Enhanced Photocatalytic and Filtration Performance of TiO2-Ag Composite-Coated Membrane Used for the Separation of Oil Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of the Nanoparticles
2.2. Modification of the Membranes with TiO2 and TiO2-Ag Nanomaterials
2.3. Production of Oil Emulsions and Filtration Experiments
2.4. Characterization of the Membrane Surface
2.5. Photocatalytic Experiments
3. Results
3.1. Photocatalytic Activity of the Modified Membranes
3.2. Filtration of the Oil-in-Water Emulsions with the Different Membranes
3.3. Comparison of the Main Separation Results with Other Relevant Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasemset, S.; Lee, A.; Miller, D.J.; Freeman, B.D.; Sharma, M.M. Effect of Polydopamine Deposition Conditions on Fouling Resistance, Physical Properties, and Permeation Properties of Reverse Osmosis Membranes in Oil/Water Separation. J. Membr. Sci. 2013, 425–426, 208–216. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of Coagulation/Flocculation in Oily Wastewater Treatment: A Review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Abuhasel, K.; Kchaou, M.; Alquraish, M.; Munusamy, Y.; Jeng, Y.T. Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. Water 2021, 13, 980. [Google Scholar] [CrossRef]
- Putatunda, S.; Bhattacharya, S.; Sen, D.; Bhattacharjee, C. A Review on the Application of Different Treatment Processes for Emulsified Oily Wastewater. Int. J. Environ. Sci. Technol. 2018, 16, 2525–2536. [Google Scholar] [CrossRef]
- Kundu, P.; Mishra, I.M. Treatment and Reclamation of Hydrocarbon-Bearing Oily Wastewater as a Hazardous Pollutant by Different Processes and Technologies: A State-of-the-Art Review. Rev. Chem. Eng. 2018, 35, 73–108. [Google Scholar] [CrossRef]
- Radelyuk, I.; Tussupova, K.; Zhapargazinova, K. Impact of Oily Wastewater for Public Health in Rural Area: A Case Study of Kazakhstan; Copernicus GmbH: Göttingen, Germany, 2020. [Google Scholar]
- Meneceur, S.; Bouafia, A.; Laouini, S.E.; Mohammed, H.A.; Daoudi, H.; Chami, S.; Hasan, G.G.; Abdullah, J.A.A.; Salmi, C. Removal Efficiency of Heavy Metals, Oily in Water, Total Suspended Solids, and Chemical Oxygen Demand from Industrial Petroleum Wastewater by Modern Green Nanocomposite Methods. J. Environ. Chem. Eng. 2023, 11, 111209. [Google Scholar] [CrossRef]
- Nascimento, B.Z.; Muniz, E.P.; Bueno Cotta, A.J.; Couto Oliveira, F.D.; Sérgio da Silva Porto, P. Oily Wastewater Treatment by a Continuous Flow Electrocoagulation Reactor with Polarity Switch: Assessment of the Relation between Process Variables and the Aluminum Released to the Environment. J. Environ. Manag. 2023, 347, 119072. [Google Scholar] [CrossRef] [PubMed]
- Teow, Y.H.; Isma Nordin, P.M.; Ahmad Juanda, N.I.; Mohd Shafi, M.A.; Krishnan, P. A Review on Adsorption Process for the Treatment of Oily Wastewater. Adv. Environ. Eng. Res. 2023, 4, 016. [Google Scholar] [CrossRef]
- Elmobarak, W.F.; Hameed, B.H.; Almomani, F.; Abdullah, A.Z. A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. Catalysts 2021, 11, 782. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Boyraz, E.; Maryska, J.; Kucerova, K. A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. Materials 2020, 13, 493. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Li, J.; Xu, Y.; Xin, H. Effect of Interface Structure and Behavior on the Fluid Flow Characteristics and Phase Interaction in the Petroleum Industry: State of the Art Review and Outlook. Energy Fuels 2023, 37, 9914–9937. [Google Scholar] [CrossRef]
