Essential Oils from Azorean Cryptomeria japonica Female Cones at Different Developmental Stages: Variations in the Yields and Chemical Compositions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil (EO) Extraction via Hydrodistillation (HD) Process
2.3. Essential Oil (EO) Composition Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Essential Oil (EO) Yield, Density, and Colour
3.2. Essential Oil (EO) Composition Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Arruda, F.; Lima, A.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Rosa, J.S.; Lima, E. Sequential separation of essential oil components during hydrodistillation of Azorean Cryptomeria japonica foliage: Effects on yield, physical properties, and chemical composition. Separations 2023, 10, 483. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Albert, L.; Bocz, B.; Bocz, D.; Visi-Rajczi, E. Coniferous cones as a forestry waste biomass—A source of antioxidants. Environ. Sci. Proc. 2021, 3, 82. [Google Scholar] [CrossRef]
- Celedon, J.M.; Whitehill, J.G.; Madilao, L.L.; Bohlmann, J. Gymnosperm glandular trichomes: Expanded dimensions of the conifer terpenoid defense system. Sci. Rep. 2020, 10, 12464. [Google Scholar] [CrossRef]
- Kopaczyk, J.; Wargula, J.; Jelonek, T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020, 180, 104197. [Google Scholar] [CrossRef]
- Prado-Audelo, M.L.; Cortés, H.; Caballero-Florán, I.H.; González-Torres, M.; Escutia-Guadarrama, L.; Bernal-Chávez, S.A.; Giraldo-Gomez, D.M.; Magaña, J.J.; Leyva-Gómez, G. Therapeutic applications of terpenes on inflammatory diseases. Front. Pharmacol. 2021, 12, 704197. [Google Scholar] [CrossRef]
- Alicandri, E.; Paolacci, A.R.; Osadolor, S.; Sorgonà, A.; Badiani, M.; Ciaffi, M. On the evolution and functional diversity of terpene synthases in the Pinus species: A Review. J. Mol. Evol. 2020, 88, 253–283. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Arruda, F.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Figueiredo, A.C.; Lima, E. Essential oils from different parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the yields, chemical compositions, and biological properties. Appl. Sci. 2023, 13, 8375. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae)—A critical review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef]
- Arruda, F.; Rosa, J.S.; Rodrigues, A.; Oliveira, L.; Lima, A.; Barroso, J.G.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 1: Color, yield and chemical composition analysis. Appl. Sci. 2022, 12, 452. [Google Scholar] [CrossRef]
- Schäfer, H. Endemic vascular plants of the Azores: An updated list. Hoppea 2005, 66, 275–283. [Google Scholar]
- Tsafack, N.; Lhoumeau, S.; Ros-Prieto, A.; Navarro, L.; Kocsis, T.; Manso, S.; Figueiredo, T.; Ferreira, M.T.; Borges, P.A.V. Biological integrity of Azorean native forests is better measured in cold season. Diversity 2023, 15, 1189. [Google Scholar] [CrossRef]
- Hosoo, Y. Development of pollen and female gametophytes in Cryptomeria japonica. Int. J. Plant Dev. Biol. 2007, 1, 116–121. [Google Scholar]
