The Impact of Pesticide Residues on Soil Health for Sustainable Vegetable Production in Arid Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Collection of Soil Samples
2.3. Pesticide Standards
2.4. Extraction and Partitioning
2.5. Recovery Experiment
2.6. The Measurement of Pesticide Residues
3. Results
3.1. The Residues of Herbicides
3.2. The Residues of Insecticides
3.3. The Residues of Other Agrochemicals
4. Discussion
4.1. The Availability of Agrochemical Residues in Soil Layers
4.2. Herbicide Residues
4.3. Pesticide Residues
4.4. The Residues of Other Agrochemicals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125–144. [Google Scholar]
- Goeb, J.; Dillon, A.; Lupi, F.; Tschirley, D. Pesticides: What you don’t know can hurt you. J. Assoc. Environ. Resour. Econ. 2020, 7, 801–836. [Google Scholar] [CrossRef]
- FAO. FAO Statistical Yearbook 2013: World Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Lewis, S.E.; Silburn, D.M.; Kookana, R.S.; Shaw, M. Pesticide behavior, fate, and effects in the tropics: An overview of the current state of knowledge. J. Agric. Food Chem. 2016, 64, 3917–3924. [Google Scholar] [CrossRef]
- WHO. Public Health Impact of Pesticides Used in Agriculture; World Health Organization: Geneva, Switzerland, 1990.
- WHO. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification; World Health Organization: Geneva, Switzerland, 2012.
- Alavanja, M.C.R.; Bonner, M.R. Occupational pesticide exposures and cancer risk: A review. J. Toxicol. Environ. Health 2012, 15, 238–263. [Google Scholar] [CrossRef]
- Kaloyanova, F.P.; El-Batawi, M.A. Human Toxicology of Pesticides. International Standard Book; Library of Congress, CRC Press Inc.: Boca Raton, FL, USA, 1991. [Google Scholar]
- Faraj, T.K. Determination of Pesticide Residues in Most Commonly Consumed Leafy Vegetables in Riyadh Region (Al-Kharej Province). J. King Abdulaziz Uni. Meteorol. Environ. Arid Land Agric. Sci. 2019, 28, 63–73. [Google Scholar]
- Sobus, J.R.; DeWoskin, R.S.; Tan, Y.M.; Pleil, J.D.; Phillips, M.B.; Georg, B.J.; Christensen, K.; Schreinemachers, D.M.; Williams, M.A.; Cohen Hubal, E.A.; et al. Uses of NHANES Biomarker Data for Chemical Risk Assessment: Trends, Challenges, and Opportunities. Environ. Health Perspect. 2015, 123, 919–927. [Google Scholar] [CrossRef] [PubMed]
- EL-Saeid, M.H.; Shah, M. Detection of pesticide residues and heavy metals in some fresh fruits and vegetables collected from Cairo. In Proceedings of the First Mansoura Conference of Food and Dairy Technology, Cairo, Egypt, 17–19 October 2000; pp. 183–203. [Google Scholar]
- EL-Saeid, M.H.; Khan, H. Determination of pyrethroid insecticides in crude and canned vegetable samples by supercritical fluid chromatography. Int. J. Food Prop. 2015, 18, 1119–1127. [Google Scholar] [CrossRef]
- EL-Saeid, M.H.; Selim, M.T. Multi-residues Analysis of 86 Pesticides Using Gas Chromatography Mass Spectrometry: II-Non-Leafy Vegetables. J. Chem. 2013, 2013, 727149. [Google Scholar] [CrossRef]
- Selim, M.T.; EL-Saeid, M.H.; Al-Dossari, I.M. Multi-residues Analysis of Pesticides Using Gas Chromatography Mass Spectrometry: I-Leafy Vegetables. Res. J. Environ. Sci. 2011, 5, 248–258. [Google Scholar] [CrossRef]
- Khaled, A.O.; Al-Humaid, A.I.; Al-Rehiayani, S.M.; Al-Redhaiman, K.N. Estimated daily intake of pesticide residues exposure by vegetables grown in greenhouses in Al-Qassim region, Saudi Arabia. Food Control 2011, 22, 947–953. [Google Scholar]
- Bhandari, G.; Atreya, K.; Scheepers, P.T.; Geissen, V. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. Chemosphere 2020, 253, 126594. [Google Scholar] [CrossRef]
- Sweetman, A.J.; Valle, M.D.; Prevedouros, K.; Jones, K.C. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): Interpreting and modelling field data. Chemosphere 2005, 60, 959–972. [Google Scholar] [CrossRef]