- Ni, P.; Zeng, J.; Chen, H.; Yang, F.; Yi, X. Effect of Different Factors on Treatment of Oily Wastewater by TiO2/Al2O3-PVDF Ultrafiltration Membrane. Environ. Technol. 2021, 43, 2981–2989. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, Y.; Gong, Y.; Li, W.; Li, Z. Efficient Natural Organic Matter Removal from Water Using Nano-MgO Coupled with Microfiltration Membrane Separation. Sci. Total Environ. 2020, 711, 135120. [Google Scholar] [CrossRef] [PubMed]
- Kusworo, T.D.; Kumoro, A.C.; Aryanti, N.; Utomo, D.P. Removal of Organic Pollutants from Rubber Wastewater Using Hydrophilic Nanocomposite rGO-ZnO/PES Hybrid Membranes. J. Environ. Chem. Eng. 2021, 9, 106421. [Google Scholar] [CrossRef]
- Alkindy, M.B.; Naddeo, V.; Banat, F.; Hasan, S.W. Synthesis of Polyethersulfone (PES)/GO-SiO2 Mixed Matrix Membranes for Oily Wastewater Treatment. Water Sci. Technol. 2019, 81, 1354–1364. [Google Scholar] [CrossRef]
- Wang, X.; Sun, K.; Zhang, G.; Yang, F.; Lin, S.; Dong, Y. Robust Zirconia Ceramic Membrane with Exceptional Performance for Purifying Nano-Emulsion Oily Wastewater. Water Res. 2022, 208, 117859. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Rathilal, S.; Asante-Sackey, D.; Chollom, M.N. Prospects of Synthesized Magnetic TiO2-Based Membranes for Wastewater Treatment: A Review. Materials 2021, 14, 3524. [Google Scholar] [CrossRef]
- Sagir, M.; Tahir, M.B.; Akram, J.; Tahir, M.S.; Waheed, U. Nanoparticles and Significance of Photocatalytic Nanoparticles in Wastewater Treatment: A Review. Curr. Anal. Chem. 2020, 17, 38–48. [Google Scholar] [CrossRef]
- Nascimbén Santos, É.; László, Z.; Hodúr, C.; Arthanareeswaran, G.; Veréb, G. Photocatalytic Membrane Filtration and Its Advantages over Conventional Approaches in the Treatment of Oily Wastewater: A Review. Asia-Pac. J. Chem. Eng. 2020, 15, e2533. [Google Scholar] [CrossRef]
- Panda, S.R.; Bhandaru, N.; Mukherjee, R.; De, S. Ultrafiltration of Oily Waste Water: Contribution of Surface Roughness in Membrane Properties and Fouling Characteristics of Polyacrylonitrile Membranes. Can. J. Chem. Eng. 2015, 93, 2031–2042. [Google Scholar] [CrossRef]
- Shahruddin, M.Z.; Zakaria, N.; Diana Junaidi, N.F.; Alias, N.H.; Othman, N.H. Study of the Effectiveness of Titanium Dioxide (TiO2) Nanoparticle in Polyethersulfone (PES) Composite Membrane for Removal of Oil in Oily Wastewater. J. Appl. Membr. Sci. Amp; Technol. 2017, 19, 33–42. [Google Scholar] [CrossRef]
- Lin, A.; Shao, S.; Li, H.; Yang, D.; Kong, Y. Preparation and Characterization of a New Negatively Charged Polytetrafluoroethylene Membrane for Treating Oilfield Wastewater. J. Membr. Sci. 2011, 371, 286–292. [Google Scholar] [CrossRef]
- Fekete, L.; Fazekas, Á.F.; Hodúr, C.; László, Z.; Ágoston, Á.; Janovák, L.; Gyulavári, T.; Pap, Z.; Hernadi, K.; Veréb, G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes. Membranes 2023, 13, 209. [Google Scholar] [CrossRef] [PubMed]
- Albiter, E.; Valenzuela, M.A.; Alfaro, S.; Valverde-Aguilar, G.; Martínez-Pallares, F.M. Photocatalytic Deposition of Ag Nanoparticles on TiO2: Metal Precursor Effect on the Structural and Photoactivity Properties. J. Saudi Chem. Soc. 2015, 19, 563–573. [Google Scholar] [CrossRef]