- Mizushina, Y.; Kuriyama, I. Cedar (Cryptomeria japonica) Oils. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2016; pp. 317–324. [Google Scholar]
- Valentini, G.; Bellomaria, B.; Maggi, F.; Manzi, A. The leaf and female cone oils of Juniperus oxycedrus L. ssp. oxycedrus and J. oxycedrus ssp. macrocarpa (Sibth. et Sm.) Ball. from Abruzzo. J. Essent. Oil Res. 2003, 15, 418–421. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins—A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Arruda, F.; Lima, A.; Oliveira, L.; Rodrigues, T.; Janeiro, A.; Rosa, J.S.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 2: Molluscicidal activity and brine shrimp lethality. Separations 2023, 10, 241. [Google Scholar] [CrossRef]
- Garcia, G.; Garcia, A.; Gibernau, M.; Bighelli, A.; Tomi, F. Chemical compositions of essential oils of five introduced conifers in Corsica. Nat. Prod. Res. 2017, 31, 1697–1703. [Google Scholar] [CrossRef]
- Salehi Shanjani, P.; Mirza, M.; Calagari, M.; Adams, R.P. Effects drying and harvest season on the essential oil composition from foliage and berries of Juniperus excelsa. Ind. Crops Prod. 2010, 32, 83–87. [Google Scholar] [CrossRef]
- Prins, C.L.; Vieira, I.J.; Freitas, S.P. Growth regulators and essential oil production. Braz. J. Plant Physiol. 2010, 22, 91–102. [Google Scholar] [CrossRef]
- Rehman, R.; Hanif, M.A.; Mushtaq, Z.; Mochona, B.; Qi, X. Biosynthetic factories of essential oils: The aromatic plants. Nat. Prod. Chem. Res. 2016, 4, 1000227. [Google Scholar] [CrossRef]
- Goodger, J.Q.; Mitchell, M.C.; Woodrow, I.E. Differential patterns of mono-and sesquiterpenes with leaf ontogeny influence pharmaceutical oil yield in Eucalyptus polybractea R.T. Baker. Trees 2013, 27, 511–521. [Google Scholar] [CrossRef]
- Majewska, E.; Kozłowska, M.; Kowalska, D.; Gruczyńska, E. Characterization of the essential oil from cone-berries of Juniperus communis L. (Cupressaceae). Herba Pol. 2017, 63, 48–55. [Google Scholar] [CrossRef]
- Hosseinihashemi, S.K.; Hosseinashrafi, S.K.; Barzegari, F.; Baseri, H.; Tajeddini, D.; Torabi Tooranposhti, H.; Jalaligoldeh, A.; Sheikh Mohammadi, F. Chemical composition of essential oil from female cones of Cupressus arizonica Greene. Nat. Prod. Res. 2023, 37, 2408–2414. [Google Scholar] [CrossRef]
- Karunanithi, P.S.; Zerbe, P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
- Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2018, 220, 692–702. [Google Scholar] [CrossRef]
Sample | Moisture Content (%) | Essential Oil | ||
---|---|---|---|---|
Yield (%, w/w, d.w.) | Density (g/cm3) | Color | ||
IFC | 68.00 ± 0.24 a | 0.72 ± 0.00 b | 0.91 ± 0.01 a | yellowish |
MFC | 5.80 ± 0.09 b | 1.12 ± 0.04 a | 0.91 ± 0.01 a | yellowish |
Relative % | ||||
---|---|---|---|---|
N. | Component | RI | IFC | MFC |
1 | Cyclofenchene | 876 | - | t |
2 | Bornylene | 902 | - | t |
3 | Tricyclene | 918 | 0.17 ± 0.00 | 0.20 ± 0.00 |
4 | α-Thujene | 921 | 0.45 ± 0.01 | 0.99 ± 0.02 |
5 | α-Pinene | 929 | 19.53 ± 0.45 | 41.32 ± 1.31 |
6 | α-Fenchene | 943 | t | 0.82 ± 0.03 |
7 | Camphene | 944 | 1.04 ± 0.03 | 0.85 ± 0.02 |
8 | Thuja-2,4(10)-diene | 948 | - | t |
9 | Sabinene | 967 | 3.86 ± 0.04 | 5.38 ± 0.51 |
