Modified Fly Ash as an Adsorbent for the Removal of Pharmaceutical Residues from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
2.3. Adsorption Experiments
2.4. Computational Modeling by Artificial Neural Networks
3. Results and Discussion
3.1. Material Characterization
3.2. Adsorption Experiments
3.3. Computational Modeling by Artificial Neural Networks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini Asl, S.M.; Javadian, H.; Khavarpour, M.; Belviso, C.; Taghavi, M.; Maghsudi, M. Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. J. Clean. Prod. 2019, 208, 1131–1147. [Google Scholar] [CrossRef]
- Kara De Maeijer, P.; Craeye, B.; Snellings, R.; Kazemi-Kamyab, H.; Loots, M.; Janssens, K.; Nuyts, G. Effect of ultra-fine fly ash on concrete performance and durability. Construct. Build. Mater. 2020, 263, 120493. [Google Scholar] [CrossRef]
- Hussain, Z.; Chang, N.; Sun, J.; Xiang, S.; Ayaz, T.; Zhang, H.; Wang, H. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. J. Hazard. Mater. 2022, 422, 126778. [Google Scholar] [CrossRef]
- Chafiq Elidrissi, Z.; El Machtani Idrissi, D.; Kouzi, Y.; Achiou, B.; Tahiri, S.; Ouammou, M.; Alami Younssi, S. Effective conversion of fly ash waste into Na-P1 zeolite and its application on the adsorption of Cr(VI). Inorg. Chem. Commun. 2023, 156, 111192. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, R.; Liu, Q.; Cao, Q.; Guo, R. Synthesis of zeolite A from fly ash and its application in the slow release of urea. Waste Manag. 2023, 15, 47–55. [Google Scholar] [CrossRef]
- El Alouani, M.; Aouan, B.; Rachdi, Y.; Alehyen, S.; El Herradi, E.H.; Saufi, H.; Mabrouki, J.; Barka, N. Porous geopolymers as innovative adsorbents for the removal of organic and inorganic hazardous substances: A mini-review. Int. J. Environ. Anal. Chem. 2022, 10, 4784–4796. [Google Scholar] [CrossRef]
- Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Osibote, O.A.; Darmokoesoemo, H.; Kusuma, H.S. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: A review. J. Mater. Res. Technol. 2021, 14, 2751–2774. [Google Scholar] [CrossRef]
- Omran, A.A.; Hamad Salah, O.; Shamikh Al-Saedi, H.F.; Karim, M.M.; Abdulridui, H.A.; Kareem, A.H. Evaluation of Activity Coal Fly Ash as Low Cost an Adsorbent for the Removal of Pollutants: Equilibrium and Isotherm Studies of Pharmaceutical Compounds. Asian J. Green Chem. 2024, 8, 161–172. [Google Scholar] [CrossRef]
- Kumar, T.; Sivasankar, V.; Fayoud, N.; Abou Oualid, H.; Sundramoorthy, A. Synthesis and characterization of coral-like hierarchical MgO incorporated fly ash composite for the effective adsorption of azo dye from aqueous solution. Appl. Surf. Sci. 2018, 449, 719–728. [Google Scholar] [CrossRef]
- Usman, M.; Anastopoulos, I.; Hamid, Y.; Wakeel, A. Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: Effects on soil quality and plant growth. Environ. Sci. Pollut. Res. 2023, 30, 124427–124446. [Google Scholar] [CrossRef]
- Behrami, E.; Xhaxhiu, K.; Dragusha, B.; Reka, A.; Andoni, A.; Hamiti, X.; Drushku, S. The Removal of Atrazine and Benalaxyl by the Fly AshReleased from Kosovo A Power Plant. Int. J. Anal. Chem. 2022, 2022, 9945199. [Google Scholar] [CrossRef] [PubMed]
- Andrunik, M.; Skalny, M.; Gajewska, M.; Marzec, M.; Bajda, T. Comparison of pesticide adsorption efficiencies of zeolites and zeolite-carbon composites and their regeneration possibilities. Heliyon 2023, 9, 20572. [Google Scholar] [CrossRef] [PubMed]
- Medykowska, M.; Wiśniewska, M.; Szewczuk-Karpisz, K.; Panek, R. Management of hazardous fly-ash energy waste in the adsorptive removal of diclofenac by the use of synthetic zeolitic materials. Environ. Sci. Pollut. Res. 2023, 30, 36068–36079. [Google Scholar] [CrossRef] [PubMed]