- Tiwari, A.; Shukla, A.; Lalliansanga; Tiwari, D.; Lee, S.M. Nanocomposite Thin Films Ag0(NP)/TiO2 in the Efficient Removal of Micro-Pollutants from Aqueous Solutions: A Case Study of Tetracycline and Sulfamethoxazole Removal. J. Environ. Manag. 2018, 220, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Aoudjit, L.; Salazar, H.; Zioui, D.; Sebti, A.; Martins, P.M.; Lanceros-Mendez, S. Reusable Ag@TiO2-Based Photocatalytic Nanocomposite Membranes for Solar Degradation of Contaminants of Emerging Concern. Polymers 2021, 13, 3718. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.; Belessiotis, G.V.; Antoniadou, M.; Kaltzoglou, A.; Sakellis, E.; Katsaros, F.; Sygellou, L.; Arfanis, M.K.; Salama, T.M.; Falaras, P. Silver Decorated TiO2/g-C3N4 Bifunctional Nanocomposites for Photocatalytic Elimination of Water Pollutants under UV and Artificial Solar Light. Results Eng. 2022, 14, 100470. [Google Scholar] [CrossRef]
- Leong, K.H.; Gan, B.L.; Ibrahim, S.; Saravanan, P. Synthesis of Surface Plasmon Resonance (SPR) Triggered Ag/TiO2 Photocatalyst for Degradation of Endocrine Disturbing Compounds. Appl. Surf. Sci. 2014, 319, 128–135. [Google Scholar] [CrossRef]
- Hedberg, J.; Lundin, M.; Lowe, T.; Blomberg, E.; Wold, S.; Wallinder, I.O. Interactions between Surfactants and Silver Nanoparticles of Varying Charge. J. Colloid Interface Sci. 2012, 369, 193–201. [Google Scholar] [CrossRef]
- Sujatha, V.; Kaviyasri, G.; Venkatesan, A.; Thirunavukkarasu, C.; Acharya, S.; Bin Dayel, S.; Al-Ghamdi, S.; Hassan Abdelzaher, M.; Shahid, M.; Ramesh, T. Biomimetic Formation of Silver Oxide Nanoparticles through Diospyros Montana Bark Extract: Its Application in Dye Degradation, Antibacterial and Anticancer Effect in Human Hepatocellular Carcinoma Cells. J. King Saud Univ. Sci. 2023, 35, 102563. [Google Scholar] [CrossRef]
- Chinni, S.V.; Gopinath, S.C.B.; Anbu, P.; Fuloria, N.K.; Fuloria, S.; Mariappan, P.; Krusnamurthy, K.; Veeranjaneya Reddy, L.; Ramachawolran, G.; Sreeramanan, S.; et al. Characterization and Antibacterial Response of Silver Nanoparticles Biosynthesized Using an Ethanolic Extract of Coccinia Indica Leaves. Crystals 2021, 11, 97. [Google Scholar] [CrossRef]
- Lopez-Carrizales, M.; Pérez-Díaz, M.A.; Mendoza-Mendoza, E.; Peralta-Rodríguez, R.D.; Ojeda-Galván, H.J.; Portales-Pérez, D.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Martinez-Gutierrez, F. Green, Novel, and One-Step Synthesis of Silver Oxide Nanoparticles: Antimicrobial Activity, Synergism with Antibiotics, and Cytotoxic Studies. New J. Chem. 2022, 46, 17841–17853. [Google Scholar] [CrossRef]
- Muthukumar, H.; Palanirajan, S.K.; Shanmugam, M.K.; Arivalagan, P.; Gummadi, S.N. Photocatalytic Degradation of Caffeine and E. Coli Inactivation Using Silver Oxide Nanoparticles Obtained by a Facile Green Co-Reduction Method. Clean Technol. Environ. Policy 2021, 24, 1087–1098. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, X.; Zhang, W.; Zhang, S.; Su, H.; Tan, T. Visible-Light-Mediated Synergistic Photocatalytic Antimicrobial Effects and Mechanism of Ag-Nanoparticles@chitosan–TiO2 Organic–Inorganic Composites for Water Disinfection. Appl. Catal. B Environ. 2015, 170–171, 255–262. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, D.; Cho, M.; Lee, S.S.; Zhang, F.; Biswas, P.; Fortner, J.D. In Situ Photocatalytic Synthesis of Ag Nanoparticles (nAg) by Crumpled Graphene Oxide Composite Membranes for Filtration and Disinfection Applications. Environ. Sci. Technol. 2016, 50, 2514–2521. [Google Scholar] [CrossRef] [PubMed]
