50, mg/mL) |
---|---|---|
SPM1 | 3.16 ± 0.43 b | 6.94 ± 0.29 b |
SPE1 | 2.73 ± 0.26 b | 7.20 ± 0.55 b |
SPM2 | 5.47 ± 0.44 a | 12.28 ± 0.81 a |
SPE2 | 2.41 ± 0.30 b | 6.00 ± 0.22 b |
SM1 | 8.84 ± 0.11 c | 27.30 ± 1.50 b |
SE1 | 22.55 ± 1.38 a | 49.38 ± 1.92 a |
SM2 | 7.77 ± 0.57 c | 22.85 ± 3.19 b |
SE2 | 11.32 ± 0.42 b | 44.78 ± 2.66 a |
Ascorbic acid | 0.11 ± 0.00 | 0.15 ± 0.01 |
Compound | tR | Calibration Equation | Correlation Factor, R-Value |
---|---|---|---|
coixol | 25.45 | Y = 24.092X + 169.16 | 1.0000 |
Samples | Coixol (mg/g Extract) |
---|---|
SPM1 | 29.97 ± 0.20 d |
SPE1 | 33.17 ± 0.22 b |
SPM2 | 32.36 ± 0.22 c |
SPE2 | 34.81 ± 0.06 a |
SM1 | ND |
SE1 | ND |
SM2 | ND |
SE2 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, G.-H.; Uy, N.-P.; Kang, S.-H.; Heo, W.; Lee, E.-S.; Roh, S.-S.; Lee, S. HPLC/DAD Analysis and Antioxidant Activity of Adlay Sprouts and Seeds. Separations 2024, 11, 32. https://doi.org/10.3390/separations11010032
Tran G-H, Uy N-P, Kang S-H, Heo W, Lee E-S, Roh S-S, Lee S. HPLC/DAD Analysis and Antioxidant Activity of Adlay Sprouts and Seeds. Separations. 2024; 11(1):32. https://doi.org/10.3390/separations11010032
Chicago/Turabian StyleTran, Gia-Han, Neil-Patrick Uy, Shi-Heon Kang, Wonseok Heo, Eun-Song Lee, Seong-Soo Roh, and Sanghyun Lee. 2024. "HPLC/DAD Analysis and Antioxidant Activity of Adlay Sprouts and Seeds" Separations 11, no. 1: 32. https://doi.org/10.3390/separations11010032
APA StyleTran, G. -H., Uy, N. -P., Kang, S. -H., Heo, W., Lee, E. -S., Roh, S. -S., & Lee, S. (2024). HPLC/DAD Analysis and Antioxidant Activity of Adlay Sprouts and Seeds. Separations, 11(1), 32. https://doi.org/10.3390/separations11010032