- Tumrani, S.H.; Ali Soomro, R.; Zhang, X.; Ali Bhutto, D.; Bux, N.; Ji, X. Coal fly ash driven zeolites for the adsorptive removal of the ceftazidime drug. RSC Adv. 2021, 11, 26110–26119. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and bioremediation systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
- Sanusi, I.O.; Olutona, G.O.; Wawata, I.G.; Onohuean, H. Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: A critical review. Environ. Sci. Pollut. Res. 2023, 30, 90595–90614. [Google Scholar] [CrossRef]
- Liu, T.; Liu, W.; Li, X.; Wang, H.; Lan, Y.; Zhang, S.; Wang, Y.; Liu, H. Effect of environmental factors on adsorption of ciprofloxacin from wastewater by microwave alkali modified fly ash. Sci. Rep. 2024, 14, 19831. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Lan, Y.; Wang, H.; Ma, X.; Wang, H.; Xu, H.; Liu, H. Study on the adsorption mechanism of ciprofloxacin in wastewater by modified fly ash under the coexistence of copper. J. Environ. Chem. Eng. 2024, 12, 114336. [Google Scholar] [CrossRef]
- Liakos, E.V.; Lazaridou, M.; Michailidou, G.; Koumentakou, I.; Lambropoulou, D.A.; Bikiaris, D.N.; Kyzas, G.Z. Chitosan Adsorbent Derivatives for Pharmaceuticals Removal from Effluents: A Review. Macromol 2021, 1, 130–154. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Yang, Z.; Yang, W.; Wu, J.; Dong, C. Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chem. Eng. J. 2016, 304, 325–334. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Soltys, L.; Macyk, W. Magnetic adsorbents for removal of pharmaceuticals: A review of adsorption properties. J. Mol. Liq. 2023, 384, 122174. [Google Scholar] [CrossRef]
- Abd Malek, N.N.; Jawad, A.H.; Abdulhameed, A.S.; Ismail, K.; Hameed, B.H. New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int. J. Biol. Macromol. 2020, 146, 530–539. [Google Scholar] [CrossRef]
- Abd Malek, N.N.; Jawad, A.H.; Ismail, K.; Razuan, R.; ALOthman, Z.A. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int. J. Biol. Macromol. 2021, 189, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S. Zur the oriedersogennanten adsorption geloesterstoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Mckay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Adsorption in solutions. J. Phys. Chem. 1906, 57, 384–410. [Google Scholar]
- Smith, M. Neural Networks for Statistical Modelling; Van Nostrand Reinhold: New York, NY, USA, 1994. [Google Scholar]
- Puri, M.; Pathak, Y.; Sutariya, V.K.; Tipparaju, S.; Moreno, W. Artificial Neural Network for Drug Design, Delivery and Disposition, 1st ed.; Academic Press Ltd.: London, UK; Elsevier Science Ltd.: Cambridge, MA, USA, 2015; pp. 407–415. [Google Scholar]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Fundamentals of Artificial Neural Networks and Deep Learning. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer Nature: Cham, Switzerland, 2022; pp. 379–425. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Mirković, M.; Kljajević, L.; Dolenec, S.; Nenadović, M.; Pavlović, V.; Rajačić, M.; Nenadović, S. Potential Usage of Hybrid Polymers Binders Based on Fly Ash with the Addition of PVA with Satisfying Mechanical and Radiological Properties. Gels 2021, 7, 270. [Google Scholar] [CrossRef]
- Rudić, O.; Ducman, V.; Malešev, M.; Radonjanin, V.; Draganić, S.; Šupić, S.; Radeka, M. Aggregates Obtained by Alkali Activation of Fly Ash: The Effect of Granulation, Pelletization Methods and Curing Regimes. Materials 2019, 12, 776. [Google Scholar] [CrossRef]