- Bidleman, T.F.; Leone, A.D. Soil air exchange of organochlorine pesticides in the Southern United States. Environ. Pollut. 2004, 128, 49–57. [Google Scholar] [CrossRef]
- Mekonen, S.; Argaw, R.; Simanesew, A.; Houbraken, M.; Senaeve, D.; Ambelu, A.; Spanoghe, P. Pesticide residues in drinking water and associated risk to consumers in Ethiopia. Chemosphere 2016, 162, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.B.; Luo, Y.M.; Zhao, Q.G.; Wong, M.H.; Zhang, G.L. Residues of organochlorine pesticides in Hong Kong soils. Chemosphere 2006, 63, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Sankararamakrishnan, N.; Kumar Sharma, A.; Sanghi, R. Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India. Environ. Int. 2005, 31, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. Sci. Total Environ. 2018, 639, 438–456. [Google Scholar] [CrossRef] [PubMed]
- El Alfy, M.; Faraj, T. Spatial distribution and health risk assessment for groundwater contamination from intensive pesticide use in arid areas. Environ. Geochem. Health 2017, 39, 231–253. [Google Scholar] [CrossRef]
- EL-Saeid, M.H.; Majjami, A.Y.; Modaihsh, A.S.; Al-Barakah, N.F.; Ghoneim, A.; Bazeyad, A. Impact of QuEChERS and GC-MS/MSTQD as multi residues techniques for determination of 74 pesticides in olive farm soil. Int. Res. J. Pure Appl. Chem. 2019, 17, 1–11. [Google Scholar]
- Tuija, P.; Gun, B.; Paula, F.; Ulla, P.; Bengt-Goran, O. Analysis of pesticide residues in fruit and vegetables with ethyl acetate extraction using gas and liquid chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007, 389, 1773–1789. [Google Scholar]
- USEPA. Interim Reregistration Eligibility Decision—Atrazine; U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, USA, 2003.
- Roberts, T. Atrazine. Metabolic Pathways of Agrochemicals, Part One: Herbicides and Plant Growth Regulators; The Royal Society of Chemistry: Cambridge, UK, 1998. [Google Scholar]
- USEPA. Refined Ecological Risk Assessment for Atrazine; U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, U.S. Government Printing Office: Washington, DC, USA, 2016.
- EPA-738-R-98-013 (7508W); Prevention, Pesticides and Toxic Substances. R.E.D. Facts Bromoxynil. USEPA: Washington, DC, USA, 1998.
- EPA-738-F-95-003 (7508W); Prevention, Pesticides and Toxic Substances. R.E.D. Facts Linuron. USEPA: Washington, DC, USA, 1995.
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 2020, 435, 1–62. [Google Scholar]
- EPA 822-S-12-001; Edition of the Drinking Water Standards and Health Advisories. Office of Water, U.S. Environmental Protection Agency: Washington, DC, USA, 2012; p. 9.
- EPA-738-F-00-007 (7508C); Prevention, Pesticides and Toxic Substances. R.E.D. Facts Diclofop-Methyl. USEPA: Washington DC, USA, 2000.
- EPA-738-F-97-007 (7508W); Prevention, Pesticides and Toxic Substances. R.E.D. Facts Pendimethalin. U.S. Environmental Protection Agency: Washington, DC, USA, 1997.
- Al-Zaben, M.I.; Alghamdi, A.A. Gamma ray irradiation assisted decomposition for isoproturon pesticide in aqueous solutions: A detailed study. J. King Saud Univ. Sci. 2020, 32, 3097–3102. [Google Scholar] [CrossRef]
- Krämer, P.M.; Goodrow, M.H.; Kremmer, E. Enzyme-linked immunosorbent assays based on rabbit polyclonal and rat monoclonal antibodies against isoproturon. J. Agric. Food Chem. 2004, 52, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Tomlin, C. The Pesticide Manual: Incorporating the Agrochemicals Handbook: A World Compendium; Royal Society of Chemistry: London, UK, 1995. [Google Scholar]
- von Wirén-Lehr, S.; del Pilar Castillo, M.; Torstensson, L.; Scheunert, I. Degradation of isoproturon in biobeds. Biol. Fertil. Soils 2001, 33, 535–540. [Google Scholar] [CrossRef]
- EPA-OPP-2005-0293 (7508C); Reregistration Eligibility Decision for Cypermethrin. U.S. Environmental Protection Agencyh: Washington, DC, USA, 2006.
