The Removal of As(III) Using a Natural Laterite Fixed-Bed Column Intercalated with Activated Carbon: Solving the Clogging Problem to Achieve Better Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Experimental Methods
2.3.1. Characterization of Adsorbent Materials
Physical and Chemical Properties of Laterite Sample
Preparation and Characterization of Activated Carbon
2.3.2. Fixed-Bed Column Investigations
Column Experimental Set Up
Fixed-Bed Column Data Analysis
2.3.3. Hydraulic Conductivities
2.4. Statistical Analysis
3. Results and Discussion
3.1. Free Swelling Index of DA Laterite
3.2. Characterization of Activated Carbon
3.2.1. Physicochemical Characteristics
3.2.2. Structural Characteristics
3.3. Investigation of Fixed-Bed Column Packed with Only DA Laterite
3.3.1. Effect of Bed Height on Clogging
3.3.2. Effect of Particle Size on Clogging
3.4. Investigation of Column Packed with Alternating Layers of Laterite
3.4.1. Comparative Study of Three Fixed-Bed Columns: Packed with Only Laterite (DA), Laterite Intercalated with Activated Carbon (DA/BA-AC), and Packed with Only Activated Carbon (BA-AC)
3.4.2. Comparative Study of Three Fixed-Columns: Laterite Column Intercalated with Activated Carbon (DA/BA-AC), Laterite Column Intercalated with Fine Sand (DA/BD), and Laterite Column Intercalated with Gravel
3.4.3. Hydraulic Measurements
3.4.4. The Effect of the Bed Height on the Breakthrough Curve
3.4.5. Dynamic Models
Modeling from Bohart–Adams Equations
Application of BDST (Bed Depth Service Time) Mode
3.4.6. The Effect of the Initial Concentration of As(III) on the Breakthrough Curve
3.4.7. Changes in the Functional Groups of DA Laterite at the Breakthrough Point after the Adsorption of As(III)
3.4.8. A Comparison of the Adsorption Capacities Achieved for the Column Packed with DA Laterite Intercalated with Activated Carbon (Current Study) with Those Reported in the Literature
3.4.9. A Proposal of the Design of Household Arsenic Filters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasir, M.; Muchlisin, Z.A.; Saiful, S.; Suhendrayatna, S.; Munira, M.; Iqhrammullah, M. Heavy metals in the water, sediment, and fish harvested from the krueng sabee river aceh Province. Indonesia. J. Ecol. Eng. 2021, 22, 224–231. [Google Scholar] [CrossRef]
- Khairunnash, A.; Muhammad, I.; Rayyan, R.D.; Aulia, A.; Qisthi, M.A.; Agnia, P.; Intan, Q.; Kana, A.S.N.P. Heavy metal contamination in aquatic and terrestrial animals resulted from anthropogenic activities in Indonesia. Asian J. Water Environ. Pollut. 2022, 19, 1–8. [Google Scholar] [CrossRef]
- Glodowska, M.; Stopelli, E.; Thi, D.V.; Pham, T.K.T.; Pham, H.V.; Michael, B.; Andreas, K.; Sara, K. Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. J. Hazard. Mater. 2020, 407, 124398. [Google Scholar] [CrossRef]
- Liu, F.; Yang, W.; Li, W.; Zhao, G.C. Simultaneous oxidation and sequestration of arsenic (III) from aqueous solution by copper aluminate with peroxymonosulfate: A fast and efficient heterogeneous process. ACS Omega 2021, 6, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, S.; Balarama, V.; Mullapudi, K.; Kora, A.J.; Kumar, S. Covellite (CuS) as a novel adsorbent for the direct removal of As(III) and As(V) simultaneously from groundwater. Sep. Sci. Technol. 2021, 57, 683–697. [Google Scholar] [CrossRef]
- Sakira, A.K.; Somé, I.T.; Ziemons, E.; Dejaegher, B.; Mertens, D.; Hubert, P.; Kauffmann, J.M. Determination of arsenic (III) at a nanogold modified solid carbon paste electrode. Electroanalysis 2015, 27, 309–316. [Google Scholar] [CrossRef]
