Solubility of Gallic Acid in Single and Mixed Solvents
Abstract
:1. Introduction
2. Materials and Experiment
2.1. Materials
2.2. Solubility Measurement
2.3. Thermal Analysis
3. Theory and Model
3.1. COSMO-SAC Model
3.2. Hansen Solubility Parameter
Chemicals | References | |||||
---|---|---|---|---|---|---|
Group contribution | Gallic acid | 33.0 | 17.2 | 35.4 | 51.4 | This study |
Water | 15.6 | 16.0 | 42.3 | 47.8 | [42] | |
Ethanol | 15.8 | 8.8 | 19.4 | 26.5 | [42] | |
Acetic acid | 14.5 | 8.0 | 13.5 | 21.4 | [42] | |
COSMO | Gallic acid | 17.19 | 8.99 | 25.57 | 32.10 | This study |
Water | 15.6 | 16.0 | 42.3 | 47.8 | This study | |
Ethanol | 21.31 | 11.84 | 21.76 | 32.67 | This study | |
Acetic acid | 20.46 | 20.42 | 22.12 | 36.40 | This study |
4. Results
4.1. Thermal Analysis
4.2. Solubility in Pure and Mixed Solvents
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mišić, D.; Zizovic, I.; Stamenić, M.; Ašanin, R.; Ristić, M.; Petrović, S.D.; Skala, D. Antimicrobial activity of celery fruit isolates and SFE process modeling. Biochem. Eng. J. 2008, 42, 148–152. [Google Scholar] [CrossRef]
- Patil, B.S.; Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Vikram, A. Bioactive compounds: Historical perspectives, opportunities, and challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Rasul, M.G. Conventional Extraction Methods Use in Medicinal Plants, their Advantages and Disadvantages. Int. J. Basic. Sci. Appl. Comput. 2018, 2, 10–14. [Google Scholar]
- Smith, R.M. Before the injection--modern methods of sample preparation for separation techniques. J. Chromatogr. A 2003, 1000, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waskiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Das, P.R.; Eun, J.B. A comparative study of ultra-sonication and agitation extraction techniques on bioactive metabolites of green tea extract. Food Chem. 2018, 253, 22–29. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Cui, Y.; Yuan, W. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrason. Sonochem. 2022, 87, 106054. [Google Scholar] [CrossRef] [PubMed]
- Mammela, P.; Tuomainen, A.; Savolainen, H.; Kangas, J.; Vartiainen, T.; Lindroos, L. Determination of gallic acid in wood dust as an indicator of oak content. J. Environ. Monit. 2001, 3, 509–511. [Google Scholar] [CrossRef]
- Kim, T.J.; Silva, J.L.; Jung, Y.S. Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chem. 2011, 126, 116–120. [Google Scholar] [CrossRef]
- Yen, G.-C.; Duh, P.-D.; Tsai, H.-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002, 79, 307–313. [Google Scholar] [CrossRef]
- KIM, Y.-J. Antimelanogenic and Antioxidant Properties of Gallic Acid. Biol. Pharm. Bull. 2007, 30, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int. 2006, 48, 263–274. [Google Scholar] [CrossRef]
- Kroes, B.H.; Berg, A.J.J.v.d.; Ufford, H.C.Q.v.; Dijk, H.v.; Labadie, R.P. Anti-Inflammatory Activity of Gallic Acid. Planta Medica 1992, 58, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, C.; Filippin-Monteiro, F.B.; Centa, A.; Creczinsky-Pasa, T.B. Antioxidant, Antitumoral and Anti-Inflammatory Activities of Gallic Acid; Nova Publishers: Hauppauge, NY, USA, 2013; pp. 1–16. [Google Scholar]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef]
- Maurya, D.K.; Nandakumar, N.; Devasagayam, T.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr. 2011, 48, 85–90. [Google Scholar] [CrossRef]
- Faried, A.; Kurnia, D.; Faried, L.S.; Usman, N.; Miyazaki, T.; Kato, H. Anticancer effects of gallic acid isolated from Indonesian herbal midicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int. J. Oncol. 2007, 30, 605–613. [Google Scholar]
- Zhang, T.; Ma, L.; Wu, P.; Li, W.; Li, T.; Gu, R.; Dan, X.; Li, Z.; Fan, X.; Xiao, Z. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non-small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol. Rep. 2019, 41, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, K.; Kianmehr, Z.; Hosseinmardi, Z.; Hosseinzadeh, R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Birosova, L.; Mikulasova, M.; Vaverkova, S. Antimutagenic effect of phenolic acids. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2005, 149, 489–491. [Google Scholar] [CrossRef]