- EPA-738-R-06-003 (7508C); Reregistration Eligibility Decision for Resmethrin. U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Statement Endosulfan; U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2015.
- USEPA. Reregistration Eligibility Decision for Methidathion; U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs: Washington, DC, USA, 2006.
- National Pesticide Information Center. Carbaryl (General Fact Sheet); Oregon State University: Corvallis, OR, USA, 2003. [Google Scholar]
- USEPA. Revised EFED Risk Assessment of Carbaryl in Support if the Registration Eligibility Decision (RED); Office of Pesticide Programs, Environmental Fate and Effects Division, U.S. Environmental Protection Agency: Washington, DC, USA, 2003.
- EPA738-R-06-018; Regulatory Decision on the Emulsifiable Concentrate (EC) Formulation of Ethoprop. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs: Washington, DC, USA, 2006.
- Boesten, J.J.; Van der Pas, L.J. Movement of water, bromide and the pesticides ethoprophos and bentazone in a sandy soil: The Vredepeel data set. Agric. Water Manag. 2000, 44, 21–42. [Google Scholar] [CrossRef]
- EPA 738-R-08-012 (7508P); Registration Eligibility Decision (RED) Document for Tetramethrin. U.S. Environmental Protection Agency: Washington, DC, USA, 2010.
- Lindane Voluntary Cancellation and RED Addendum Fact Sheet. Available online: https://archive.epa.gov/pesticides/reregistration/web/html/lindane_fs_addendum.html (accessed on 21 February 2006).
- Khan, S.; Han, C.; Khan, H.M.; Boccelli, D.L.; Nadagouda, M.N.; Dionysiou, D.D. Efficient degradation of lindane by visible and simulated solar light-assisted S-TiO2/peroxymonosulfate process: Kinetics and mechanistic investigations. Mol. Catal. 2017, 428, 9–16. [Google Scholar] [CrossRef]
- Gollapudi, B.B.; Mendrala, A.L.; Linscombe, V.A. Evaluation of the genetic toxicity of the organophosphate insecticide chlorpyrifos. Mutat. Res./Genet. Toxicol. 1995, 342, 25–36. [Google Scholar] [CrossRef]
- Kashanian, S.; Shariati, Z.; Roshanfekr, H.; Ghobadi, S. DNA binding studies of 3, 5, 6-trichloro-2-pyridinol pesticide metabolite. DNA Cell Biol. 2012, 31, 1341–1348. [Google Scholar] [CrossRef]
- Manclús, J.J.; Montoya, A. Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-Trichloro-2-Pyridinol in the aquatic environment. Anal. Chim. Acta 1995, 311, 341–348. [Google Scholar] [CrossRef]
- Howard, P.H. Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Pesticides; Lewis: Chelsea, MI, USA, 1991. [Google Scholar]
- Agricultural Marketing Service, USDA. Superintendent of Documents, Rules and Regulations. Fed. Regist. 2021, 86, 48315–48336. [Google Scholar]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Johnson, M.; Luukinen, B.; Gervais, J.; Buhl, K.; Stone, D. Bifenthrin Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services: Corvallis, OR, USA, 2010. [Google Scholar]
- USEPA. Interim Reregistration Eligibility Decision for Dimethoate; U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Heptachlor and Heptachlor Epoxide; U.S. Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007.
- Toynton, K.; Luukinen, B.; Buhl, K.; Stone, D. Permethirn Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services: Corvallis, OR, USA, 2009. [Google Scholar]
- USEPA. Chemical Information Fact Sheet, Office of Pesticides and Toxic Substances, Office of Pesticide Programme (TS 766C); U.S. Environmental Protection Agency: Washington, DC, USA, 1985.