- He, X.; Deng, F.; Shen, T.; Yang, L.; Chen, D.; Luo, J.; Luo, X.; Min, X.; Wang, F. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. J. Colloid. Interface Sci. 2019, 539, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Escalera, A.; Pous, N.; Chiluiza-Ramos, P.; Korth, B.; Harnisch, F.; Bañeras, L.; Balaguer, M.D.; Puig, S. Electrobioremediation of nitrate and arsenite polluted groundwater. Water Res. 2021, 190, 116748. [Google Scholar] [CrossRef] [PubMed]
- Garbinski, D.; Rosen, B.P.; Chen, J. Pathways of arsenic uptake and efflux. Environ. Int. 2019, 126, 585–597. [Google Scholar] [CrossRef]
- Yaqub, M.; Lee, S.H. Experimental and neural network modeling of micellar enhanced ultrafiltration for arsenic removal from aqueous solution. Environ. Eng. Res. 2020, 26, 190261. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Sahu, O. Arsenate and fluoride removal from groundwater by sawdust impregnated ferric hydroxide and activated alumina (SFAA). Groundw. Sustain. 2021, 12, 100490. [Google Scholar] [CrossRef]
- Karki, S.; Timalsina, H.; Budhathoki, S.; Budhathoki, S. Arsenic removal from groundwater using acid-activated laterite. Groundw. Sustain. Dev. 2021, 18, 100769. [Google Scholar] [CrossRef]
- Gong, X.J.; Li, Y.S.; Dong, Y.Q.; Li, W.G. Arsenic adsorption by innovative iron/calcium in-situ-impregnated mesoporous activated carbons from low-temperature water and effects of the presence of humic acids. Chemosphere 2020, 250, 126275. [Google Scholar] [CrossRef] [PubMed]
- Alka, S.; Shahir, S.; Ibrahim, N.; Ndejiko, M.J.; Vo, D.-V.N.; Manan, F.A. Arsenic removal technologies and future trends: A mini review. J. Clean. Prod. 2021, 278, 123805. [Google Scholar] [CrossRef]
- Türkmen, D.; Türkmen, M.; Akgönüllü, S.; Denizli, A. Development of ion imprinted based magnetic nanoparticles for selective removal of arsenic(III) and arsenic(V) from Wastewater. Sep. Sci. Technol. 2021, 57, 990–999. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.; Zhu, Z.; Zhang, X.; Wang, D.; Xie, L. Fixed-bed column adsorption of arsenic(V) by porous composite of magnetite/hematite/carbon with eucalyptus wood microstructure. J. Environ. Eng. Landsc. Manag. 2018, 26, 38–56. [Google Scholar] [CrossRef]
- Rahmi, R.; Lelifajri, L.; Iqbal, M.; Fathurrahmi, F.; Jalaluddin, J.; Sembiring, R.; Farida, M.; Iqhrammullah, M. Preparation, characterization and adsorption Study of PEDGE-Cross-linked magnetic chitosan (PEDGE-MCh) microspheres for Cd2+ removal. Arab. J. Sci. Eng. 2022, 1, 159–167. [Google Scholar] [CrossRef]
- Maiti, A.; DasGupta, S.; Basu, J.K.; De, S. Batch and column study: Adsorption of arsenate using untreated laterite as adsorbent. Ind. Eng. Chem. Res. 2008, 47, 1620–1629. [Google Scholar] [CrossRef]
- Maji, K.S.; Pal, A.; Pal, T.; Adak, A. Modeling and fixed-bed column adsorption of As(III) on laterite soil. J. Sep. Purif. Technol. 2007, 56, 284–290. [Google Scholar] [CrossRef]
- Maiti, A.; Thakur, B.K.; Basu, J.K.; De, S. Comparison of treated laterite as arsenic adsorbent from different locations and performance of best filter under field conditions. J. Hazard. Mater. 2013, 262, 1176–1186. [Google Scholar] [CrossRef]
- Bakouan, C. Caractérisation de Quelques Sites Latéritiques du Burkina Faso: Application à L’élimination de L’arsenic (III) et (V) Dans Les Eaux Souterraines. Thèse de Doctorat en Cotutelle Entre l’Université Ouaga I Pr JKZ et de, l’Université de Mons en Belgique. 2018, pp. 1–241. Available online: https://orbi.umons.ac.be/bitstream/20.500.12907/31806/1/Th%C3%A8se (accessed on 1 February 2018).
