Phthalates: The Main Issue in Quality Control in the Beverage Industry
Abstract
:1. Introduction
2. Analytical Procedures
2.1. Analytical Issue
2.2. Analytical Procedures for the Extraction and Detection of PAEs
3. Beverages
3.1. Alcoholic Beverages
3.1.1. Wine
3.1.2. Spirits
3.1.3. Beer
3.1.4. Other Alcoholic Beverages
Beverage | Analytes | Extraction Procedure | Analytical Technique | Recovery (%) | LOD (pg µL−1) | LOQ (pg µL−1) | Ref. |
---|---|---|---|---|---|---|---|
Red and white wine | DMP, DEP, DBP, BcEP, BBP, DEHP | USVA-DLLME | GC-FID | 85–100.5 | 0.022–0.1 | 0.075–0.335 | [6] |
Tequila | DEP, DBP, BBP, DEHP, DiNP | Extraction with methanol solvent | GC-MS | N/A | 4–400 | 13–990 | [57] |
Red and white wine | DMP, DEP, DEHP, iBP, DBP, BBP | SPE with C18 sorbent | GC-MS | Red wine: 33–109 White wine: 65–92 | Red wine: 15–18 White wine: 18 | Red wine: 24–29 White wine: 29 | [58] |
Peruvian pisco (distilled from fermented grape musts spirits) | DMP, DEP, BEHP, BBP, DBP, DiDP, DiBP | SBSE | TD-GC-MS | 91–124.4 | 1.3–21 | 4.2–70 | [59] |
Greek grape marc spirits | DMP, DEP, DPP, DPhP, BBP, DBP, DEHP, DiPP, DnPP, DnOP, DiNP, DiDP | – | UHPLC-MS/MS | 81.6–109.6 | 0.3–33.3 | 1–100 | [60] |
White spirits and red wine | DiBP, DBP, BBP, DEHP | IL-DLLME | HPLC-DAD | White spirits: 88.5–103.5 Red wine: 91.6–104.6 | White: 3.1–4.2 Red: 1.5–2.2 | White: 10.3–14.0 Red: 5.0–7.3 | [61] |
Red and white wine | DMP, DEP, DiBP, DnBP, BBP, DEHP, DOP, DiNP, DiDP | Extraction with methanol solvent | HPLC-MS/MS | 60.7–121.5 | White: 500–4800 Red: 600–8800 | White: 1600–14,600 Red: 1700–26,600 | [67] |
Brandy | DBP, DEHP, DiNP | USVA-DLLME | GC-MS | 78.7–100.8 | 3–300 | 11–1000 | [68] |
Wine, juice, and milk | DEP, DBP, DEHP | HF-SPME | GC-MS | 68–115 | 0.006–0.3 | 0.02–0.1 | [72] |
Wine | DBP, DEHP, DiNP | USVA-DLLME | GC-MS | N/A | N/A | N/A | [74] |
Baijiu (distilled alcoholic Chinese beverage) | DMP, DEP, DPrP, DiBP, DnBP, BMEP, BMPP, BEEP, DAP, DnHP, BBP, DCHP, DEHP, DnOP | QuEChERS or VSLLME methods | GC-MS | 83.4–122.3 | 0.05–10.0 | 0.125–20.0 | [75] |
Ouzo (Greek alcoholic beverage) | DEHP | Extraction with n-hexane solvent | HPLC-UV | 90–97 | N/A | 60 | [76] |
Plum spirit | DMP, DEP, DiBP, DBP, BBP, DEHP, DOP | Extraction with DCM solvent | GC-MS | 92.3–98.6 | 1.17–4.30 | 3.90–14.32 | [77] |
Spirits | DMP, DEP, DiBP, DBP, DMEP, BMPP, DEEP, DPP, DHXP, BBP, DBEP, BBP, DBEP, DCHP, DPhP, DEHP, DNOP, DNP | LLE | ID-GC-MS/MS | 94.3–105.3 | 1–10 | 3.3–33 | [78] |
Alcoholic spirits | BBP, DEP, DPP, DiDP | – | MPT-MS/MS | 96.7–103 | 10–2400 | 20–7900 | [79] |
Liquor | BBP, DBP, DCHP, DnOP | D-μ-SPE | HPLC | 88.9–105.4 | 0.91–2.43 | 3.02–8.25 | [80] |
Liquor | DMP, DEP, DPP, BMPP, DEEP, DEHP, BBP, DBEP, DCHP, DPhP, DnOP, DiBP, DBP, DHXP, DMEP | DLLME | GC-MS | 72.6–115.5 | 0.003–0.57 | 0.010–1.861 | [81] |
Alcoholic beverage and unrecorded alcohol | DMP, DEP, DAP, DiBP, DBP, DEHA, BBP, DEHP, DHP, DnOP, d4-DEHP | LLE | GC-MS | 103.9–110.4 | 700 | 2600 | [82] |
Red and white wine, hydroalcoholic food beverage (grappa and vodka) | DMP, DEP, DBP, BcEP, BBP, DEHP | SPE with Amberlite XAD-2 sorbent | GC-FID | 94–103 | 1.21–2.51 | 2.42–5.03 | [83] |
Beer | DMP, DEP, DiBP, DBP, DEHP, DnOP | QuEChERS method | GC-MS | N/A | 0.30–1.41 | 1.01–4.69 | [84] |
Beer | DMP, DEP, DiBP, DBP, BBP, DEHP | DLLME | GC-MS/MS | N/A | 0.3–1.5 | 1–5 μg L | [85] |