- Flak, D.; Braun, A.; Mun, B.S.; Park, J.B.; Parlinska-Wojtan, M.; Graule, T.; Rekas, M. Spectroscopic Assessment of the Role of Hydrogen in Surface Defects, in the Electronic Structure and Transport Properties of TiO2, ZnO and SnO2 nanoparticles. Phys. Chem. Chem. Phys. 2013, 15, 1417–1430. [Google Scholar] [CrossRef]
- Nascimben Santos, E.; Ágoston, Á.; Kertész, S.; Hodúr, C.; László, Z.; Pap, Z.; Kása, Z.; Alapi, T.; Krishnan, S.A.G.; Arthanareeswaran, G.; et al. Investigation of the Applicability of TiO2, BiVO4, and WO3 Nanomaterials for Advanced Photocatalytic Membranes Used for Oil-in-water Emulsion Separation. Asia-Pac. J. Chem. Eng. 2020, 15, e2549. [Google Scholar] [CrossRef]
- Tansel, B.; Bao, W.Y.; Tansel, I.N. Characterization of Fouling Kinetics in Ultrafiltration Systems by Resistances in Series Model. Desalination 2000, 129, 7–14. [Google Scholar] [CrossRef]
- Li, N.N.; Fane, A.G.; Ho, W.S.W.; Matsuura, T. Advanced Membrane Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9781118211540. [Google Scholar]
- Xie, W.; Li, Y.; Sun, W.; Huang, J.; Xie, H.; Zhao, X. Surface Modification of ZnO with Ag Improves Its Photocatalytic Efficiency and Photostability. J. Photochem. Photobiol. A Chem. 2010, 216, 149–155. [Google Scholar] [CrossRef]
- Liu, S.X.; Qu, Z.P.; Han, X.W.; Sun, C.L. A Mechanism for Enhanced Photocatalytic Activity of Silver-Loaded Titanium Dioxide. Catal. Today 2004, 93–95, 877–884. [Google Scholar] [CrossRef]
- Rebelo, R.; Manninen, N.K.; Fialho, L.; Henriques, M.; Carvalho, S. Morphology and Oxygen Incorporation Effect on Antimicrobial Activity of Silver Thin Films. Appl. Surf. Sci. 2016, 371, 1–8. [Google Scholar] [CrossRef]
- Rafieerad, A.R.; Bushroa, A.R.; Nasiri-Tabrizi, B.; Vadivelu, J.; Basirun, W.J. Silver/Silver Oxide Nanorod Arrays from Physical Vapor Deposition and Subsequent Anodization Processes. Surf. Coat. Technol. 2016, 302, 275–283. [Google Scholar] [CrossRef]
- Mirzaeian, M.; Ogwu, A.A.; Jirandehi, H.F.; Aidarova, S.; Ospanova, Z.; Tsendzughul, N. Surface Characteristics of Silver Oxide Thin Film Electrodes for Supercapacitor Applications. Colloids Surf. A Physicochem. Eng. Asp. 2017, 519, 223–230. [Google Scholar] [CrossRef]
- Restrepo, C.V.; Villa, C.C. Synthesis of Silver Nanoparticles, Influence of Capping Agents, and Dependence on Size and Shape: A Review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
- Noriega-Treviño, M.E.; Quintero-González, C.C.; Morales-Sánchez, J.E.; Guajardo-Pacheco, J.M.; Compeán-Jasso, M.E.; Ruiz, F. Aggregation Study of Ag-TiO2 Composites. Mater. Sci. Appl. 2011, 2, 1719–1723. [Google Scholar] [CrossRef]
- Torres-Mendieta, R.; Yalcinkaya, F.; Boyraz, E.; Havelka, O.; Wacławek, S.; Maryška, J.; Černík, M.; Bryjak, M. PVDF Nano-fibrous Membranes Modified via Laser-Synthesized Ag Nanoparticles for a Cleaner Oily Water Separation. Appl. Surf. Sci. 2020, 526, 146575. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Z.; Li, F.; Yang, Y.; Pan, Y.; Peng, Y.; Yang, X.; Zeng, G. A Novel Photocatalytic Membrane Decorated with RGO-Ag-TiO2 for Dye Degradation and Oil–Water Emulsion Separation. J. Chem. Technol. Biotechnol. 2017, 93, 761–775. [Google Scholar] [CrossRef]
- Qian, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. TiO2/Sulfonated Graphene Oxide/Ag Nanoparticle Membrane: In Situ Separation and Photodegradation of Oil/Water Emulsions. J. Membr. Sci. 2018, 554, 16–25. [Google Scholar] [CrossRef]
