Spatially and Temporally Resolved Analysis of Bleeding in a Centrifugal Partition Chromatography Rotor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Centrifugal Partition Chromatograph with Transparent Rotor
2.2. Phase System
2.3. Retention Evaluation
3. Results and Discussion
3.1. Flow Regime Measurements
3.2. Retention Measurements
3.3. Temperature Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Arizona System | |||||
---|---|---|---|---|---|
G | 0.85610 ± 0.0110 | 0.98433 ± 0.01189 | 0.42613 ± 0.00562 | 1.43356 ± 0.01727 | 4.25650 ± 0.56183 |
N | 0.74838 ± 0.00224 | 0.92806 ± 0.01077 | 0.37546 ± 0.00171 | 1.46317 ± 0.00474 | 2.97165 ± 0.17757 |
U | 0.69162 ± 0.00115 | 0.85470 ± 7.64992 × 10−4 | 0.37547 ± 0.00142 | 0.99917 ± 0.00206 | 4.39761 ± 0.29576 |
References
- Friesen, J.B.; McAlpine, J.B.; Chen, S.-N.; Pauli, G.F. Countercurrent Separation of Natural Products: An Update. J. Nat. Prod. 2015, 78, 1765–1796. [Google Scholar] [CrossRef] [PubMed]
- Bezold, F.; Goll, J.; Minceva, M. Study of the applicability of non-conventional aqueous two-phase systems in counter-current and centrifugal partition chromatography. J. Chromatogr. A 2015, 1388, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Gmehling, J.; Schedemann, A. Selection of Solvents or Solvent Mixtures for Liquid–Liquid Extraction Using Predictive Thermodynamic Models or Access to the Dortmund Data Bank. Ind. Eng. Chem. Res. 2014, 53, 17794–17805. [Google Scholar] [CrossRef]
- Meucci, J.; Faure, K.; Mekaoui, N.; Berthod, A. Solvent Selection in Countercurrent Chromatography Using Small-Volume Hydrostatic Columns. LCGC N. Am. 2013, 31, 132–143. [Google Scholar]
- Hopmann, E.; Frey, A.; Minceva, M. A priori selection of the mobile and stationary phase in centrifugal partition chromatography and counter-current chromatography. J. Chromatogr. A 2012, 1238, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Kostanian, A.E. Modelling counter-current chromatography: A chemical engineering perspective. J. Chromatogr. A 2002, 973, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Bezold, F.; Weinberger, M.E.; Minceva, M. Computational solvent system screening for the separation of tocopherols with centrifugal partition chromatography using deep eutectic solvent-based biphasic systems. J. Chromatogr. A 2017, 1491, 153–158. [Google Scholar] [CrossRef]
- Frey, A.; Hopmann, E.; Minceva, M. Selection of Biphasic Liquid Systems in Liquid-Liquid Chromatography Using Predictive Thermodynamic Models. Chem. Eng. Technol. 2014, 37, 1663–1674. [Google Scholar] [CrossRef]
- Marsden-Jones, S.; Colclough, N.; Garrard, I.; Sumner, N.; Ignatova, S. Using quantitative structure activity relationship models to predict an appropriate solvent system from a common solvent system family for countercurrent chromatography separation. J. Chromatogr. A 2015, 1398, 66–72. [Google Scholar] [CrossRef]
- Ignatova, S.N.; Sutherland, I.A. A Fast, Effective Method of Characterizing New Phase Systems in CCC. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1551–1564. [Google Scholar] [CrossRef]
- Wang, F.; Ito, Y.; Wei, Y. Recent progress on countercurrent chromatography modeling. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Ignatova, S.; Peng, A.; Chen, L.; Sutherland, I. Optimising resolution for a preparative separation of Chinese herbal medicine using a surrogate model sample system. J. Chromatogr. A 2009, 1216, 5101–5105. [Google Scholar] [CrossRef] [PubMed]
- Berthod, A. (Ed.) Countercurrent Chromatography: The Support-Free Liquid Stationary Phase; Elsevier: Amsterdam, The Netherlands, 2002; ISBN 9780444507372. [Google Scholar]
- Buthmann, F.; Volpert, S.; Koop, J.; Schembecker, G. Prediction of Bleeding via Simulation of Hydrodynamics in Centrifugal Partition Chromatography. Separations 2024, 11, 16. [Google Scholar] [CrossRef]
- Murayama, W.; Kobayashi, T.; Kosuge, Y.; Yano, H.; Nunogaki, Y.; Nunogaki, K. A new centrifugal counter-current chromatograph and its application. J. Chromatogr. A 1982, 239, 643–649. [Google Scholar] [CrossRef]