Beer, cider, and grape juice | DPP, DMEP, DiPP, DEEP, DnPP, BBP, DBEP, DCHP, DnOP, DiNP, DiDP | QuEChERS method | GC-(QqQ)-MS/MS | 75–120 | N/A | 0.034–1.415 | [86] |
Beer, wine, and distilled beverage | BPA, DEP, DBP, DEHP | SPE | LC-DAD and LC-FLD | 90–100 | 0.04–0.38 | 0.12–1.10 | [87] |
Brandy, wine, sangria, and beer | DMP, DEP, DBP, DPP, BMEP | LLE | GC-MS | N/A | 0.1–0.4 | 0.3–1 | [88] |
Light alcoholic drink (beer) | DMP, DEP, DiBP, DBP, BBP, DEHP, iBcEP | SPE | GC-IT/MS | 94.6–102.1 | 0.2–20 | 0.6–4 | [89] |
Light alcoholic drink (beer) | DMP, DEP, DiBP, DBP, BBP, DEHP, iBcEP | SPE | GC-IT/MS | 95.6–99.6 | 0.03–0.10 | 0.11–0.28 | [90] |
3.2. Non-Alcoholic Beverages
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhang, J.; Quoquab, F.; Mohammad, J. Plastic and sustainability: A bibliometric analysis using VOSviewer and CiteSpace. Arab. Gulf J. Sci. Res. 2024, 42, 44–67. [Google Scholar] [CrossRef]
- Fan, Y.V.; Čuček, L.; Si, C.; Jiang, P.; Vujanović, A.; Krajnc, D.; Lee, C.T. Uncovering environmental performance patterns of plastic packaging waste in high recovery rate countries: An example of EU-27. Environ. Res. 2024, 241, 117581. [Google Scholar] [CrossRef] [PubMed]
- Muscat, M.; Sinagra, E.; Lia, F. Presence of phthalate esters used as common plasticisers in maltese shoreline sand. Environments 2023, 10, 94. [Google Scholar] [CrossRef]
- Conde-Díaz, A.; Santana-Mayor, Á.; Herrera-Herrera, A.V.; Socas-Rodríguez, B.; Rodríguez-Delgado, M.Á. Assessment of endocrine disruptor pollutants and their metabolites in environmental water samples using a sustainable natural deep eutectic solvent-based analytical methodology. Chemosphere 2023, 338, 139480. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, C.; Yang, Y.; Weng, Y.; Ma, P.; Xu, P. Epoxidized isosorbide-based esters with long alkyl chains as efficient and enhanced thermal stability and migration resistance PVC plasticizers. Polym. Test. 2023, 123, 108048. [Google Scholar] [CrossRef]
- Cinelli, G.; Avino, P.; Notardonato, I.; Centola, A.; Russo, M.V. Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid–liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography–ion trap mass spectrometry. Anal. Chim. Acta 2013, 769, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, G.B.; Koju, R.; Ojha, S.; Nayak, S.; Subedi, S.; Sasai, H. Plasticizers: Synthesis of phthalate esters via FeCl3-catalyzed nucleophilic addition of alcohols to phthalic anhydride. Res. Chem. 2021, 3, 100190. [Google Scholar] [CrossRef]
- Amritha, P.S.; Vinod, V.; Harathi, P.B. A critical review on extraction and analytical methods of phthalates in water and beverages. J. Chromatogr. A 2022, 1675, 463175. [Google Scholar] [CrossRef] [PubMed]
- Iadelagun, R.O.A.; Kamba, E.A.; Berezi, E.P.; Aikhoje, E.F.; Ngana, O.C.; Muoneme, B.O. Phthalate esters in the environment: Sources and quantification. Am. J. Chem. 2021, 11, 37–41. [Google Scholar] [CrossRef]
- Kumari, A.; Kaur, R. Chromatographic methods for the determination of phthalic acid esters in different samples. J. Anal. Chem. 2021, 76, 41–56. [Google Scholar] [CrossRef]