- Alterary, S.S.; Amina, M.; El-Tohamy, M.F. Correction: Biogenic sunflower oil-chitosan decorated fly ash nanocomposite film using white shrimp shell waste: Antibacterial and immunomodulatory potential. PLoS ONE 2024, 19, 0307335. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Queiroz, M.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Agarwa, S.; Rajoria, P.; Rani, A. Adsorption of tannic acid from aqueous solution onto chitosan/NaOH/fly ash composites: Equilibrium, kinetics, thermodynamics and modeling. J. Environ. Chem. Eng. 2018, 6, 1486–1499. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, B.; Li Puma, G.; Wang, H.; Suo, Y. Novel sea buckthorn biocarbon SBC@b-FeOOH composites: Efficient removal of doxycycline in aqueous solution in a fixed-bed through synergistic adsorption and heterogeneous Fenton-like reaction. Chem. Eng. J. 2016, 284, 698–707. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, N.; Rajor, A.; Arya, R.K. Removal of Doxycycline Hydrochloride from Aqueous Solution by Rice Husk Ash Using Response Surface Methodology and Disposability Study. Environ. Sci. Pollut. Res. 2022, 30, 8485–8499. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, N.; Rajor, A. Adsorption of Doxycycline Hydrochloride onto Powdered Activated Carbon Synthesized from Pumpkin Seed Shell by Microwave-Assisted Pyrolysis. Environ. Technol. Innov. 2021, 23, 101601. [Google Scholar] [CrossRef]
- Zeng, Z.; Tan, X.; Liu, Y.; Tian, S.; Zeng, G.; Jiang, L.; Liu, S.; Li, J.; Liu, N.; Yin, Z. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures. Front. Chem. 2018, 6, 80. [Google Scholar] [CrossRef]
- Grela, A.; Kuc, J.; Klimek, A.; Matusik, J.; Pamuła, J.; Franus, W.; Urbański, K.; Bajda, T. Erythromycin Scavenging from Aqueous Solutions by Zeolitic Materials Derived from Fly Ash. Molecules 2023, 28, 798. [Google Scholar] [CrossRef]
- Ding, R.; Zhang, P.; Seredych, M.; Bandosz, T.J. Removal of Antibiotics from Water Using Sewage Sludge- and Waste Oil Sludge-Derived Adsorbents. Water Res. 2012, 46, 4081–4090. [Google Scholar] [CrossRef]
- Ndoun, M.C.; Elliott, H.A.; Preisendanz, H.E.; Williams, C.F.; Knopf, A.; Watson, J.E. Adsorption of Pharmaceuticals from Aqueous Solutions Using Biochar Derived from Cotton Gin Waste and Guayule Bagasse. Biochar 2021, 3, 89–104. [Google Scholar] [CrossRef]
- Sulaiman, S.; Khamis, M.; Nir, S.; Scrano, L.; Bufo, S.A.; Karaman, R. Diazepam Stability in Wastewater and Removal by Advanced Membrane Technology, Activated Carbon, and Micelle–Clay Complex. Desalination Water. Treat. 2016, 57, 3098–3106. [Google Scholar] [CrossRef]
- Sulaiman, S.; Khamis, M.; Nir, S.; Lelario, F.; Scrano, L.; Bufo, S.A.; Mecca, G.; Karaman, R. Stability and Removal of Atorvastatin, Rosuvastatin and Simvastatin from Wastewater. Environ. Technol. 2015, 36, 3232–3242. [Google Scholar] [CrossRef] [PubMed]
- Coslop, T.F.; Nippes, R.P.; Bergamasco, R.; Scaliante, M.H.N.O. Evaluation of Diazepam Adsorption in Aqueous Media Using Low-Cost and Natural Zeolite: Equilibrium and Kinetics. Environ. Sci. Pollut. Res. 2022, 29, 79808–79815. [Google Scholar] [CrossRef] [PubMed]
- Taherzade, S.D.; Abbasichaleshtori, M.; Soleimannejad, J. Efficient and Ecofriendly Cellulose-Supported MIL-100(Fe) for Wastewater Treatment. RSC Adv. 2022, 12, 9023–9035. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Alharbi, O.M.L.; ALOthman, Z.A.; Alwarthan, A.; Al-Mohaimeed, A.M. Preparation of a Carboxymethylcellu-lose-Iron Composite for Uptake of Atorvastatin in Water. Int. J. Biol. Macromol. 2019, 132, 244–253. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1 (accessed on 18 November 2024).