- Ouedraogo, R.D.; Bakouan, C.; Sorgho, B.; Guel, B. Caractérisation d’une latérite naturelle du Burkina Faso En Vue de l’élimination de l’arsenic (III) et l’arsenic (V) dans les eaux souterraines. Int. J. Biol. Chem. Sci. 2019, 13, 2959–2977. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Tran, N.H.; Vu, H.A.; Trinh, M.V.; Nguyen, T.V.; Loganathan, P.; Vigneswaran, S.; Nguyen, T.M.; Trinh, V.T.; Vu, D.L.; et al. Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam. Sci. Total Environ. 2020, 699, 134267. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Nguyen, A.T.; Loganathan, P.; Nguyen, T.V.; Vigneswaran, S.; Nguyen, T.H.H.; Nguyen, T.H. Low-Cost laterite-laden household filters for removing arsenic from groundwater in vietnam and waste management. Process Saf. Environ. Prot. 2021, 152, 154–163. [Google Scholar] [CrossRef]
- Oladoja, N.A.; Ademoroti, C.M.A. The use of fortified soil-clay as on-site system for domestic wastewater purification. Water Res. 2006, 40, 613–620. [Google Scholar] [CrossRef]
- Bonsor, H.C.; MacDonald, A.M.; Davies, J. Evidence for extreme variations in the permeability of laterite from a detailed analysis of well behaviour in Nigeria. Hydrol. Process. 2014, 28, 3563–3573. [Google Scholar] [CrossRef]
- Bali, M. Influence de l’aération du massif filtrant sur les performances épuratoires du procédé d’infiltration-percolation. Rev. Des. Sci. De L’eau 2019, 31, 365–375. [Google Scholar] [CrossRef]
- Centre Régional pour l’Eau Potable et l’Assainissement à Faible Coût (CREPA). La Déferrisation des eaux de forage: Synthèse des techniques expérimentées avec succès avec CREPA. Document Technique/CREPA. Sticht. IRC Int. Water Sanit. Cent. 1996, 1, 1–68. [Google Scholar]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and chemical cleaning of microfiltration membranes: A Mini-Review. Polymers 2021, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.Y.; Jun, S.C.; Cheon, J.Y.; Minji, P. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications. Geosci. J. 2018, 22, 667–679. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, S.; Li, X.; Wang, X.; Jia, Y. Simultaneous removal and oxidation of arsenic from water by δ-MnO2 modifie activate carbon. J. Environ. Sci. 2020, 94, 147–160. [Google Scholar] [CrossRef]
- Nikié, J.; Agbaba, J.; Watson, M.A.; Tubié, A.; Šolić, M.; Maletié, S.; Dalmacija, B. Arsenic adsorption on Fe–Mn modified granular activated carbon (GAC–FeMn): Batch and fixed-bed column studies. J. Environ. Sci. Health-Part. A Toxic/Hazard. Subst. Environ. Eng. 2019, 54, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Meez, E.; Tolkou, A.K.; Giannakoudakis, D.A.; Katsoyiannis, I.A.; Kyzas, G.Z. Activated carbons for arsenic removal from natural waters and wastewaters: A Review. Water 2021, 13, 2982. [Google Scholar] [CrossRef]
- Maazou, B.D.S.; Halidou, I.H.; Mousbahou, M.; Alma, M.; Adamou, Z. Elimination du chrome par du charbon actif élaboré et caractérisé à partir de la coque du noyau de Balanites Aegyptiaca élimination of the chromium by the élaborate activated coal and characterized from the cockle of the core of balanites aegyptiaca. Int. J. Biol. Chem. Sci. 2017, 11, 3050–3065. [Google Scholar] [CrossRef]
- Essis, A.; Yao, Y.A.; Yao, K.U.; Albert, T. Optimisation de la préparation de charbons activés à base d’épis de maïs et caractérisation physico-chimique. Int. J. Innov. Appl. Stud. 2020, 29, 1161–1171. [Google Scholar]