- Pang, L.; Chen, D.; Wei, H.; Lan, L.; Li, J.; Xu, Q.; Li, H.; Lu, C.; Tang, Q.; Hu, W.; et al. Effect of prenatal exposure to phthalates on birth weight of offspring: A meta-analysis. Reprod. Toxicol. 2024, 124, 108532. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, M.; Huang, K.; Cui, J.; Liu, H.; Yu, Y.; Ma, S.; Liu, X.; Lin, M. Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment. J. Hazard. Mater. 2024, 464, 132895. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Han, X.; Ge, J.; Liang, X.; Du, B.; Li, J.; Zeng, L. Prevalence of phthalate alternatives and monoesters alongside traditional phthalates in indoor dust from a typical e-waste recycling area: Source elucidation and co-exposure risk. J. Hazard. Mater. 2021, 413, 125322. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Song, S.; Luo, X.; Luo, Y.; Guo, C.; Liu, Y.; Luo, X.; Zeng, L.; Tan, L. Unraveling the contribution of dietary intake to human phthalate internal exposure. Environ. Pollut. 2023, 337, 122580. [Google Scholar] [CrossRef] [PubMed]
- Kaewlaoyoong, A.; Vu, C.T.; Lin, C.; Liao, C.S.; Chen, J.R. Occurrence of phthalate esters around the major plastic industrial area in southern Taiwan. Environ. Earth Sci. 2018, 77, 457. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Yang, F.; Zhao, N.; Lv, S.; Liu, J.; Chen, L.; He, Z.; Zhang, Y.; Wang, S. Assessment of migration regularity of phthalates from food packaging materials. Food Sci. Nutr. 2020, 8, 5738–5747. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.W.; Lee, C.C.; Pan, W.H.; Chou, W.C.; Huang, H.B.; Chiang, H.C.; Huang, P.C. Estimated daily intake and cumulative risk assessment of phthalates in the general Taiwanese after the 2011 DEHP Food Scandal. Sci. Rep. 2017, 7, 45009. [Google Scholar] [CrossRef] [PubMed]
- Shukur, S.A.; Hassan, F.M.; Fakhry, S.S. Unveiling the Nexus the link between water quality index and phthalic acid ester concentrations in Tigris River. Emerg. Contam. 2024, 10, 100279. [Google Scholar] [CrossRef]
- Wang, W.; Kannan, K. Leaching of phthalates from medical supplies and their implications for exposure. Environ. Sci. Technol. 2023, 57, 7675–7683. [Google Scholar] [CrossRef] [PubMed]
- Vimalkumar, K.; Zhu, H.; Kannan, K. Widespread occurrence of phthalate and non-phthalate plasticizers in single-use facemasks collected in the United States. Environ. Int. 2022, 158, 106967. [Google Scholar] [CrossRef] [PubMed]
- Broe, A.; Ennis, Z.N.; Pottegård, A.; Hallas, J.; Ahern, T.; Damkier, P. Population exposure to phthalate-containing Drugs. Basic Clin. Pharmacol. Toxicol. 2017, 121, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Ennis, Z.N.; Broe, A.; Pottegård, A.; Ahern, T.P.; Hallas, J.; Damkier, P. Cumulative exposure to phthalates from phthalate-containing drug products: A Danish population-wide study. Br. J. Clin. Pharmacol. 2018, 84, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Fong, C.S.; Amaruddin, A.F. Phthalates in children toys available in Malaysian market: Quantification and potential human health risk. J. Steroid Biochem. 2021, 213, 105955. [Google Scholar] [CrossRef]
- Nidens, N.; Vogel, M.; Körner, A.; Kiess, W. Prenatal exposure to phthalate esters and its impact on child development. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101478. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). Directive 2009/48/EC of the European Parliament and of the Council of 18 June 2009 on the Safety of Toys; Official Journal of the European Union: Brussels, Belgium, 2009; pp. L-170/1–L-170/37. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:170:0001:0037:en:PDF (accessed on 30 June 2009).