- Hanson, W.; Strid, A.; Cross, A.; Jenkins, J. Cyfluthrin General Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services: Corvallis, OR, USA, 2018. [Google Scholar]
- USEPA. Interim Reregistration Eligibility Decision for Phosmet; U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- USEPA. Interim Reregistration Eligibility Decision for Azinophos-Methyl; U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- Raman, P. Mevinphos. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: London, UK, 2014; pp. 332–335. [Google Scholar]
- USEPA. R.E.D. Facts, Mevinphos; U.S. Environmental Protection Agency: Washington, DC, USA, 1994.
- California Environmental Protection Agency. Mevinphos (Phosdrin) Risk Characterization Document, Medical Toxicology and Worker Health and Safety Branches; Department of Pesticide Regulation, California Environmental Protection Agency: Sacramento, CA, USA, 1994.
- Park, B.J.; Choi, J.H.; Lee, B.M.; Im, G.J.; Kim, C.S.; Park, K.H. Decomposition rate of iprobenfos, isoprothiolane, and diazinon by some environmental factors in aqueous systems. Korean J. Pestic. Sci. 1998, 2, 39–44. [Google Scholar]
- Kim, C.S.; Lee, B.M.; Ihm, Y.B.; Choi, J.H. Leaching potential of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils as affected by adsorption characteristics. Korean J. Pestic. Sci. 2002, 6, 309–319. [Google Scholar]
- Kafle, B.K.; Pokhrel, B.; Shrestha, S.; Raut, R.; Dahal, B.M. Determination of Pesticide Residues in Water and Soil Samples from Ansikhola Watershed, Kavre, Nepal. Int. J. Geol. Earth Environ. Sci. 2015, 5, 119–127. [Google Scholar]
- EPA-738-F-96-031 (7508W); Prevention, Pesticides and Toxic Substances. R.E.D. Facts Amitraz. USEPA: Washington, DC, USA, 1996.
- Abdel-Saheb, I.; Eckel, W. Abamectin as a New End-Use Product (Agri-Mekbsc Miticide/Insecticide) for Almonds, Walnuts, Apples, Avocados, Celeriac, Citrus, Cotton, Cucurbit, Fruiting Vegetables, Grapes, Herbs, Hops, Leafy Vegetables, Mint, Pears, Plums, Prunes and Potatoes, Usepa pc Code: 122804; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for DDT, DDE, DDD; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2002.
- Gong, Z.M.; Tao, S.; Xu, F.L.; Dawson, R.; Liu, W.X.; Cui, Y.H.; Cao, J.; Wang, X.J.; Shen, W.R.; Zhang, W.J.; et al. Level and distribution of DDT in surface soils from Tianjin, China. Chemosphere 2004, 54, 1247–1253. [Google Scholar] [CrossRef]
- Pan, L.; Sun, J.; Li, Z.; Zhan, Y.; Xu, S.; Zhu, L. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: Concentration, distribution, and risk assessment. Environ. Sci. Pollut. Res. Int. 2018, 25, 4–11. [Google Scholar] [CrossRef]