- Shekaari, H.; Zafarani-Moattar, M.T.; Mokhtarpour, M.; Faraji, S. Solubility of hesperidin drug in aqueous biodegradable acidic choline chloride-based deep eutectic solvents. Sci. Rep. 2023, 13, 11276. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.H.; Tabora, J.; Variankaval, N.; Bakken, D.; Chen, C.C. Prediction of pharmaceutical solubility Via NRTL-SAC and COSMO-SAC. J. Pharm. Sci. 2008, 97, 1813–1820. [Google Scholar] [CrossRef]
- Chen, C.C.; Song, Y. Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. Aiche J. 2004, 50, 1928–1941. [Google Scholar] [CrossRef]
- Lin, S.-T.; Sandler, S.I. A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Ind. Eng. Chem. Res. 2002, 41, 899–913. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Wang, Y.; Li, L. Screening solvents to extract phenol from aqueous solutions by the COSMO-SAC model and extraction process simulation. Fluid. Phase Equilibria 2017, 451, 12–24. [Google Scholar] [CrossRef]
- Oliveira, G.; Wojeicchowski, J.P.; Farias, F.O.; Igarashi-Mafra, L.; de Pelegrini Soares, R.; Mafra, M.R. Enhancement of biomolecules solubility in aqueous media using designer solvents as additives: An experimental and COSMO-based models’ approach. J. Mol. Liq. 2020, 318, 114266. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Shah, M.R.; Yadav, G.D. Prediction of liquid−liquid equilibria of (aromatic + aliphatic + ionic liquid) systems using the Cosmo-SAC model. J. Chem. Thermodyn. 2012, 49, 62–69. [Google Scholar] [CrossRef]
- Silveira, C.L.; Galvão, A.C.; Robazza, W.S.; Feyh, J.V.T. Modeling and parameters estimation for the solubility calculations of nicotinamide using UNIFAC and COSMO-based models. Fluid. Phase Equilibria 2021, 535, 112970. [Google Scholar] [CrossRef]
- van Krevelen, D.W.; Nijenhues, K.T. Properties of Polymers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Wang, S.; Sandler, S.I.; Chen, C.-C. Refinement of COSMO-SAC and the Applications. Indestrial Eng. Chem. Res. 2007, 46, 7275–7288. [Google Scholar] [CrossRef]
- Morcelli, A.; Cassel, E.; Vargas, R.; Rech, R.; Marcílio, N. Supercritical fluid (CO2+ethanol) extraction of chlorophylls and carotenoids from Chlorella sorokiniana: COSMO-SAC assisted prediction of properties and experimental approach. J. CO2 Util. 2021, 51, 101649. [Google Scholar] [CrossRef]
- Lee, B.-S.; Lin, S.-T. Prediction and Screening of Solubility of Pharmaceuticals in Single- and Mixed-Ionic Liquids Using COSMO-SAC Model. Aiche J. 2017, 63, 3096–3104. [Google Scholar] [CrossRef]
- Sandler, S.I. Chemical, Biochemical, and Engineering Thermodynamics, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hsieh, C.M.; Sandler, S.I.; Lin, S.T. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions. Fluid. Phase Equilib. 2010, 297, 90–97. [Google Scholar] [CrossRef]
- Staverman, A.J. The entropy of high polymer solutions. Generalization of formulae. Recl. Des. Trav. Chim. Des. Pays-Bas 1950, 69, 163–174. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Scott, R.L. Solutions of nonelectrolytes. Annu. Rev. Phys. Chem. 1950, 1, 75–92. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000; pp. 1–26. [Google Scholar]
- Radmand, S.; Rezaei, H.; Zhao, H.; Rahimpour, E.; Jouyban, A. Solubility and thermodynamic study of deferiprone in propylene glycol and ethanol mixture. BMC Chem. 2023, 17, 37. [Google Scholar] [CrossRef]
- Xue, N.; He, B.; Jia, Y.; Yang, C.; Wang, J.; Li, M. The mechanism of binding with the alpha-glucosidase in vitro and the evaluation on hypoglycemic effect in vivo: Cocrystals involving synergism of gallic acid and conformer. Eur. J. Pharm. Biopharm. 2020, 156, 64–74. [Google Scholar] [CrossRef]
- Sagdicoglu Celep, A.G.; Demirkaya, A.; Solak, E.K. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr. Appl. Phys. 2022, 40, 30–42. [Google Scholar] [CrossRef]
- Singh, D.; Singh Maniyari Rawat, M.; Semalty, A.; Semalty, M. Gallic Acid-Phospholipid Complex: Drug Incorporation and Physicochemical Characterization. Lett. Drug Des. Discov. 2011, 8, 284–291. [Google Scholar] [CrossRef]
- Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; US Department of Commerce: Gaithersburg, MD, USA, 2001. Available online: https://physics.nist.gov/TN1297 (accessed on 10 January 2024).