- Fromme, A.; Fischer, C.; Keine, K.; Schembecker, G. Characterization and correlation of mobile phase dispersion of aqueous-organic solvent systems in centrifugal partition chromatography. J. Chromatogr. A 2020, 1620, 460990. [Google Scholar] [CrossRef]
- Fromme, A.; Funke, F.; Merz, J.; Schembecker, G. Correlating physical properties of aqueous-organic solvent systems and stationary phase retention in a centrifugal partition chromatograph in descending mode. J. Chromatogr. A 2020, 1615, 460742. [Google Scholar] [CrossRef] [PubMed]
- Adelmann, S.; Schembecker, G. Influence of physical properties and operating parameters on hydrodynamics in Centrifugal Partition Chromatography. J. Chromatogr. A 2011, 1218, 5401–5413. [Google Scholar] [CrossRef]
- Fromme, A. Systematic Approach towards Solvent System Selection for Ideal Fluid Dynamics in Centrifugal Partition Chromatography. Ph.D. Dissertation, TU Dortmund University, Dortmund, Germany, 2020. ISBN 9783843916110. [Google Scholar]
- Marchal, L.; Legrand, J.; Foucault, A. Mass transport and flow regimes in centrifugal partition chromatography. AIChE J. 2002, 48, 1692–1704. [Google Scholar] [CrossRef]
- Marchal, L.; Foucault, A.; Patissier, G.; Rosant, J.M.; Legrand, J. Influence of flow patterns on chromatographic efficiency in centrifugal partition chromatography. J. Chromatogr. A 2000, 869, 339–352. [Google Scholar] [CrossRef]
- Peng, A.; Hewitson, P.; Sutherland, I.; Chen, L.; Ignatova, S. The effect of increasing centrifugal acceleration/force and flow rate for varying column aspect ratios on separation efficiency in Counter-Current Chromatography. J. Chromatogr. A 2018, 1581–1582, 80–90. [Google Scholar] [CrossRef]
- Ikehata, J.-I.; Shinomiya, K.; Kobayashi, K.; Ohshima, H.; Kitanaka, S.; Ito, Y. Effect of Coriolis force on counter-current chromatographic separation by centrifugal partition chromatography. J. Chromatogr. A 2004, 1025, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Popp, J.R.; Petrakis, E.A.; Angelis, A.; Halabalaki, M.; Bonn, G.K.; Stuppner, H.; Skaltsounis, L.A. Rapid isolation of acidic cannabinoids from Cannabis sativa L. using pH-zone-refining centrifugal partition chromatography. J. Chromatogr. A 2019, 1599, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Rutterschmidt, D.; Kovács, Z.; Lorantfy, L.; Misek, Z.; Rajsch, G. Taxol purification with Centrifugal Partition Chromatography. Planta Med. 2015, 81, PW_152. [Google Scholar] [CrossRef]
- Fromme, A.; Fischer, C.; Klump, D.; Schembecker, G. Correlating the phase settling behavior of aqueous-organic solvent systems in a centrifugal partition chromatograph. J. Chromatogr. A 2020, 1620, 461005. [Google Scholar] [CrossRef] [PubMed]
- Foucault, A.P. (Ed.) Centrifugal Partition Chromatography; Dekker: New York, NY, USA, 1995; ISBN 9780824792572. [Google Scholar]
- Chollet, S.; Marchal, L.; Meucci, J.; Renault, J.-H.; Legrand, J.; Foucault, A. Methodology for optimally sized centrifugal partition chromatography columns. J. Chromatogr. A 2015, 1388, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Schwienheer, C.; Merz, J.; Schembecker, G. Investigation, comparison and design of chambers used in centrifugal partition chromatography on the basis of flow pattern and separation experiments. J. Chromatogr. A 2015, 1390, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Schwienheer, C. Advances in Centrifugal Purification Techniques for Separating (Bio-)chemical Compounds. Ph.D. Dissertation, TU Dortmund University, Dortmund, Germany, 2016. ISBN 9783843929165. [Google Scholar]
- de La Poype, F.; de la Poype, R.; Durand, P.; Foucault, A.; Legrand, J.; Patissier, G.; Rosant, J.M. Cell Centrifuge Partition Chromatography Device. U. S. Patent No. 6537452, 25 March 2003. [Google Scholar]