- Clotaire, M.; Avom, J.; Mpon, R. Evaluation des propriétés de charbons actifs de résidus de moabi (baillonella toxisperma pierre) par adsorption d‘iode en solution aqueuse. J. Water Sci. 2019, 29, 51–60. [Google Scholar] [CrossRef]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption of lead on lentil husk in fixed bed column bioreactor. Bioresour. Technol. 2019, 283, 86–95. [Google Scholar] [CrossRef]
- Ha, H.T.; Phong, P.T.; Minh, T.D. Synthesis of iron oxide nanoparticle functionalized activated carbon and its applications in arsenic adsorption. J. Anal. Methods Chem. 2021, 2021, 6668490. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A.K. Analyse et modélisation du fonctionnement des colonnes à lit fixe sur l’élimination de l’As(V) par adsorption sur du ciment revêtu d’oxyde de fer (IOCC). J. Colloid. Interface Sci. 2005, 290, 52–60. [Google Scholar] [CrossRef]
- Sruthi, P.; Reddy, P. Effect of Alkali Concentration on swelling characteristics of transformed kaolinitic. Clays Clay Miner. 2020, 68, 373–393. [Google Scholar] [CrossRef]
- Nguyen, T.A.H.; Ngo, H.H.H.; Guo, W.S.; Nguyen, T.T.; Vu, N.D.; Soda, S.; Nguyen, T.H.H.; Nguyen, M.K.; Tran, T.V.H.; Dang, T.T.; et al. White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphorus removal from wastewater. Sci. Total Environ. 2020, 741, 140483. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Activated carbons from golden shower upon different chemical activation methods: Synthesis and characterizations. J. Adsorpt. Sci. Technol. 2017, 36, 95–113. [Google Scholar] [CrossRef]
- Boakye, P.; Tran, H.N.; Lee, D.S.; Woo, S.H. Effect of water washing pretreatment on property and adsorption capacity of macroalgae-derived biochar. J. Environ. Manag. 2019, 233, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Mahatheva, K.; Loganathan, P.; Vinh, T.; Nur, T. Iron-Impregnated granular activated carbon for arsenic removal: Application to practical column fi lters. J. Environ. Man. 2019, 239, 235–243. [Google Scholar]
- Vieira, W.T.; Bispo, M.D.; Farias, S.d.M.; Almeida, A.d.S.V.d.; da Silva, T.L.; Vieira, M.G.A.; Soletti, J.I.; Balliano, T.L. Activated carbon from macauba endocarp (Acrocomia aculeate) for removal of atrazine: Experimental and theoretical investigation using descriptors based on DFT. J. Environ. Chem. Eng. 2021, 9, 105–155. [Google Scholar] [CrossRef]
- Rawat, S.; Maiti, A. A hybrid ultrafiltration membrane process using a low-cost laterite based adsorbent for efficient arsenic removal. Chemosphere 2023, 316, 1376–1385. [Google Scholar] [CrossRef]
- Kalenda, G.M. Comportement des sols latéritiques compactés dans les remblais et digues de retenue des rejets miniers du Katanga (RDC). Thèse de Doctorat à, l’Université Catholite de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2014; p. 275. [Google Scholar]
- Podder, M.S.; Majumder, C.B. Fixed-Bed column study for As(III) and As(V) removal and recovery by bacterial cells immobilized on sawdust/MnFe2O4 Composite. Biochem. Eng. J. 2016, 105, 114–135. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Efficient removal of arsenic from aqueous solution by continuous adsorption onto iron-coated cork granulates. Sustainability 2022, 432, 128657. [Google Scholar] [CrossRef]
- Pantić, K.; Bajić, Z.J.; Veličković, Z.S.; Nešić, J.Z.; Đolić, M.B.; Tomić, N.Z.; Marinković, A.D. Arsenic removal by copper-impregnated natural mineral tufa part II: A kinetics and column adsorption study. Environ. Sci. Pollut. Res. 2019, 26, 24143–24161. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C.; Kumar, V. Remova l of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. J. Hazard. Mater. 2005, 125, 211–220. [Google Scholar] [CrossRef]