- Joback, K.G.; Reid, R.C. Estimation of Pure-Component Properties from Group-Contributions. Chem. Eng. Commun. 2007, 57, 233–243. [Google Scholar] [CrossRef]
- Lu, L.-L.; Lu, X.-Y. Solubilities of Gallic Acid and Its Esters in Water. J. Chem. Eng. Data 2007, 52, 37–39. [Google Scholar] [CrossRef]
- Daneshfar, A.; Ghaziaskar, H.S.; Homayoun, N. Solubility of Gallic Acid in Methanol, Ethanol, Water, and Ethyl Acetate. J. Chem. Eng. Data 2008, 53, 776–778. [Google Scholar] [CrossRef]
- Mota, F.L.; Queimada, A.J.; Pinho, S.P.; Macedo, E.A. Aqueous Solubility of Some Natural Phenolic Compounds. Indestrial Eng. Chem. Res. 2008, 47, 5182–5189. [Google Scholar] [CrossRef]
- Dali, I.; Aydi, A.; Alberto, C.C.; Wüst, Z.A.; Manef, A. Correlation and semi-empirical modeling of solubility of gallic acid in different pure solvents and in binary solvent mixtures of propan-1-ol + water, propan-2-ol + water and acetonitrile + water from (293.2 to 318.2) K. J. Mol. Liq. 2016, 222, 503–519. [Google Scholar] [CrossRef]
- Dabir, T.O.; Gaikar, V.G.; Jayaraman, S.; Mukherjee, S. Thermodynamic modeling studies of aqueous solubility of caffeine, gallic acid and their cocrystal in the temperature range of 303 K–363 K. Fluid. Phase Equilibria 2018, 456, 65–76. [Google Scholar] [CrossRef]
- Vilas-Boas, S.M.; Brandão, P.; Martins, M.A.R.; Silva, L.P.; Schreiner, T.B.; Fernandes, L.; Ferreira, O.; Pinho, S.P. Solubility and solid phase studies of isomeric phenolic acids in pure solvents. J. Mol. Liq. 2018, 272, 1048–1057. [Google Scholar] [CrossRef]
- Noubigh, A.; Jeribi, C.; Mgaidi, A.; Abderrabba, M. Solubility of gallic acid in liquid mixtures of (ethanol+water) from (293.15 to 318.15)K. J. Chem. Thermodyn. 2012, 55, 75–78. [Google Scholar] [CrossRef]
- Klamt, A.; Schuurmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 799–805. [Google Scholar] [CrossRef]
- Mahmoudabadi, S.Z.; Pazuki, G. Investigation of COSMO-SAC model for solubility and cocrystal formation of pharmaceutical compounds. Sci. Rep. 2020, 10, 19879. [Google Scholar] [CrossRef] [PubMed]
- Barton, A.F.M. Handbook of Poylmer-Liquid Interaction Parameters and Solubility Parameters; Routledge: New York, NY, USA, 1990. [Google Scholar]
- Tirado, D.F.; Tenorio, M.J.; Cabañas, A.; Calvo, L. Prediction of the best cosolvents to solubilise fatty acids in supercritical CO2 using the Hansen solubility theory. Chem. Eng. Sci. 2018, 190, 14–20. [Google Scholar] [CrossRef]
