Heavy Metal Removal from Water Using Graphene Oxide in Magnetic-Assisted Adsorption Systems: Characterization, Adsorption Properties, and Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Graphene Oxide
2.2. Characterization of GO Samples
2.3. Heavy Metal Adsorption Studies with and without the Presence of a Magnetic Field
3. Results and Discussion
3.1. Characterization of GO Samples
3.2. Adsorption Properties of GO Samples to Remove Pb2+and Cu2+ with and without Magnetic Field
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ain, Q.U.; Farooq, M.U.; Jalees, M.I. Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection. J. Water Process Eng. 2020, 33, 101044. [Google Scholar] [CrossRef]
- Jin, J.; Sun, J.; Lv, K.; Huang, X.; Wang, J.; Liu, J.; Bai, Y.; Guo, X.; Zhao, J.; Liu, J.; et al. Magnetic-responsive CNT/chitosan composite as stabilizer and adsorbent for organic contaminants and heavy metal removal. J. Mol. Liq. 2021, 334, 116087. [Google Scholar] [CrossRef]
- Majdoub, M.; Amedlous, A.; Anfar, Z.; Jada, A.; El Alem, N. Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: Towards drinking water. J. Colloid Interface Sci. 2021, 589, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Priya, V.N.; Rajkumar, M.; Mobika, J.; Sibi, S.P.L. Adsorption of As (V) ions from aqueous solution by carboxymethyl cellulose incorporated layered double hydroxide/reduced graphene oxide nanocomposites: Isotherm and kinetic studies. Environ. Technol. Innov. 2022, 26, 102268. [Google Scholar] [CrossRef]
- Abbasi, M.; Safari, E.; Baghdadi, M.; Janmohammadi, M. Enhanced adsorption of heavy metals in groundwater using sand columns enriched with graphene oxide: Lab-scale experiments and process modeling. J. Water Process Eng. 2021, 40, 101961. [Google Scholar] [CrossRef]
- Yao, M.; Wang, Z.; Liu, Y.; Yang, G.; Chen, J. Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution. Carbohydr. Polym. 2019, 212, 345–351. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, Y.; Sun, Y.; Zheng, X.; Chen, A. Heavy metal removal from aqueous solutions by chitosan-based magnetic composite flocculants. J. Environ. Sci. 2021, 108, 22–32. [Google Scholar] [CrossRef]
- Anuma, S.; Mishra, P.; Bhat, B.R. Polypyrrole functionalized Cobalt oxide Graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. J. Hazard. Mater. 2021, 416, 125929. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.G.; Mu, X.; Wu, D.B.; Ye, W.M. Graphene oxide-modified organic Gaomiaozi bentonite for Yb(III) adsorption from aqueous solutions. Mater. Chem. Phys. 2021, 274, 125176. [Google Scholar] [CrossRef]
- Chaabane, L.; Beyou, E.; El Ghali, A.; Baouab, M.H.V. Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents. J. Hazard. Mater. 2020, 389, 121839. [Google Scholar] [CrossRef]
- Weng, X.; Wu, J.; Ma, L.; Owens, G.; Chen, Z. Impact of synthesis conditions on Pb(II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem. Eng. J. 2019, 359, 976–981. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Younas, M.; Shah, M.U.H. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Sep. Purif. Technol. 2021, 278, 119510. [Google Scholar] [CrossRef]