- Li, Z.; Jennings, A. Worldwide regulations of standard values of pesticides for human health risk control: A review. Int. J. Environ. Res. Public Health 2017, 14, 826. [Google Scholar] [CrossRef]
Pesticide | Type | Spiking Level (μg/g) | LOD (μg/g) | Recovery % |
---|---|---|---|---|
Iprobenfos | fungicide | 0.10 | 0.004 | 98.6 ± 2.12 |
Bromoxynil | herbicide | 0.10 | 0.001 | 91.4 ± 1.58 |
Isoproturon | herbicide | 0.10 | 0.001 | 93.2 ± 1.92 |
Atrazine | herbicide | 0.10 | 0.002 | 90.2 ± 2.68 |
Pendimethalin | herbicide | 0.10 | 0.002 | 93.9 ± 2.10 |
Diclofop methyl | herbicide | 0.10 | 0.001 | 91.6 ± 2.35 |
Linuron | herbicide | 0.10 | 0.004 | 92.2 ± 2.11 |
Chlorpyrifos methyl | insecticide | 0.10 | 0.001 | 94.9 ± 1.20 |
Dimethoate | insecticide and acaricide | 0.10 | 0.001 | 98.6 ± 1.08 |
Chlorpyrifos | pesticide | 0.10 | 0.001 | 95.9 ± 2.40 |
Lindane (γ–HCH) | insecticide | 0.10 | 0.001 | 96.3 ± 1.10 |
Bromophos methyl | insecticide | 0.10 | 0.001 | 93.6 ± 2.12 |
Abamectin | insecticide, nematicide, and miticide | 0.10 | 0.001 | 92.4 ± 2.40 |
Methidathion | insecticide | 0.10 | 0.001 | 92.2 ± 2.32 |
Heptachlor | insecticide | 0.10 | 0.001 | 96.6 ± 1.18 |
Endosulfan | insecticide and acaricide | 0.10 | 0.001 | 95.9 ± 2.31 |
Bifenthion | insecticide | 0.10 | 0.001 | 91.4 ± 2.58 |
Ametraz | acaricide and insecticide | 0.10 | 0.002 | 89.9 ± 3.00 |
Permethrin | insecticide | 0.10 | 0.002 | 91.2 ± 1.35 |
Cyfluthrin | insecticide | 0.10 | 0.004 | 91.5 ± 2.56 |
Resmethrin | insecticide | 0.10 | 0.003 | 97.2 ± 3.16 |
Mevinphos | insecticide | 0.10 | 0.009 | 94.2 ± 2.66 |
Deltamethrin | insecticide | 0.10 | 0.005 | 96.8 ± 2.19 |
Tetramethrin | insecticide | 0.10 | 0.002 | 96.2 ± 2.44 |
Azinophos-ethyl | insecticide | 0.10 | 0.003 | 96.7 ± 3.16 |
Cypermethrin | insecticide | 0.10 | 0.01 | 97.1 ± 2.73 |
Ethoprophos | insecticide | 0.10 | 0.005 | 93.5 ± 3.50 |
Carbaryl | insecticide | 0.10 | 0.003 | 99.2 ± 3.46 |
Phosmet | insecticide | 0.10 | 0.003 | 91.8 ± 2.88 |
Fenoxycarb | insect growth regulator | 0.10 | 0.007 | 95.5 ± 3.28 |
p, p-DDE | metabolite of DDT | 0.10 | 0.001 | 96.3 ± 1.16 |
p, p-DDD | metabolite of DDT | 0.10 | 0.001 | 94.2 ± 2.64 |
Herbicide | 0–10 cm | 10–20 cm | ||||||
---|---|---|---|---|---|---|---|---|
Concentration | Highest Site | Number of Sites | Concentration | Highest Site | Number of Sites | |||
Highest | Lowest | Highest | Lowest | |||||
Bromoxynil | 1.25 ± 0.12 | 0.04 ± 0.02 | 20 | 18 | 1.66 ± 0.26 | 0.07 ± 0.06 | 1 | 18 |
Isoproturon | 0.60 ± 0.21 | 0.08 ± 0.03 | 5 | 13 | 0.73 ± 0.18 | 0.11 ± 0.04 | 5 | 13 |
Atrazine | 2.73 ± 0.27 | 0.19 ± 0.02 | 9 | 18 | 3.84 ± 0.41 | 0.14 ± 0.03 | 9 | 17 |
Pendimethalin | 0.37 ± 0.07 | 0.03 ± 0.02 | 14 | 10 | 0.47 ± 0.14 | 0.03 ± 0.02 | 14 | 11 |
Diclofop methyl | 1.41 ± 0.25 | 0.03 ± 0.02 | 16 | 17 | 1.84 ± 0.31 | 0.03 ± 0.02 | 16 | 17 |