- Tang, S.; Sun, X.; Qiao, X.; Cui, W.; Yu, F.; Zeng, X.; Covaci, A.; Chen, D. Prenatal exposure to emerging plasticizers and synthetic antioxidants and their potency to cross human placenta. Environ. Sci. Technol. 2022, 56, 8507–8517. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yan, P.; Liu, X.; Zhao, J.; Tian, M.; Huang, Q.; Yan, J.; Tong, Z.; Zhang, Y.; Zhang, J.; et al. Profiles and transplacental transfer of per- and polyfluoroalkyl substances in maternal and umbilical cord blood: A birth cohort study in Zhoushan, Zhejiang Province, China. J. Hazard. Mater. 2024, 466, 133501. [Google Scholar] [CrossRef] [PubMed]
- Ham, D.; Ha, M.; Park, H.; Hong, Y.C.; Kim, Y.; Ha, E.; Bae, S. Association of postnatal exposure to mixture of bisphenol A, di-n-butyl phthalate and di-(2-ethylhexyl) phthalate with children’s IQ at 5 years of age: Mothers and children’s environmental health (MOCEH) study. Chemosphere 2024, 347, 140626. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, F. Phthalates and other endocrine-disrupting chemicals: The 21st century’s plague for reproductive health. Fertil. Steril. 2019, 111, 885–886. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.L.; Rehfeld, A.; Mortensen, L.J.; Lorenzen, M.; Andersson, A.M.; Juul, A.; Bentin-Ley, U.; Krog, H.; Frederiksen, H.; Petersen, J.H.; et al. Ovarian follicular fluid levels of phthalates and benzophenones in relation to fertility outcomes. Environ. Int. 2024, 183, 108383. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xie, T.; Van Faassen, M.; Kema, I.P.; Van Beek, A.P.; Xu, X.; Huo, X.; Wolffenbuttel, B.H.R.; Van Vliet-Ostaptchouk, J.V.; Nolte, I.M.; et al. Effects of endocrine disrupting chemicals and their interactions with genetic risk scores on cardiometabolic traits. Sci. Total Environ. 2024, 914, 169972. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Hassan, S.; Acharya, G.; Vithlani, A.; Le, Q.H.; Pugazhendhi, A. Endocrine disrupting chemicals and their effects on the reproductive health in men. Environ. Res. 2023, 236, 116825. [Google Scholar] [CrossRef] [PubMed]
- Astuto, M.C.; Benford, D.; Bodin, L.; Cattaneo, I.; Halldorsson, T.; Schlatter, J.; Sharpe, R.M.; Tarazona, J.; Younes, M. Applying the adverse outcome pathway concept for assessing non-monotonic dose responses: Biphasic effect of bis(2-ethylhexyl) phthalate (DEHP) on testosterone levels. Arch. Toxicol. 2023, 97, 313–327. [Google Scholar] [CrossRef]
- Chung, B.Y.; Choi, S.M.; Roh, T.H.; Lim, D.S.; Ahn, M.Y.; Kim, Y.J.; Kim, H.S.; Lee, B.M. Risk assessment of phthalates in pharmaceuticals. J. Toxicol. Environ. Health Part A 2019, 82, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Takdastan, A.; Niari, M.H.; Babaei, A.; Dobaradaran, S.; Jorfi, S.; Ahmadi, M. Occurrence and distribution of microplastic particles and the concentration of di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. J. Environ. Manag. 2021, 280, 111851. [Google Scholar] [CrossRef] [PubMed]
- Nagorka, R.; Koschorreck, J. Trends for plasticizers in German freshwater environments—Evidence for the substitution of DEHP with emerging phthalate and non-phthalate alternatives. Environ. Pollut. 2020, 262, 114237. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, X.; Liu, F.; Xie, Y.; Sun, B.; Wu, J.; Wu, Y. First determination of elevated levels of plastic additives in finless porpoises from the South China Sea. J. Hazard. Mater. 2024, 465, 133389. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). 2018/2005 of 17 December 2018 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Bis(2-ethylhexyl) Phthalate (DEHP), Dibutyl Phthalate (DBP), Benzyl Butyl Phthalate (BBP) and Diisobutyl Phthalate (DIBP); Official Journal of the European Union: Brussels, Belgium, 2018; pp. L-322/14–L-322/18. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R2005 (accessed on 18 December 2018).