- Vijayasri, K.; Tiwari, A.; Chaudhari, C.V. Fixed-bed column studies on removal of As(V) by radiation grafted polymer ‘Chitosan-g-MAETC. Anal. Chem. Lett. 2019, 9, 486–503. [Google Scholar] [CrossRef]
- Bretzler, A.; Nikiema, J.; Lalanne, F.; Hoffmanna, L.; Biswakarma, J.; Siebenaller, L.; Demange, D.; Schirmer, M.; Hug, S.J. Arsenic removal with zero-valent iron filters in Burkina Faso: Field and laboratory insights. Sci. Total Environ. 2020, 737, 39–66. [Google Scholar] [CrossRef] [PubMed]
- Verma, L.; Singh, J. Removal of As(III) and As(V) from aqueous solution using engineered biochar: Batch and fixed-bed column study. Int. J. Environ. Sci. Technol. 2023, 20, 1961–1980. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Paripurnanda, S.R.; Kandasamy, L.J.; Nguyen, T.V.; Vigneswaran, S. Arsenic adsorption by low-cost laterite column: Longterm experiments and dynamic column modeling. Process Saf. Environ. Prot. 2022, 160, 868–875. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, L.; Xiu, Y.; Huang, K. Defluoridation in fixed-bed column filled with Zr(IV)-loaded garlic peel. Microchem. J. 2018, 145, 476–485. [Google Scholar] [CrossRef]
- Maji, K.S.; Pal, A.; Pal, T. Arsenic removal from real-life groundwater by adsorption on laterite soil. J. Hazard. Mater. 2008, 151, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; DasGupta, S.; Basu, J.K.; De, S. Adsorption of arsenite using natural laterite as adsorbent. Sep. Purif. Technol. 2007, 55, 350–359. [Google Scholar] [CrossRef]
- Maji, S.K.; Kao, Y.-H.; Wang, C.-J.; Lu, G.-S.; Wu, J.-J.; Liu, C.-W. Fixed bed adsorption of As(III) on iron-oxide-coated natural rock (IOCNR) and application to real arsenic-bearing groundwater. Chem. Eng. J. 2012, 203, 285–293. [Google Scholar] [CrossRef]
Properties | |
---|---|
pHPZC | 4.75 |
Bulk density (g/cm3) | 2.40 |
Anion exchange capacity (cmol·kg−1) | 194.74 |
BET surface area (m2/g) | 35.08 |
Chemical Composition (%) | |
---|---|
Fe2O3 | 20.40 |
Al2O3 | 19.10 |
SiO2 | 45.00 |
K2O | 0.36 |
Na2O | 0.20 |
TiO2 | 1.40 |
MgO, MnO2, BaO, CaO | Traces |
Parameter | Value |
---|---|
C (%) | 80.00 |
Iodine number (mg/g) | 869.95 |
Methylene blue number (mg/g) | 1.32 |
Surface area (SBET) (m2/g) | 666.46 |
Micropore surface area (Smic) (m2/g) | 610.70 |
Total pore volume (Vp) (cm3/g) | 0.27 |
Average pore diameter, by BET (nm) | 2.78 |
Average pore diameter, by BJH (nm) | 2.97 |
Materials | Mass (kg) | tp (min) | Vp (L) | Qtot (mg) | Qp (mg/g) | R (%) |
---|---|---|---|---|---|---|
Non-intercalated laterite bed | 0.858 | 300 | 15 | 14.85 | 0.0173 | 99 |
Laterite bed intercalated with activated carbon | 0.839 | 900 | 45 | 44.55 | 0.053 | 99 |
Non-intercalated activated carbon fixed bed | 0.444 | 1140 | 57 | 56.43 | 0.127 | 99 |
Materials | Mass (kg) | tp (min) | Vp (L) | Qtot (mg) | Qp (mg/g) | R (%) |
Laterite bed intercalated with activated carbon | 0.839 | 900 | 45 | 44.55 | 0.053 | 99 |
Laterite bed intercalated with sand | 0.913 | 240 | 12 | 11.88 | 0.013 | 99 |
Materials | A (cm2) | Hydraulic Gradient, i | Q (cm3/s) | Hydraulic Conductivity or Permeability Coefficient, K (cm/s) |
---|---|---|---|---|
Non-intercalated laterite bed | 38.4650 | 4.2500 | 0.3477 | 0.0021 |
Laterite bed intercalated with activated carbon | 38.4650 | 4.2500 | 0.725 | 0.0044 |