Chemical Material | CAS Number | Structure | Molecular Weight [g/mol] | Source | Purity [%] |
---|---|---|---|---|---|
Gallic acid (C7H6O5) | 149-91-7 | 170.12 | ALADDIN, China | 99 | |
Ethyl alcohol (C2H6O) | 64-17-5 | 46.069 | DAEJUNG, Republic of Korea | Anhydrous, 99.9 | |
Acetic acid (C2H4O2) | 64-19-7 | 60.052 | DAEJUNG, Republic of Korea | 99.7 |
Melting Temperature [K] | Melting Enthalpy [kJ/mol] | References |
---|---|---|
533.64 | 102.59 | This work |
545.85 | 64.54 | Xue et al. [44] |
539.62 | 94.36 | Celep et al. [45] |
535.84 | 60.68 | Singh et al. [46] |
538.66 | 97.64 | Group contribution method [48] |
Temp. * [K] | Solubility in Ethanol | Solubility in Water | Solubility in Acetic Acid | |||
---|---|---|---|---|---|---|
ppm [mg/kg] | Mole Fraction | ppm [mg/kg] | Mole Fraction | ppm [mg/kg] | Mole Fraction | |
298.15 | 207,146.50 ± 1.35 × 104 | 0.0661 ± 5.09 × 10−3 | 10,519.97 ± 5.47 × 102 | 0.0011 ± 5.90 × 10−5 | 16,497.12 ± 3.36 × 102 | 0.0059 ± 1.21 × 10−4 |
308.15 | 219,026.47 ± 4.04 × 103 | 0.0706 ± 1.55 × 10−3 | 16,539.57 ± 3.88 × 103 | 0.0018 ± 4.24 × 10−4 | 23,576.01 ± 5.36 × 102 | 0.0085 ± 1.95 × 10−4 |
318.15 | 216,239.13 ± 1.06 × 104 | 0.0695 ± 4.05 × 10−3 | 28,517.65 ± 4.00 × 103 | 0.0031 ± 4.44 × 10−4 | 24,433.05 ± 8.67 × 101 | 0.0088 ± 3.16 × 10−5 |
328.15 | 244,750.77 ± 2.10 × 104 | 0.0807 ± 8.41 × 10−3 | 40,776.08 ± 9.50 × 103 | 0.0045 ± 1.08 × 10−3 | 26,432.66 ± 3.44 × 102 | 0.0095 ± 1.26 × 10−4 |
338.15 | 266,708.60 ± 1.07 × 104 | 0.0897 ± 4.43 × 10−3 | 63,324.04 ± 2.43 × 104 | 0.0071 ± 2.86 × 10−3 | 32,698.30 ± 1.94 × 103 | 0.0118 ± 7.14 × 10−4 |
Temp.* [K] | Weight Fraction of Water | Solubility in Mixed Solvents | |
---|---|---|---|
ppm [mg/kg] | Mole Fraction | ||
298.15 | 0.1992 | 171,062.66 ± 1.28 × 103 | 0.0391 ± 0.0003 |
0.3973 | 132,922.31 ± 1.21 × 103 | 0.0237 ± 0.0002 | |
0.6074 | 76,377.44 ± 7.01 × 101 | 0.0109 ± 0.0001 | |
0.8087 | 27,100.20 ± 2.60 × 102 | 0.0033 ± 0.0001 | |
318.15 | 0.1910 | 213,151.74 ± 6.68 × 103 | 0.0506 ± 0.0019 |
0.3762 | 179,696.23 ± 1.29 × 103 | 0.0335 ± 0.0003 | |
0.5985 | 125,294.71 ± 4.59 × 103 | 0.0184 ± 0.0008 | |
0.7763 | 65,494.35 ± 1.05 × 103 | 0.0082 ± 0.0001 | |
338.15 | 0.1740 | 275,996.62 ± 5.69 × 102 | 0.0699 ± 0.0001 |
0.3403 | 257,167.66 ± 9.42 × 103 | 0.0518 ± 0.0024 | |
0.5198 | 209,719.19 ± 6.52 × 103 | 0.0343 ± 0.0013 | |
0.7115 | 144,023.67 ± 8.39 × 103 | 0.0195 ± 0.0013 |