Linuron | 0.37 ± 0.07 | 0.06 ± 0.03 | 15 | 4 | 0.24 ± 0.02 | 0.11 ± 0.04 | 19 | 4 |
Pesticide | 0–10 cm | 10–20 cm | ||||||
---|---|---|---|---|---|---|---|---|
Concentration | Highest Site | Number of Sites | Concentration | Highest Site | Number of Sites | |||
Highest | Lowest | Highest | Lowest | |||||
Chlorpyrifos methyl | 1.11 ± 0.24 | 0.06 ± 0.03 | 9 | 12 | 1.27 ± 0.15 | 0.13 ± 0.04 | 9 | 12 |
Dimethoate | 0.77 ± 0.18 | 0.06 ± 0.02 | 14, 17 | 14 | 0.87 ± 0.12 | 0.07 ± 0.04 | 14, 17 | 14 |
Chlorpyrifos | 0.66 ± 0.21 | 0.09 ± 0.02 | 11 | 15 | 0.78 ± 0.18 | 0.04 ± 0.01 | 11 | 16 |
Lindane (γ–HCH) | 1.22 ± 0.21 | 0.08 ± 0.02 | 18 | 16 | 1.24 ± 0.22 | 0.11 ± 0.04 | 18 | 15 |
Bromophos methyl | 1.09 ± 0.24 | 0.06 ± 0.03 | 20 | 15 | 1.17 ± 0.22 | 0.13 ± 0.04 | 20 | 16 |
Methidathion | 1.09 ± 0.24 | 0.03 ± 0.02 | 8 | 18 | 1.14 ± 0.22 | 0.08 ± 0.02 | 8 | 18 |
Heptachlor | 0.73 ± 0.21 | 0.03 ± 0.01 | 19 | 14 | 0.93 ± 0.19 | 0.02 ± 0.01 | 1 | 14 |
Endosulfan | 0.97 ± 0.11 | 0.09 ± 0.02 | 15 | 18 | 0.89 ± 0.04 | 0.14 ± 0.07 | 15 | 18 |
Bifenthion | 0.51 ± 0.05 | 0.05 ± 0.02 | 14 | 15 | 0.60 ± 0.11 | 0.10 ± 0.03 | 14 | 15 |
Permethrin | 0.68 ± 0.21 | 0.04 ± 0.02 | 18 | 14 | 0.84 ± 0.22 | 0.11 ± 0.05 | 5 | 13 |
Cyfluthrin | 0.66 ± 0.08 | 0.06 ± 0.03 | 5 | 13 | 0.78 ± 0.03 | 0.11 ± 0.04 | 5 | 13 |
Resmethrin | 0.88 ± 0.04 | 0.03 ± 0.02 | 6 | 19 | 0.91 ± 0.04 | 0.08 ± 0.03 | 6 | 19 |
Mevinphos | 0.22 ± 0.09 | 0.06 ± 0.03 | 6 | 2 | 0.18 ± 0.09 | 0.08 ± 0.05 | 6 | 2 |
Deltamethrin | 1.07 ± 0.32 | 0.08 ± 0.03 | 18 | 18 | 1.22 ± 0.19 | 0.04 ± 0.01 | 18 | 18 |
Tetramethrin | 1.26 ± 0.03 | 0.04 ± 0.02 | 18 | 16 | 1.78 ± 0.14 | 0.07 ± 0.06 | 18 | 16 |
Azinophos-ethyl | 0.60 ± 0.12 | 0.06 ± 0.04 | 4, 10 | 7 | 0.83 ± 0.27 | 0.08 ± 0.01 | 4, 10 | 7 |
Cypermethrin | 1.41 ± 0.25 | 0.08 ± 0.02 | 3 | 19 | 1.84 ± 0.31 | 0.08 ± 0.02 | 3, 15 | 19 |
Ethoprophos | 1.29 ± 0.21 | 0.06 ± 0.03 | 2 | 16 | 1.54 ± 0.29 | 0.13 ± 0.04 | 2 | 15 |
Carbaryl | 1.42 ± 0.26 | 0.08 ± 0.02 | 11 | 17 | 1.82 ± 0.22 | 0.11 ± 0.02 | 11 | 17 |
Phosmet | 0.63 ± 0.21 | 0.03 ± 0.02 | 19 | 7 | 0.66 ± 0.18 | 0.29 ± 0.10 | 19 | 6 |
Fenoxycarb | 1.39 ± 0.23 | 0.08 ± 0.02 | 20 | 14 | 1.37 ± 0.25 | 0.08 ± 0.06 | 20 | 13 |
Name of Agro-Chemical | Sites | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
Bromoxynil | ||||||||||||||||||||
Isoproturon | ||||||||||||||||||||
Atrazine | ||||||||||||||||||||
Pendimethalin | ||||||||||||||||||||
Diclofop methyl | ||||||||||||||||||||
Linuron | ||||||||||||||||||||
Chlorpyrifos methyl | ||||||||||||||||||||
Dimethoate | ||||||||||||||||||||
Chlorpyrifos | ||||||||||||||||||||
Lindane (γ–HCH) | ||||||||||||||||||||
Bromophos methyl | ||||||||||||||||||||