- United States Environmental Protection Agency. Available online: https://www.epa.gov/sdwa/drinking-water-regulations-and-contaminants#List (accessed on 18 November 2024).
Sample | Analyte * | Pseudo-First-Order | Pseudo-Second-Order | qe,exp, µgg−1 | ||||
---|---|---|---|---|---|---|---|---|
qe,cal, µgg−1 | k1, min−1 | R2 | qe,cal, µgg−1 | k2 × 105, g(µgmin)−1 | R2 | |||
FA/Chmag | Do | 221 | 0.0783 | 0.73163 | 235 | 52.0 | 0.92902 | 246 |
Ci | 184 | 0.0108 | 0.98985 | 207 | 6.34 | 0.97181 | 189 | |
E | 238 | 0.0112 | 0.98502 | 266 | 5.32 | 0.95894 | 237 | |
B | 186 | 0.0159 | 0.97777 | 203 | 11.1 | 0.97634 | 198 | |
L | 144 | 0.0147 | 0.89495 | 157 | 13.5 | 0.9496 | 156 | |
Di | 239 | 0.0177 | 0.93875 | 261 | 9.71 | 0.92521 | 247 | |
A | 235 | 0.0289 | 0.91834 | 254 | 16.8 | 0.96762 | 245 | |
Clo | 218 | 0.0790 | 0.84053 | 233 | 50.8 | 0.96665 | 246 | |
S | 211 | 0.2913 | 0.61521 | 218 | 258 | 0.88395 | 229 | |
FAac/Ch | Do | 194 | 0.1518 | 0.50562 | 205 | 116 | 0.83764 | 215.5 |
Ci | 202 | 0.0126 | 0.99147 | 224 | 7.23 | 0.98453 | 207 | |
E | 204 | 0.0124 | 0.98337 | 226 | 7.19 | 0.98536 | 212 | |
B | 104 | 0.0126 | 0.98946 | 116 | 13.9 | 0.98173 | 107 | |
L | 132 | 0.0096 | 0.98691 | 149 | 7.74 | 0.96804 | 134 | |
Di | 144 | 0.0135 | 0.98271 | 158 | 11.4 | 0.97858 | 146.5 | |
A | 233 | 0.0187 | 0.98382 | 256 | 9.80 | 0.98397 | 239.8 | |
Clo | 214 | 0.0371 | 0.81057 | 233 | 22.0 | 0.93871 | 239.1 | |
S | 223 | 0.2105 | 0.57548 | 234 | 138 | 0.8603 | 243.5 | |
FAref | Do | 134 | 0.0129 | 0.98278 | 148 | 11.5 | 0.98897 | 140 |
Ci | 129 | 0.0174 | 0.90487 | 141 | 17.9 | 0.95044 | 138 | |
E | 191 | 0.0933 | 0.59572 | 201 | 76.7 | 0.86784 | 205 | |
B | 150 | 0.0122 | 0.97364 | 167 | 9.67 | 0.99225 | 159 | |
L | 142 | 0.0106 | 0.99036 | 159 | 8.39 | 0.97847 | 144 | |
Di | 135 | 0.0155 | 0.97614 | 149 | 14.1 | 0.99239 | 142 | |
A | 202 | 0.0142 | 0.9703 | 224 | 8.21 | 0.97661 | 212.5 | |
Clo | 230 | 0.0282 | 0.90504 | 250 | 16.3 | 0.96641 | 245 | |
S | 220 | 0.0839 | 0.79322 | 233 | 58.0 | 0.95531 | 239 |
Sample | Analyte * | Freundlich’s Isotherm | Langmuir’s Isotherm | ||||
---|---|---|---|---|---|---|---|
Kf, µg1−1/nL 1/n g−1 | 1/n | R2 | Q0, µgg−1 | b, dm3/μg | R2 | ||