Temp. * [K] | Weight Fraction of Water | Solubility in Mixed Solvents | |
---|---|---|---|
ppm [mg/kg] | Mole Fraction | ||
298.15 | 0.1848 | 30,326.71 ± 6.99 × 102 | 0.0076 ± 1.79 × 10−4 |
0.3720 | 38,269.95 ± 1.25 × 102 | 0.0073 ± 2.47 × 10−5 | |
0.5597 | 40,188.55 ± 2.69 × 102 | 0.0062 ± 4.31 × 10−5 | |
0.7661 | 28,551.78 ± 2.68 × 102 | 0.0036 ± 3.50 × 10−5 | |
318.15 | 0.1803 | 53,892.58 ± 3.00 × 102 | 0.0137 ± 7.97 × 10−5 |
0.3598 | 69,692.63 ± 1.10 × 103 | 0.0137 ± 2.30 × 10−4 | |
0.5393 | 75,314.83 ± 6.29 × 102 | 0.0120 ± 1.07 × 10−4 | |
0.7989 | 63,058.33 ± 7.13 × 100 | 0.0083 ± 9.93 × 10−7 | |
338.15 | 0.1732 | 91,435.66 ± 8.14 × 102 | 0.0240 ± 2.29 × 10−4 |
0.3365 | 129,925.60 ± 1.15 × 104 | 0.0270 ± 2.68 × 10−3 | |
0.5037 | 136,361.92 ± 1.14 × 103 | 0.0231 ± 2.18 × 10−4 | |
0.6967 | 116,533.44 ± 1.98 × 104 | 0.0161 ± 3.05 × 10−3 |
Temp. * [K] | Weight Fraction of Ethanol | Solubility in Mixed Solvents | |
---|---|---|---|
ppm [mg/kg] | Mole Fraction | ||
298.15 | 0.1511 | 37,562.70 ± 1.46 × 103 | 0.0130 ± 5.18 × 10−4 |
0.3183 | 47,164.67 ± 2.15 × 103 | 0.0156 ± 7.35 × 10−4 | |
0.4871 | 80,453.04 ± 3.25 × 102 | 0.0259 ± 1.11 × 10−4 | |
0.6464 | 134,836.53 ± 3.28 × 103 | 0.0429 ± 1.15 × 10−3 | |
318.15 | 0.1509 | 38,694.22 ± 2.56 × 102 | 0.0134 ± 9.09 × 10−5 |
0.3130 | 62,953.53 ± 5.89 × 102 | 0.0211 ± 2.06 × 10−4 | |
0.4756 | 102,236.67 ± 1.51 × 103 | 0.0335 ± 5.32 × 10−4 | |
0.6286 | 158,699.01 ± 8.63 × 102 | 0.0515 ± 3.16 × 10−4 | |
338.15 | 0.1479 | 57,627.62 ± 2.23 × 103 | 0.0202 ± 8.11 × 10−4 |
0.3032 | 92,373.61 ± 1.08 × 103 | 0.0316 ± 3.94 × 10−4 | |
0.4550 | 141,140.64 ± 2.15 × 103 | 0.0476 ± 8.05 × 10−4 | |
0.6090 | 185,019.32 ± 3.05 × 104 | 0.0613 ± 1.16 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.-R.; Lee, B.-S. Solubility of Gallic Acid in Single and Mixed Solvents. Separations 2024, 11, 36. https://doi.org/10.3390/separations11010036
Park Y-R, Lee B-S. Solubility of Gallic Acid in Single and Mixed Solvents. Separations. 2024; 11(1):36. https://doi.org/10.3390/separations11010036
Chicago/Turabian StylePark, Yea-Rok, and Bong-Seop Lee. 2024. "Solubility of Gallic Acid in Single and Mixed Solvents" Separations 11, no. 1: 36. https://doi.org/10.3390/separations11010036
APA StylePark, Y. -R., & Lee, B. -S. (2024). Solubility of Gallic Acid in Single and Mixed Solvents. Separations, 11(1), 36. https://doi.org/10.3390/separations11010036