- Ibebunjo, K.; El Ouardi, Y.; Bediako, J.K.; Iurchenkova, A.; Repo, E. Functionalization of recycled polymer and 3D printing into porous structures for selective recovery of copper from copper tailings. Chem. Eng. Sci. 2024, 286, 119664. [Google Scholar] [CrossRef]
- Wu, H.Y.; Wu, W.K.; Chen, B.; Kong, Q.P.; Lian, J.J. Co-adsorption of tetracycline and copper by the thiourea-modified porous sodium alginate microspheres. Desalination Water Treat. 2024, 317, 100096. [Google Scholar] [CrossRef]
- Abidli, A.; Huang, Y.; Rejeb, Z.B.; Zaoui, A.; Park, C.B. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. Chemosphere 2022, 292, 133102. [Google Scholar] [CrossRef]
- Duyen, L.T.; Bac, B.H. Adsorption–desorption behavior of halloysite clay for Cu2+ ions and recovery of copper by electrodeposition method. Desalination Water Treat. 2024, 317, 100207. [Google Scholar] [CrossRef]
- Kumaran, S.; Vetrivelan, V.; Muthu, S.; Al-Saadi, A.A. Computational analysis of anti-cancer drug hydroxyurea adsorption on nanocages of gold, silver and copper: SERS and DFT assessment. Heliyon 2024, 10, e24475. [Google Scholar] [CrossRef]
- Liu, C.; Yan, X.; Zhang, H.-X.; Yang, J.; Yoon, K.-B. Silicone-modified black peanut shell (BPS) biochar adsorbents: Preparation and their adsorptions for copper(II) from water. Heliyon 2024, 10, e35169. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Wang, Y.; Yu, Y.; Yang, W.; Sun, Y. Cross-linked sulfydryl-functionalized graphene oxide as ultra-high capacity adsorbent for high selectivity and ppb level removal of mercury from water under wide pH range. Environ. Pollut. 2021, 271, 116378. [Google Scholar] [CrossRef]
- Bao, S.; Wang, Y.; Wei, Z.; Yang, W.; Yu, Y.; Sun, Y. Amino-assisted AHMT anchored on graphene oxide as high performance adsorbent for efficient removal of Cr(VI) and Hg(II) from aqueous solutions under wide pH range. J. Hazard. Mater. 2021, 416, 125825. [Google Scholar] [CrossRef]
- Wong, L.Y.; Lau, S.Y.; Pan, S.; Lam, M.K. 3D graphene-based adsorbents: Synthesis, proportional analysis and potential applications in oil elimination. Chemosphere 2022, 287, 132129. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Fan, X.W.; Li, Y.Z. Efficient removal of a low concentration of Pb(II), Fe(III) and Cu(II) from simulated drinking water by co-immobilization between low-dosages of metal-resistant/adapted fungus Penicillium janthinillum and graphene oxide and activated carbon. Chemosphere 2022, 286, 131591. [Google Scholar] [CrossRef]
- Yadav, S.; Yadav, A.; Bagotia, N.; Sharma, A.K.; Kumar, S. Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater—A review. J. Water Process Eng. 2021, 42, 102148. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Fawzy, A.; Alduaij, O.; Al-Bahir, A.; Alshammari, D.A.; Alqarni, N.; Eldesoky, A.; Farag, A.A.; Toghan, A. A comparative study of pyridine and pyrimidine derivatives based formamidine for copper corrosion inhibition in nitric acid: Experimental and computational exploration. Int. J. Electrochem. Sci. 2024, 19, 100403. [Google Scholar] [CrossRef]
- Badran, A.M.; Utra, U.; Yussof, N.S.; Bashir, M.J.K. Advancements in Adsorption Techniques for Sustainable Water Purification: A Focus on Lead Removal. Separations 2023, 10, 565. [Google Scholar] [CrossRef]
- Lai, K.C.; Lee, L.Y.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Gan, S. Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms. J. Environ. Sci. 2019, 79, 174–199. [Google Scholar] [CrossRef] [PubMed]