- Avornyo, A.; Thanigaivelan, A.; Krishnamoorthy, R.; Hassan, S.W.; Banat, F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. Membranes 2023, 13, 176. [Google Scholar] [CrossRef]
COD (mg·L−1) | Turbidity (NTU) | TOG/TPH (mg·L−1) | pH | Zeta Potential (mV) | Average Oil Droplet Size (nm) |
---|---|---|---|---|---|
549 ± 12 | 280 ± 9 | 108 ± 2.5 | 6.2 ± 0.1 | −43.3 ± 7.1 | 587 |
Membranes | Contact Angles (°) | Jbefore (L m−2 h−1) | Jeffluent (L m−2 h−1) | Jafter (L m−2 h−1) | FRR (%) | FDR (%) | Turbidity Reduction (%) | COD Reduction (%) | Zeta Potential at pH~6 (mV) |
---|---|---|---|---|---|---|---|---|---|
PVDF_neat | 46.6 ± 0.9 | 5638 | 24 | 2567 | 45.5 | 99.6 | 97.3 | 94.4 | −11 ± 0.7 |
PVDF_TiO2 | 0 ± 0.3 | 3608 | 37 | 2572 | 71.3 | 99 | 99 | 96.4 | −25 ± 3.4 |
PVDF_TiO2-Ag | 13.5 ± 0.7 | 2285 | 83 | 2112 | 92.4 | 96.4 | 99.9 | 98.5 | −37.6 ± 1.6 |
Membrane or Underlayer | Modifier Nanomaterial | Type of Oil (Concentration) | Pressure | Surfactants (Concentration) | Water Flux (L m−2 h−1) | Effluent Flux (L m−2 h−1) | Rejection (%) | Fouling Indicators | |
---|---|---|---|---|---|---|---|---|---|
[48] | PVDF | Ag | vegetable oil (w/w = 1/1 o:w) | 0.002 MPa | Triton X100 | unmodified: -modified: - | unmodified: ~12 modified: ~45 | >96 | unmodified: 22.4 (FRR) modified: 38.1 (FRR)—after ten runs |
[49] | CA | RGO-Ag-TiO2 | n.a. (v/v = 1/100 o:w) | 0.09 MPa (vacuum) | SDS (0.4 g·L−1) | unmodified: 20,472 modified: 191 | ~30 | >97 | no obvious decline after six cycled experiments |
[50] | Copper mesh | TiO2-SGO-Ag | gasoline, n-heptane (v/v = 1/10 o:w) | gravity | CTAB (0.5 g·L−1) | - | ~50 | >99 | no obvious decline after ten cycled experiments |
[51] | Ceramic (TiO2/ZrO2) | Ag-CuO | gasoline (1000 ppm) | 0.1 MPa (vacuum) | Tween-20 (0.5 g·L−1) | unmodified: ~230 modified: ~300 | unmodified: ~130 modified: ~220 | >97 | unmodified: 77.19 (FRR) modified: 90.62 (FRR) |
Current study | PVDF | TiO2-Ag | crude oil (400 ppm) | 0.1 MP | - | unmodified: 5638 modified: 2285 | unmodified: 24 modified: 83 | >98.5 | unmodified: 45.5 (FRR) modified: 92.4 (FRR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazekas, Á.F.; Gyulavári, T.; Ágoston, Á.; Janovák, L.; Kopniczky, J.; László, Z.; Veréb, G. Enhanced Photocatalytic and Filtration Performance of TiO2-Ag Composite-Coated Membrane Used for the Separation of Oil Emulsions. Separations 2024, 11, 112. https://doi.org/10.3390/separations11040112
Fazekas ÁF, Gyulavári T, Ágoston Á, Janovák L, Kopniczky J, László Z, Veréb G. Enhanced Photocatalytic and Filtration Performance of TiO2-Ag Composite-Coated Membrane Used for the Separation of Oil Emulsions. Separations. 2024; 11(4):112. https://doi.org/10.3390/separations11040112
Chicago/Turabian StyleFazekas, Ákos Ferenc, Tamás Gyulavári, Áron Ágoston, László Janovák, Judit Kopniczky, Zsuzsanna László, and Gábor Veréb. 2024. "Enhanced Photocatalytic and Filtration Performance of TiO2-Ag Composite-Coated Membrane Used for the Separation of Oil Emulsions" Separations 11, no. 4: 112. https://doi.org/10.3390/separations11040112
APA StyleFazekas, Á. F., Gyulavári, T., Ágoston, Á., Janovák, L., Kopniczky, J., László, Z., & Veréb, G. (2024). Enhanced Photocatalytic and Filtration Performance of TiO2-Ag Composite-Coated Membrane Used for the Separation of Oil Emulsions. Separations, 11(4), 112. https://doi.org/10.3390/separations11040112