FA/Chmag | Do | 186.86 | 0.18 | 0.78523 | 519.47 | 0.021 | 0.92283 |
Ci | 44.07 | 0.30 | 0.9034 | 463.45 | 0.029 | 0.91625 | |
E | 113.41 | 0.20 | 0.87565 | 428.89 | 0.050 | 0.98225 | |
B | 63.89 | 0.19 | 0.69111 | 227.50 | 5.62·10−8 | 0.90992 | |
L | 26.63 | 0.33 | 0.93055 | 293.72 | 4.14·10−3 | 0.99787 | |
Di | 160.93 | 0.08 | 0.57722 | 274.06 | 2.10·10−4 | 0.94106 | |
A | 186.78 | 0.18 | 0.70056 | 517.54 | 5.21·10−3 | 0.98139 | |
Clo | 137.55 | 0.20 | 0.87801 | 595.55 | 0.153 | 0.90217 | |
S | 101.87 | 0.23 | 0.60934 | 427.57 | 1.29·10−13 | 0.92858 | |
FAac/Ch | Do | 78.39 | 0.31 | 0.64927 | 542.79 | 2.75·10−4 | 0.77459 |
Ci | 43.71 | 0.38 | 0.80849 | 498.75 | 2.19·10−4 | 0.98921 | |
E | 71.65 | 0.32 | 0.83242 | 631.85 | 0.01263 | 0.87541 | |
B | 8.01 | 0.52 | 0.86147 | 393.94 | 5.45·10−4 | 0.87533 | |
L | 6.76 | 0.57 | 0.91695 | 443.68 | 3.11·10−4 | 0.95261 | |
Di | 10.60 | 0.54 | 0.8374 | 546.95 | 7.09·10−4 | 0.84036 | |
A | 149.39 | 0.25 | 0.74729 | 625.52 | 6.74·10−3 | 0.97016 | |
Clo | 96.94 | 0.28 | 0.8133 | 594.46 | 0.01766 | 0.92075 | |
S | 90.03 | 0.26 | 0.86299 | 482.22 | 4.28·10−11 | 0.04654 | |
FAref | Do | 5.01 | 0.75 | 0.68722 | 557.21 | 7.81·10−13 | 0.95545 |
Ci | 11.21 | 0.53 | 0.89257 | 531.13 | 8.56·10−4 | 0.84577 | |
E | 23.69 | 0.41 | 0.88847 | 2089.77 | 9.30·10−3 | 0.90764 | |
B | 23.24 | 0.36 | 0.99691 | 9681.34 | 2.34·10−3 | 0.96305 | |
L | 12.83 | 0.42 | 0.96800 | 646.98 | 0.01039 | 0.72683 | |
Di | 7.38 | 0.60 | 0.87469 | 802.32 | 1.49·10−3 | 0.73685 | |
A | 39.11 | 0.46 | 0.78965 | 627.25 | 2.01·10−5 | 0.94944 | |
Clo | 99.70 | 0.28 | 0.95135 | 2706.44 | 0.03502 | 0.85879 | |
S | 77.40 | 0.25 | 0.78019 | 80161.93 | 9.66·10−4 | 0.78745 |
Adsorbent | Pharmaceutical | Initial Concentration, mg/dm3 | Adsorption Capacity, mg/g | Removal Efficiency, % | Ref. |
---|---|---|---|---|---|
Rice husk ash | Doxycycline | 10–90 | 17.74 | 98.85 | [38] |
Powdered activated carbon from pumpkin seed | Doxycycline | 10–100 | 23.6 | 85.82 | [39] |
Rice straw biochar | Doxycycline | 5–60 | 8.93–108.42 | [40] | |
Fly-ash-based synthetic zeolite Carbon–zeolite composite | Erythromycin | 0.1–200 | 314.7 363.0 | 94–99 | [41] |
Pyrolyzed industrial waste oil sludge and sewage sludge | Erythromycin | 0.1–200 | 0–2 | 0–3 | [42] |