Methidathion | ||||||||||||||||||||
Heptachlor | ||||||||||||||||||||
Endosulfan | ||||||||||||||||||||
Bifenthion | ||||||||||||||||||||
Permethrin | ||||||||||||||||||||
Cyfluthrin | ||||||||||||||||||||
Resmethrin | ||||||||||||||||||||
Mevinphos | ||||||||||||||||||||
Deltamethrin | ||||||||||||||||||||
Tetramethrin | ||||||||||||||||||||
Azinophos-ethyl | ||||||||||||||||||||
Cypermethrin | ||||||||||||||||||||
Ethoprophos | ||||||||||||||||||||
Carbaryl | ||||||||||||||||||||
Phosmet | ||||||||||||||||||||
Fenoxycarb | ||||||||||||||||||||
Iprobenfos | ||||||||||||||||||||
Abamectin | ||||||||||||||||||||
Ametraz | ||||||||||||||||||||
p, p-DDE | ||||||||||||||||||||
p, p-DDD | ||||||||||||||||||||
Total Chemicals (0–10 cm) | 23 | 28 | 20 | 23 | 26 | 19 | 23 | 21 | 19 | 20 | 22 | 21 | 21 | 20 | 18 | 21 | 16 | 20 | 23 | 23 |
Total Chemicals (10–20 cm) | 23 | 27 | 20 | 22 | 27 | 20 | 21 | 20 | 19 | 20 | 23 | 20 | 20 | 20 | 18 | 22 | 16 | 20 | 23 | 25 |
Detected in both layers Detected only in 0–10 cm Detected only in 10–20 cm |
Other Agro-Chemical | 0–10 cm | 10–20 cm | ||||||
---|---|---|---|---|---|---|---|---|
Concentration | Highest Site | Number of Sites | Concentration | Highest Site | Number of Sites | |||
Highest | Lowest | Highest | Lowest | |||||
Iprobenfos | 1.47 ± 0.17 | 0.06 ± 0.03 | 20 | 13 | 1.80 ± 0.21 | 0.13 ± 0.04 | 20 | 13 |
Abamectin | 3.03 ± 0.21 | 0.21 ± 0.09 | 11 | 14 | 3.33 ± 0.39 | 0.18 ± 0.03 | 11 | 14 |
Ametraz | 2.30 ± 0.32 | 0.08 ± 0.04 | 18 | 13 | 2.28 ± 0.25 | 0.11 ± 0.04 | 17 | 13 |
p, p-DDE | 0.013 ± 0.008 | 0.006 ± 0.003 | 5 | 4 | 0.022 ± 0.009 | 0.008 ± 0.002 | 12 | 6 |
p, p-DDD | 0.013 ± 0.004 | 0.011 ± 0.003 | 19 | 4 | 0.019 ± 0.008 | 0.004 ± 0.002 | 12 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraj, T.K.; EL-Saeid, M.H.; Najim, M.M.M.; Chieb, M. The Impact of Pesticide Residues on Soil Health for Sustainable Vegetable Production in Arid Areas. Separations 2024, 11, 46. https://doi.org/10.3390/separations11020046
Faraj TK, EL-Saeid MH, Najim MMM, Chieb M. The Impact of Pesticide Residues on Soil Health for Sustainable Vegetable Production in Arid Areas. Separations. 2024; 11(2):46. https://doi.org/10.3390/separations11020046
Chicago/Turabian StyleFaraj, Turki Kh., Mohamed Hamza EL-Saeid, Mohamed M. M. Najim, and Maha Chieb. 2024. "The Impact of Pesticide Residues on Soil Health for Sustainable Vegetable Production in Arid Areas" Separations 11, no. 2: 46. https://doi.org/10.3390/separations11020046
APA StyleFaraj, T. K., EL-Saeid, M. H., Najim, M. M. M., & Chieb, M. (2024). The Impact of Pesticide Residues on Soil Health for Sustainable Vegetable Production in Arid Areas. Separations, 11(2), 46. https://doi.org/10.3390/separations11020046