10 | β-Pinene | 972 | 1.10 ± 0.13 | 1.55 ± 0.09 |
11 | Myrcene | 984 | 2.63 ± 0.28 | 2.28 ± 0.28 |
12 | α-Phellandrene | 1002 | 1.17 ± 0.02 | 0.10 ± 0.00 |
13 | δ-3-Carene | 1004 | 0.31 ± 0.04 | 0.70 ± 0.10 |
14 | α-Terpinene | 1012 | 1.83 ± 0.16 | 0.67 ± 0.14 |
15 | p-Cymene | 1019 | 0.13 ± 0.02 | 1.06 ± 0.15 |
16 | Limonene | 1024 | 1.54 ± 0.17 | 1.11 ± 0.03 |
17 | β-Phellandrene | 1026 | 0.58 ± 0.03 | 0.79 ± 0.11 |
18 | γ-Terpinene | 1052 | 2.69 ± 0.25 | 1.02 ± 0.08 |
19 | Terpinolene | 1080 | 0.91 ± 0.03 | 0.87 ± 0.01 |
20 | p-Cymenene | 1085 | - | 0.10 ± 0.01 |
21 | trans-Sabinene hydrate | 1064 | - | 0.11 ± 0.01 |
22 | Fenchone | 1083 | - | 0.05 ± 0.00 |
23 | Linalool | 1094 | 0.07 ± 0.00 | t |
24 | cis-Sabinene hydrate | 1095 | - | t |
25 | endo-Fenchol | 1114 | t | 0.05 ± 0.01 |
26 | cis-p-Menth-2-en-1-ol | 1119 | 0.24 ± 0.03 | 0.09 ± 0.00 |
27 | trans-Pinocarveol | 1135 | - | 0.05 ± 0.00 |
28 | trans-p-Menth-2-en-1-ol | 1137 | 0.17 ± 0.01 | 0.08 ± 0.00 |
29 | Camphor | 1141 | 0.08 ± 0.01 | 0.37 ± 0.05 |
30 | Camphene hydrate | 1149 | 0.11 ± 0.01 | 0.06 ± 0.00 |
31 | Pinocamphone | 1155 | - | 0.05 ± 0.00 |
32 | Borneol | 1166 | 0.07 ± 0.00 | 0.19 ± 0.02 |
33 | Isopinocamphone | 1170 | - | 0.20 ± 0.03 |
34 | Terpinen-4-ol | 1175 | 11.21 ± 1.08 | 5.97 ± 0.51 |
35 | p-Cymen-8-ol | 1181 | - | 0.06 ± 0.00 |
36 | α-Terpineol | 1189 | 1.05 ± 0.03 | 0.97 ± 0.04 |
37 | cis-Piperitol | 1191 | 0.06 ± 0.00 | t |
38 | Verbenone | 1201 | - | t |
39 | trans-Piperitol | 1203 | 0.09 ± 0.00 | 0.06 ± 0.00 |
40 | Linalyl acetate | 1244 | t | 0.10 ± 0.00 |
41 | Bornyl acetate | 1278 | 1.55 ± 0.09 | 0.43 ± 0.02 |
42 | Isobornyl acetate | 1280 | 0.06 ± 0.00 | - |
43 | α-Terpinyl acetate | 1339 | 0.10 ± 0.00 | 0.29 ± 0.01 |
44 | β-Cubebene | 1381 | - | t |
45 | β-Elemene | 1382 | 0.06 ± 0.00 | 0.41 ± 0.03 |
46 | β-Ylangene | 1411 | - | 0.06 ± 0.00 |
47 | β-Cariophyllene | 1412 | t | 0.07 ± 0.00 |
48 | β-Copaene | 1422 | - | 0.24 ± 0.02 |
49 | trans-β-Farnesene | 1445 | - | t |
50 | α-Humulene | 1448 | - | t |
51 | Selina-4,11-diene | 1465 | - | 0.06 ± 0.00 |
52 | trans-Cadina-1(6),4-diene | 1467 | - | 0.05 ± 0.00 |
53 | Germacrene D | 1473 | 0.09 ± 0.00 | 0.18 ± 0.01 |
54 | Valencene | 1480 | - | 0.08 ± 0.00 |
55 | β-Selinene | 1481 | - | 0.36 ± 0.03 |
56 | trans-Muurola-4(14),5-diene | 1484 | - | t |
57 | α-Selinene | 1488 | - | 0.40 ± 0.03 |
58 | α-Muurolene | 1490 | 0.06 ± 0.00 | 0.05 ± 0.00 |
59 | β-Bisabolene | 1499 | - | t |
60 | γ-Cadinene | 1505 | t | 0.11 ± 0.01 |
61 | δ-Cadinene | 1510 | 0.56 ± 0.03 | 0.31 ± 0.02 |
62 | trans-Cadina-1,4-diene | 1524 | t | - |
63 | Germacrene B | 1550 | t | t |
64 | β-Dihydroagarofuran | 1497 | 0.05 ± 0.00 | t |
65 | Cubebol | 1507 | - | t |
66 | Elemol | 1540 | 11.01 ± 0.05 | 7.00 ± 0.02 |
67 | (E)-Nerolidol | 1552 | 0.06 ± 0.00 | 0.07 ± 0.00 |
68 | Germacren D-4-ol | 1568 | 0.25 ± 0.01 | 0.17 ± 0.01 |
69 | β-Oplopenone | 1594 | t | t |
70 | 5-epi-7-epi-α-Eudesmol | 1597 | 0.42 ± 0.03 | 0.05 ± 0.00 |
71 | 1,10-di-Epicubenol | 1610 | - | 0.05 ± 0.00 |
72 | 10-epi-γ-Eudesmol | 1613 | 1.07 ± 0.01 | 0.12 ± 0.00 |
73 | 1-Epicubenol | 1619 | t | - |
74 | Agarospirol | 1621 | - | 0.89 ± 0.02 |