Biochar from cotton gin waste and guayule bagasse | Erythromycin | 2–50 | 17.123 | 50–70 | [43] |
Activated charcoal Micelle–clay complex | Diazepam | 0.01–100 | 28.9 ± 1.9 31.2 ± 1.7 | [44] | |
Activated charcoal Micelle–clay complex | Atorvastatin/ Simvastatin | 0.01–100 | 9.1/11.9 23.2/24.4 | [45] | |
Natural zeolite | Diazepam | 1–25 | 8.051–8.259 | [46] | |
MIL100(Fe) MIL100(Fe)@CMC | Lorazepam | 80 | 150 811 | 80 95 | [47] |
Carboxymethylcellulose–iron | Atorvastatin | 10–60 | (10–32) × 10−3 | 100–53 | [48] |
Sample | Concentration of Leached Elements, mg/dm3 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | Al | Ca | K | Mg | Na | |
FA/Chmag | n.d. | n.d. | n.d. | n.d. | 0.02 | 0.07 | n.d. | n.d. | n.d. | 0.01 | 0.45 | 7.8 | 0.6 | 5.25 | 32.2 |
FAac/Ch | n.d. | n.d. | n.d. | n.d. | 0.02 | 0.08 | 0.01 | 0.01 | n.d. | 0.01 | 0.40 | 2.2 | 0.5 | 0.8 | 12.1 |
FAref | n.d. | n.d. | n.d. | n.d. | 0.01 | 0.12 | n.d. | n.d. | n.d. | n.d. | 1.2 | 0.4 | 0.4 | n.d. | 32.3 |
WHO guideline value * | 0.1 | 0.003 | - | 0.05 | 2.00 | 0.009 | 0.08 | 0.07 | 0.01 | - | 0.9 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukčević, M.; Trajković, D.; Maletić, M.; Mirković, M.; Perić Grujić, A.; Živojinović, D. Modified Fly Ash as an Adsorbent for the Removal of Pharmaceutical Residues from Water. Separations 2024, 11, 337. https://doi.org/10.3390/separations11120337
Vukčević M, Trajković D, Maletić M, Mirković M, Perić Grujić A, Živojinović D. Modified Fly Ash as an Adsorbent for the Removal of Pharmaceutical Residues from Water. Separations. 2024; 11(12):337. https://doi.org/10.3390/separations11120337
Chicago/Turabian StyleVukčević, Marija, Dušan Trajković, Marina Maletić, Miljana Mirković, Aleksandra Perić Grujić, and Dragana Živojinović. 2024. "Modified Fly Ash as an Adsorbent for the Removal of Pharmaceutical Residues from Water" Separations 11, no. 12: 337. https://doi.org/10.3390/separations11120337
APA StyleVukčević, M., Trajković, D., Maletić, M., Mirković, M., Perić Grujić, A., & Živojinović, D. (2024). Modified Fly Ash as an Adsorbent for the Removal of Pharmaceutical Residues from Water. Separations, 11(12), 337. https://doi.org/10.3390/separations11120337