- Chaabane, L.; Beyou, E.; Baouab, M.H.V. Preparation of a novel zwitterionic graphene oxide-based adsorbent to remove of heavy metal ions from water: Modeling and comparative studies. Adv. Powder Technol. 2021, 32, 2502–2516. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Konwar, K.; Ghosh, T.N.; Mondal, B.; Sarkar, S.K.; Deb, P. Multifunctional Iron oxide embedded reduced graphene oxide as a versatile adsorbent candidate for effectual arsenic and dye removal. Colloids Interface Sci. Commun. 2020, 39, 100319. [Google Scholar] [CrossRef]
- Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater. 2021, 415, 125690. [Google Scholar] [CrossRef]
- Ragab, A.H.; Mubarak, M.F.; El-Sabban, H.A.; Kang, J.; El Shahawy, A.; Alshwyeh, H.A.; Hemdan, M. Exploring the sustainable synthesis pathway and comprehensive characterization of magnetic hybrid alumina nanoparticles phase (MHAl-NPsP) as highly efficient adsorbents and selective copper ions removal. Environ. Technol. Innov. 2024, 34, 103628. [Google Scholar] [CrossRef]
- Arshad, F.; Selvaraj, M.; Zain, J.; Banat, F.; Haija, M.A. Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol. 2019, 209, 870–880. [Google Scholar] [CrossRef]
- López, S.F.; Virgen, M.M.; Montoya, V.H.; Morán, M.M.; Gómez, R.T.; Vázquez, N.R.; Cruz, M.P.; González, M.E. Effect of an external magnetic field applied in batch adsorption systems: Removal of dyes and heavy metals in binary solutions. J. Mol. Liq. 2018, 269, 450–460. [Google Scholar] [CrossRef]
- Vázquez, O.F.G.; Virgen, M.d.R.M.; Montoya, V.H.; Gómez, R.T.; Flores, J.L.A.; Cruz, M.A.P.; Morán, M.A.M. Adsorption of Heavy Metals in the Presence of a Magnetic Field on Adsorbents with Different Magnetic Properties. Ind. Eng. Chem. Res. 2016, 55, 9323–9331. [Google Scholar] [CrossRef]
- Singh, S.; Anil, A.G.; Khasnabis, S.; Kumar, V.; Nath, B.; Adiga, V.; Naik, T.S.K.; Subramanian, S.; Kumar, V.; Singh, J.; et al. Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics. Environ. Res. 2022, 203, 111891. [Google Scholar] [CrossRef]
- Fu, W.; Huang, Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere 2018, 209, 449–456. [Google Scholar] [CrossRef]
- Ren, J.; Zhu, Z.; Qiu, Y.; Yu, F.; Ma, J.; Zhao, J. Magnetic field assisted adsorption of pollutants from an aqueous solution: A review. J. Hazard. Mater. 2021, 408, 124846. [Google Scholar] [CrossRef]
- Tang, T.; Liu, F.; Liu, Y.; Li, X.; Xu, Q.; Feng, Q.; Tang, N.; Du, Y. Identifying the magnetic properties of graphene oxide. Appl. Phys. Lett. 2014, 104, 123104. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Ahmed, M.; Mukadam, M.D.; Yusuf, S.M. Investigation of Graphite Oxide and Reduced Graphene Oxide: Magnetic Properties Revisited. Asian J. Mater. Chem. 2016, 1, 66–74. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef]
- Sharma, N.; Swami, S.; Shrivastava, V.; Nair, R.; Shrivastava, R. Graphene oxide and functionalized graphene oxide: Robust, 2d material as heterogeneous green catalyst for heterocyclic synthesis. Mater. Today Proc. 2021, 43, 3309–3317. [Google Scholar] [CrossRef]