Non-intercalated activated carbon fixed bed | 38.4650 | 4.2500 | 35.285 | 0.215 |
Non-intercalated fixed-bed sand | 38.4650 | 4.2500 | 18.466 | 0.1129 |
Laterite bed intercalated with sand | 38.4650 | 4.2500 | 0.450 | 0.0027 |
Z (cm) | Mass (kg) | tp (min) | Vp (L) | Qtot (mg) | Qp (mg/g) | R (%) |
---|---|---|---|---|---|---|
20 | 0.839 | 900 | 45 | 44.550 | 0.053 | 99 |
30 | 1.425 | 3360 | 168 | 166.320 | 0.116 | 99 |
40 | 1.780 | 5100 | 255 | 252.450 | 0.141 | 99 |
Z (cm) | Mass (kg) | N0 (mg/L) | KAB (L·mg−1·mn−1) | R2 |
---|---|---|---|---|
20 | 0.8390 | 12.3371 | 0.0023 | 0.8874 |
30 | 1.4250 | 6.2693 | 0.0015 | 0.9761 |
40 | 1.7800 | 2.7993 | 0.0014 | 0.9809 |
Ct | Z0 (cm) | N0 (mg/L) | KB (L/mg·h) | R2 |
---|---|---|---|---|
1% C0 | 15.230 | 1335.600 | 0.086 | 0.993 |
20% C0 | 7.980 | 1450.080 | 0.046 | 0.994 |
80% C0 | 1.340 | 20,415.600 | −0.019 | 0.998 |
C0 (mg/L) | Q (mL/min) | Z (cm) | Mass (kg) | tp (h) | Vp (L) | Qtot (mg) | Qp (mg/g) | R (%) |
---|---|---|---|---|---|---|---|---|
0.5 | 50 | 40 | 1.780 | 204 | 612 | 299.268 | 0.168 | 99 |
1 | 50 | 40 | 1.780 | 85 | 255 | 252.450 | 0.141 | 99 |
2 | 50 | 40 | 1.780 | 41 | 123 | 245.870 | 0.138 | 99 |
Adsorbent | Clogging | Adsorbat | Initial Concentration (mg/L) | Minimum Depth, Zmin (cm) | Adsorption Capacity (mg/L) * | TP (h) | References |
---|---|---|---|---|---|---|---|
Laterite soil | - | As | 0.33 | - | 6.75 | [57] | |
Natural laterite (NL) | - | As(V) | 1.00 | 9.11 | 67.00 | 24.00 | [58] |
Laterite soil | - | As(III) | 0.50 | - | 108.02 | 32.00 | [19] |
Natural rocks coated with iron oxide (IOCNR) | - | As(III) | 0.60 | 9.20 | 426.55 | 63.00 | [59] |
Natural laterite (NLTT) | - | As(V) | 0.50 | - | - | - | [24] |
DA laterite | Clogging reported | As(III) | 1.00 | - | - | - | Present study |
DA laterite + BA-AC | - | As(III) | 1.00 | 15.23 | 1335.60 | 85.00 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouedraogo, R.D.; Bakouan, C.; Sakira, A.K.; Sorgho, B.; Guel, B.; Somé, T.I.; Hantson, A.-L.; Ziemons, E.; Mertens, D.; Hubert, P.; et al. The Removal of As(III) Using a Natural Laterite Fixed-Bed Column Intercalated with Activated Carbon: Solving the Clogging Problem to Achieve Better Performance. Separations 2024, 11, 129. https://doi.org/10.3390/separations11040129
Ouedraogo RD, Bakouan C, Sakira AK, Sorgho B, Guel B, Somé TI, Hantson A-L, Ziemons E, Mertens D, Hubert P, et al. The Removal of As(III) Using a Natural Laterite Fixed-Bed Column Intercalated with Activated Carbon: Solving the Clogging Problem to Achieve Better Performance. Separations. 2024; 11(4):129. https://doi.org/10.3390/separations11040129
Chicago/Turabian StyleOuedraogo, Régie Dimanche, Corneille Bakouan, Abdoul Karim Sakira, Brahima Sorgho, Boubié Guel, Touridomon Issa Somé, Anne-Lise Hantson, Eric Ziemons, Dominique Mertens, Philippe Hubert, and et al. 2024. "The Removal of As(III) Using a Natural Laterite Fixed-Bed Column Intercalated with Activated Carbon: Solving the Clogging Problem to Achieve Better Performance" Separations 11, no. 4: 129. https://doi.org/10.3390/separations11040129
APA StyleOuedraogo, R. D., Bakouan, C., Sakira, A. K., Sorgho, B., Guel, B., Somé, T. I., Hantson, A. -L., Ziemons, E., Mertens, D., Hubert, P., & Kauffmann, J. -M. (2024). The Removal of As(III) Using a Natural Laterite Fixed-Bed Column Intercalated with Activated Carbon: Solving the Clogging Problem to Achieve Better Performance. Separations, 11(4), 129. https://doi.org/10.3390/separations11040129