75 | γ-Eudesmol | 1623 | 11.41 ± 0.21 | 2.82 ± 0.03 |
76 | Hinesol | 1631 | 0.07 ± 0.00 | 0.27 ± 0.01 |
77 | τ-Cadinol | 1633 | 0.28 ± 0.00 | 0.12 ± 0.00 |
78 | epi-α-Cadinol | 1635 | 0.31 ± 0.02 | 0.12 ± 0.01 |
79 | δ-Cadinol | 1637 | 0.09 ± 0.00 | 0.05 ± 0.00 |
80 | β-Eudesmol + α-Eudesmol | 1646 | 10.32 ± 1.00 | 11.81 ± 0.29 |
81 | 7-epi-α-Eudesmol | 1652 | 0.10 ± 0.00 | 0.09 ± 0.00 |
82 | Bulnesol | 1656 | 0.12 ± 0.00 | - |
83 | α-Eudesmol acetate | 1773 | - | t |
84 | Isopimara-9(11),15-diene | 1892 | 0.08 ± 0.00 | t |
85 | Sclarene | 1918 | 0.33 ± 0.02 | 0.05 ± 0.00 |
86 | Rosa-5,15-diene | 1920 | 0.98 ± 0.05 | 0.24 ± 0.03 |
87 | Kryptomeren | 1923 | 0.24 ± 0.01 | 0.06 ± 0.00 |
88 | Pimaradiene | 1934 | 0.35 ± 0.01 | 0.07 ± 0.00 |
89 | Sandaracopimara-8(14),15-diene | 1953 | 0.23 ± 0.00 | 0.08 ± 0.00 |
90 | Phyllocladene | 2009 | 6.54 ± 0.09 | 1.32 ± 0.01 |
91 | Kaur-16-ene | 2032 | - | 0.07 ± 0.00 |
92 | Abietatriene | 2040 | 0.16 ± 0.01 | 0.09 ± 0.00 |
93 | Nezukol | 2119 | 1.77 ± 0.03 | 0.45 ± 0.02 |
94 | Sandaracopimarinal | 2169 | 0.13 ± 0.01 | 0.18 ± 0.01 |
95 | Phyllocladanol | 2198 | t | 0.16 ± 0.01 |
96 | 6,7-Dehydroferruginol | 2301 | t | 0.12 ± 0.00 |
97 | trans-Ferruginol | 2304 | 0.09 ± 0.00 | 0.12 ± 0.00 |
Identified components (%) | 99.24 ± 0.89 | 98.44 ± 1.29 | ||
Unidentified components (%) | 0.76 ± 0.00 | 1.56 ± 0.01 | ||
Grouped components (%) | ||||
1–20 | Monoterpene hydrocarbons | 36.93 ± 1.27 | 59.87 ± 0.04 | |
21–43 | Oxygen-containing monoterpenes | 14.91 ± 0.94 | 9.26 ± 0.63 | |
44–63 | Sesquiterpene hydrocarbons | 0.84 ± 0.04 | 2.57 ± 0.13 | |
64–83 | Oxygen-containing sesquiterpenes | 35.60 ± 1.33 | 23.71 ± 0.61 | |
84–92 | Diterpene hydrocarbons | 8.91 ± 0.05 | 2.00 ± 0.03 | |
93–97 | Oxygen-containing diterpenes | 2.05 ± 0.04 | 1.03 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janeiro, A.; Lima, A.; Arruda, F.; Wortham, T.; Rodrigues, T.; Baptista, J.; Lima, E. Essential Oils from Azorean Cryptomeria japonica Female Cones at Different Developmental Stages: Variations in the Yields and Chemical Compositions. Separations 2024, 11, 62. https://doi.org/10.3390/separations11020062
Janeiro A, Lima A, Arruda F, Wortham T, Rodrigues T, Baptista J, Lima E. Essential Oils from Azorean Cryptomeria japonica Female Cones at Different Developmental Stages: Variations in the Yields and Chemical Compositions. Separations. 2024; 11(2):62. https://doi.org/10.3390/separations11020062
Chicago/Turabian StyleJaneiro, Alexandre, Ana Lima, Filipe Arruda, Tanner Wortham, Tânia Rodrigues, José Baptista, and Elisabete Lima. 2024. "Essential Oils from Azorean Cryptomeria japonica Female Cones at Different Developmental Stages: Variations in the Yields and Chemical Compositions" Separations 11, no. 2: 62. https://doi.org/10.3390/separations11020062
APA StyleJaneiro, A., Lima, A., Arruda, F., Wortham, T., Rodrigues, T., Baptista, J., & Lima, E. (2024). Essential Oils from Azorean Cryptomeria japonica Female Cones at Different Developmental Stages: Variations in the Yields and Chemical Compositions. Separations, 11(2), 62. https://doi.org/10.3390/separations11020062