- Varrla, E.; Paton, K.R.; Backes, C.; Harvey, A.; Smith, R.J.; McCauley, J.; Coleman, J.N. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 2014, 6, 11810–11819. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Álvarez, D.T.; Davies, P.; Stafford, J. Foam flows in turbulent liquid exfoliation of layered materials and implications for graphene production and inline characterisation. Chem. Eng. Res. Des. 2022, 177, 245–254. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Órfão, J.J.M.; Pereira, M.F.R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 2004, 38, 2043–2052. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Eslami-Farsani, R.; Torabian, M.; Amousa, N. Recent advances in one-pot functionalization of graphene using electrochemical exfoliation of graphite: A review study. Synth. Met. 2020, 269, 116549. [Google Scholar] [CrossRef]
- Nimbalkar, A.S.; Tiwari, S.K.; Ha, S.K.; Hong, C.K. An Efficient Water Saving Step During the Production of Graphene Oxide via Chemical Exfoliation of Graphite. Mater. Today Proc. 2020, 21, 1749–1754. [Google Scholar] [CrossRef]
- Anurag, K.; Kumar, S.R. Synthesis of graphene through electrochemical exfoliation technique in aqueous medium. Mater. Today Proc. 2021, 44, 2695–2699. [Google Scholar] [CrossRef]
- Amrhar, O.; El Gana, L.; Mobarak, M. Calculation of adsorption isotherms by statistical physics models: A review. Environ. Chem. Lett. 2021, 19, 4519–4547. [Google Scholar] [CrossRef]
- George, J.; Upadhyay, S.; Balachandran, M. Exploration of Graphene Layers in Various Carbon Materials by Raman Spectroscopic Techniques. Mapana J. Sci. 2021, 20, 65–81. [Google Scholar] [CrossRef]
- Li, Z.; Cai, W.; Liu, J.; Zhou, M.; Cheng, L.; Yu, H.; Song, L.; Gui, Z.; Hu, Y. One-pot exfoliation and synthesis of hydroxyapatite-functionalized graphene as multifunctional nanomaterials based on electrochemical approach. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106583. [Google Scholar] [CrossRef]
- Rasuli, H.; Rasuli, R.; Alizadeh, M.; BoonTong, G. Microwave-assisted exfoliation and tearing of graphene oxide in the presence of TiO2 nanoparticles. Results Phys. 2020, 18, 103200. [Google Scholar] [CrossRef]
- Tyurnina, A.V.; Morton, J.A.; Subroto, T.; Khavari, M.; Maciejewska, B.; Mi, J.; Grobert, N.; Porfyrakis, K.; Tzanakis, I.; Eskin, D.G. Environment friendly dual-frequency ultrasonic exfoliation of few-layer graphene. Carbon 2021, 185, 536–545. [Google Scholar] [CrossRef]
- Yan, Y.; Manickam, S.; Lester, E.; Wu, T.; Pang, C.H. Synthesis of graphene oxide and graphene quantum dots from miscanthus via ultrasound-assisted mechano-chemical cracking method. Ultrason. Sonochem. 2021, 73, 105519. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Perez-Page, M.; Ji, Z.; Zhang, Z.; Guo, Z.; Holmes, S. One step electrochemical exfoliation of natural graphite flakes into graphene oxide for polybenzimidazole composite membranes giving enhanced performance in high temperature fuel cells. J. Power Sources 2021, 491, 229550. [Google Scholar] [CrossRef]
- Raj, C.J.; Manikandan, R.; Thondaiman, P.; Sivakumar, P.; Savariraj, A.D.; Cho, W.-J.; Kim, B.C.; Jung, H. Sonoelectrochemical exfoliation of graphene in various electrolytic environments and their structural and electrochemical properties. Carbon 2021, 184, 266–276. [Google Scholar] [CrossRef]