- Adelmann, S.; Schwienheer, C.; Schembecker, G. Multiphase flow modeling in centrifugal partition chromatography. J. Chromatogr. A 2011, 1218, 6092–6101. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; Oeldorf, T.; Schembecker, G.; Merz, J. Enzymatic hydrolysis in an aqueous organic two-phase system using centrifugal partition chromatography. J. Chromatogr. A 2015, 1391, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Adelmann, S. On Hydrodynamics in Centrifugal Partition Chromatography. Ph.D. Dissertation, TU Dortmund University, Dortmund, Germany, 2014. ISBN 9783843916110. [Google Scholar]
- Berthod, A.; Hassoun, M.; Ruiz-Angel, M.J. Alkane effect in the Arizona liquid systems used in countercurrent chromatography. Anal. Bioanal. Chem. 2005, 383, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Buthmann, F.; Pley, F.; Schembecker, G.; Koop, J. Automated Image Analysis for Retention Determination in Centrifugal Partition Chromatography. Separations 2022, 9, 358. [Google Scholar] [CrossRef]
- van Buel, M.J.; van Halsema, F.E.D.; van der Wielen, L.A.M.; Luyben, K.C.A.M. Flow regimes in centrifugal partition chromatography. AIChE J. 1998, 44, 1356–1362. [Google Scholar] [CrossRef]
- Foucault, A.P.; Frias, E.C.; Bordier, C.G.; Le Goffic, F. Centrifugal Partition Chromatography: Stability of Various Biphasic Systems and Pertinence of the “Stoke’s Model” to Describe the Influence of the Centrifugal Field Upon the Efficiency. J. Liq. Chromatogr. 1994, 17, 1–17. [Google Scholar] [CrossRef]
- Morley, R.; Minceva, M. Trapping multiple dual mode liquid-liquid chromatography: Preparative separation of nootkatone from a natural product extract. J. Chromatogr. A 2020, 1625, 461272. [Google Scholar] [CrossRef] [PubMed]
- Marchal, L.; Intes, O.; Foucault, A.; Legrand, J.; Nuzillard, J.-M.; Renault, J.-H. Rational improvement of centrifugal partition chromatographic settings for the production of 5-n-alkylresorcinols from wheat bran lipid extract. J. Chromatogr. A 2003, 1005, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Bouju, E.; Berthod, A.; Faure, K. Carnosol purification. Scaling-up centrifugal partition chromatography separations. J. Chromatogr. A 2016, 1466, 59–66. [Google Scholar] [CrossRef]
- Ward, D.P.; Hewitson, P.; Cárdenas-Fernández, M.; Hamley-Bennett, C.; Díaz-Rodríguez, A.; Douillet, N.; Adams, J.P.; Leak, D.J.; Ignatova, S.; Lye, G.J. Centrifugal partition chromatography in a biorefinery context: Optimisation and scale-up of monosaccharide fractionation from hydrolysed sugar beet pulp. J. Chromatogr. A 2017, 1497, 56–63. [Google Scholar] [CrossRef]
- Bezold, F.; Minceva, M. A water-free solvent system containing an L-menthol-based deep eutectic solvent for centrifugal partition chromatography applications. J. Chromatogr. A 2019, 1587, 166–171. [Google Scholar] [CrossRef]
Arizona System | Heptane vol% | EtAc vol% | MeOH vol% | Water vol% |
---|---|---|---|---|
A | 0 | 50 | 0 | 50 |
… | … | … | … | … |
G | 10 | 40 | 10 | 40 |
… | … | … | … | … |
N | 25 | 25 | 25 | 25 |
… | … | … | … | … |
U | 40 | 10 | 40 | 10 |
… | … | … | … | … |
Z | 50 | 0 | 50 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buthmann, F.; Laby, P.; Hamza, D.; Koop, J.; Schembecker, G. Spatially and Temporally Resolved Analysis of Bleeding in a Centrifugal Partition Chromatography Rotor. Separations 2024, 11, 56. https://doi.org/10.3390/separations11020056
Buthmann F, Laby P, Hamza D, Koop J, Schembecker G. Spatially and Temporally Resolved Analysis of Bleeding in a Centrifugal Partition Chromatography Rotor. Separations. 2024; 11(2):56. https://doi.org/10.3390/separations11020056
Chicago/Turabian StyleButhmann, Felix, Philip Laby, Djamal Hamza, Jörg Koop, and Gerhard Schembecker. 2024. "Spatially and Temporally Resolved Analysis of Bleeding in a Centrifugal Partition Chromatography Rotor" Separations 11, no. 2: 56. https://doi.org/10.3390/separations11020056
APA StyleButhmann, F., Laby, P., Hamza, D., Koop, J., & Schembecker, G. (2024). Spatially and Temporally Resolved Analysis of Bleeding in a Centrifugal Partition Chromatography Rotor. Separations, 11(2), 56. https://doi.org/10.3390/separations11020056