- Loudiki, A.; Matrouf, M.; Azriouil, M.; Farahi, A.; Lahrich, S.; Bakasse, M.; El Mhammedi, M. Preparation of graphene samples via electrochemical exfoliation of pencil electrode: Physico-electrochemical Characterization. Appl. Surf. Sci. Adv. 2022, 7, 100195. [Google Scholar] [CrossRef]
- Ávila-Crisóstomo, C.E.; Pal, U.; Pérez-Rodríguez, F.; Shelyapina, M.G.; Shmyreva, A.A. Local-field effect on the hybrid ferromagnetic-diamagnetic response of opals with Ni nanoparticles. J. Magn. Magn. Mater. 2020, 514, 167102. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Li, Q.; Shaikh, M.S.; Li, Z. The pure paramagnetism in graphene oxide. Results Phys. 2021, 26, 104407. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Ajaj, Y.; Mahmoud, Z.H.; Ghadir, G.K.; Alani, Z.K.; Hussein, M.M.; Hussein, S.A.; Karim, M.M.; Al-Khalidi, A.; Abbas, J.K.; et al. Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A review study. Results Chem. 2024, 7, 101332. [Google Scholar] [CrossRef]
- Ahmad, I.; Siddiqui, W.A.; Ahmad, T. Synthesis, Characterization of Silica Nanoparticles and Adsorption Removal of Cu2+ Ions in Aqueous Solution. Int. J. Emerg. Technol. Adv. Eng. 2017, 7, 439–445. [Google Scholar]
- Wang, S.; Xiao, K.; Mo, Y.; Yang, B.; Vincent, T.; Faur, C.; Guibal, E. Selenium(VI) and copper(II) adsorption using polyethyleneimine-based resins: Effect of glutaraldehyde crosslinking and storage condition. J. Hazard. Mater. 2020, 386, 121637. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Han, H.; Han, R. Adsorption properties of lead and zinc ions onto iminodiacetic acid functionalized loofah from solution. Desalination Water Treat. 2022, 253, 256–269. [Google Scholar] [CrossRef]
- Lima, L.K.S.; Silva, M.G.C.; Vieira, M.G.A. Study of binary and single biosorption by the floating aquatic macrophyte salvinia natans. Braz. J. Chem. Eng. 2016, 33, 649–660. [Google Scholar] [CrossRef]
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Removal of lead(II) from aqueous solution using date seed-derived biochar: Batch and column studies. Appl. Water Sci. 2018, 8, 181. [Google Scholar] [CrossRef]
- Sun, X.; Huang, X.; Liao, X.P.; Shi, B. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin. J. Hazard. Mater. 2011, 186, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Harmita, H.; Karthikeyan, K.G.; Pan, X.J. Copper and cadmium sorption onto kraft and organosolv lignins. Bioresour. Technol. 2009, 100, 6183–6191. [Google Scholar] [CrossRef]
- Xia, L.; Hu, Y.X.; Zhang, B.H. Kinetics and equilibrium adsorption of copper(II) and nickel(II) ions from aqueous solution using sawdust xanthate modified with ethanediamine. Trans. Nonferrous. Met. Soc. China 2014, 24, 868–875. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Y.; Gu, X.; Lu, J. Competitive Adsorption of Methylene Blue and Cu2+ onto Citric Acid Modified Pine Sawdust. Clean 2015, 43, 96–103. [Google Scholar] [CrossRef]
- Jiang, S.; Do, H.; Yusuf, A.; Xiao, Z.; Wang, C.; Li, J.; Sun, Y.; Ren, Y.; He, J. Camellia oleifera shell–reduced graphene oxide for adsorption of copper(II). Mater. Chem. Phys. 2024, 314, 128818. [Google Scholar] [CrossRef]
- Zhan, J.; Lei, Z.; Zhang, Y. Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022, 8, 947–979. [Google Scholar] [CrossRef]
- Basem, A.; Jasim, D.J.; Majdi, H.S.; Mohammed, R.M.; Ahmed, M.; Al-Rubaye, A.H.; Kianfar, E. Adsorption of heavy metals from wastewater by chitosan: A review. Engineering 2024, 23, 102404. [Google Scholar] [CrossRef]
Adsorbent | Cation | Removal Conditions | Adsorption Capacity, mmol/g | Reference |
---|---|---|---|---|
Polyethyleneimine-glutaraldehyde resin | Pb2+ | 298 K, pH 3 | 0.12 | [62] |
Iminodiacteic acid-funcionalized loofah | Pb2+ | 303 K, pH 5 | 0.20 | [63] |
Aquatic macrophyte Salvinia natans | Pb2+ | 303 K, pH 4 | 0.28 | [64] |
Date seed-derived biochar | Pb2+ | 303 K, pH 6 | 0.36 | [65] |
Fe3O4-reduced graphene oxide | Pb2+ | 303 K, pH 5 | 0.34 | [30] |
GO2 without the application of a magnetic field | Pb2+ | 303 K, pH 5 | 0.17 | Present study |
GO3 without the application of a magnetic field | Pb2+ | 303 K, pH 5 | 0.20 | Present study |
Collagen–tannin resin | Cu2+ | 303 K, pH 5 | 0.26 | [66] |
Hancili Green Bentonite | Cu2+ | 298 K, pH 7 | 0.22 | [15] |
Softwood kraft lignin | Cu2+ | 297 K, pH 5 | 0.11 | [67] |
Sawdust xanthate modified with ethanediamine | Cu2+ | 298 K, pH 6 | 0.02 | [68] |
Pine sawdust modified with citric acid | Cu2+ | 298 K, pH 5 | 0.23 | [69] |
Camellia oleifera shell-reduced graphene oxide | Cu2+ | 298 K, pH 5 | 0.28 | [70] |
GO2 without the application of a magnetic field | Cu2+ | 303 K, pH 5 | 0.30 | Present study |
GO3 without the application of a magnetic field | Cu2+ | 303 K, pH 5 | 0.31 | Present study |
Adsorbent | Cation | nIon | DGO-Ion, mmol/g |
---|---|---|---|
GO2 without magnetic field | Pb2+ | 1 | 0.18 |
Cu2+ | 1.22 | 0.26 | |
GO3 without magnetic field | Pb2+ | 1.34 | 0.16 |
Cu2+ | 1.43 | 0.23 | |
GO2 with magnetic field | Pb2+ | 1.18 | 0.24 |
Cu2+ | 1.23 | 0.29 | |
GO3 with magnetic field | Pb2+ | 1.18 | 0.20 |
Cu2+ | 1.59 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melchor-Durán, A.P.; Moreno-Virgen, M.R.; Bonilla-Petriciolet, A.; Reynel-Ávila, H.E.; Lucio Ortiz, E.; González-Vázquez, O.F. Heavy Metal Removal from Water Using Graphene Oxide in Magnetic-Assisted Adsorption Systems: Characterization, Adsorption Properties, and Modelling. Separations 2024, 11, 294. https://doi.org/10.3390/separations11100294
Melchor-Durán AP, Moreno-Virgen MR, Bonilla-Petriciolet A, Reynel-Ávila HE, Lucio Ortiz E, González-Vázquez OF. Heavy Metal Removal from Water Using Graphene Oxide in Magnetic-Assisted Adsorption Systems: Characterization, Adsorption Properties, and Modelling. Separations. 2024; 11(10):294. https://doi.org/10.3390/separations11100294
Chicago/Turabian StyleMelchor-Durán, A. P., M. R. Moreno-Virgen, A. Bonilla-Petriciolet, H. E. Reynel-Ávila, E. Lucio Ortiz, and O. F. González-Vázquez. 2024. "Heavy Metal Removal from Water Using Graphene Oxide in Magnetic-Assisted Adsorption Systems: Characterization, Adsorption Properties, and Modelling" Separations 11, no. 10: 294. https://doi.org/10.3390/separations11100294
APA StyleMelchor-Durán, A. P., Moreno-Virgen, M. R., Bonilla-Petriciolet, A., Reynel-Ávila, H. E., Lucio Ortiz, E., & González-Vázquez, O. F. (2024). Heavy Metal Removal from Water Using Graphene Oxide in Magnetic-Assisted Adsorption Systems: Characterization, Adsorption Properties, and Modelling. Separations, 11(10), 294. https://doi.org/10.3390/separations11100294