- Moche, H.; Chentouf, A.; Neves, S.; Corpart, J.M.; Nesslany, F. Comparison of in vitro endocrine activity of phthalates and alternative plasticizers. J. Toxicol. 2021, 2021, 8815202. [Google Scholar] [CrossRef]
- Nomura, M.; Okamura, H.; Horie, Y.; Hadi, M.P.; Nugroho, A.P.; Ramaswamy, B.R.; Harino, H.; Nakano, T. Residues of non-phthalate plasticizers in seawater and sediments from Osaka Bay, Japan. Mar. Pollut. Bull. 2024, 199, 115947. [Google Scholar] [CrossRef] [PubMed]
- Ramesh Kumar, A.; Sivaperumal, P. Analytical methods for the determination of biomarkers of exposure to phthalates in human urine samples. TrAC—Trends Anal. Chem. 2016, 75, 151–161. [Google Scholar] [CrossRef]
- Freitas, F.; Cabrita, M.J.; Da Silva, M.G. A critical review of analytical methods for the quantification of phthalates esters in two important European food products: Olive oil and wine. Molecules 2023, 28, 7628. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Avino, P.; Perugini, L.; Notardonato, I. Extraction and GC-MS analysis of phthalate esters in food matrices: A review. RSC Adv. 2015, 5, 37023–37043. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Fang, E.; Zheng, X.; Zhou, Y.; Lin, L.; Chen, L.; Wu, M.; Huang, Z. Determination of 23 phthalic acid esters in food by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1324, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Ma, L.; Qiao, Y.; Lu, Y.; Xiao, D. Determination of phthalate esters in teas and tea infusions by gas chromatography–mass spectrometry. Food Chem. 2016, 197, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Avino, P.; Notardonato, I. Fast analysis of phthalates in freeze-dried baby foods by ultrasound-vortex-assisted liquid-liquid microextraction coupled with gas chromatography-ion trap/mass spectrometry. J. Chromatogr. A 2016, 1474, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.I.; Nosheen, S.; Abbas, M.; Khan, A.M.; Fatima, A. Determination of phthalate esters in beverages and milk using high performance liquid chromatography (HPLC). Pol. J. Environ. Stud. 2024, 33, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, M. Development of immunoassays for the determination of phthalates. Food Agric. Immunol. 2020, 31, 303–316. [Google Scholar] [CrossRef]
- Li, M.; Cui, Y.; Liu, Z.; Xue, Y.; Zhao, R.; Li, Y.; Du, D. Sensitive and selective determination of butyl benzyl phthalate from environmental samples using an enzyme immunoassay. Sci. Total Environ. 2019, 687, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, Q.; Shen, D.; Jiang, Z.; Eremin, S.A.; Zhao, S. Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the diisobutyl phthalate in yoghurt. Food Control 2019, 105, 38–44. [Google Scholar] [CrossRef]
- Berlina, A.N.; Ragozina, M.Y.; Gusev, D.I.; Zherdev, A.V.; Dzantiev, B.B. Development of chemiluminescent ELISA for detection of diisobutyl phthalate in water, lettuce and aquatic organisms. Chemosensors 2023, 11, 393. [Google Scholar] [CrossRef]
- Zhang, M.; Hong, W.; Wu, X.; Zhang, Y.; Li, F.; Zhao, S.Q. A highly sensitive and direct competitive enzyme-linked immunosorbent assay for the detection of di-(2-ethylhexyl) phthalate (DEHP) in infant supplies. Anal. Methods 2015, 7, 5441–5446. [Google Scholar] [CrossRef]
- Zhang, T.; Guan, A.; Wang, G.; Huang, X.; Li, W.; Liu, C.; Kong, Z.; Li, J.; Lu, R. Magnetic molecularly imprinted nanoparticles for rapid and selective detection of dimethyl phthalate in water using SERS. ACS Sustain. Chem. Eng. 2023, 11, 11149–11160. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, Y.; Gao, L.; He, Y.; Niu, Y.; Hussain, S.; Gao, R.; Pfefferle, L.D.; Shahid, M.; Wang, S. Amphiphilic core–shell magnetic adsorbents for efficient removal and detection of phthalate esters. Chem. Eng. J. 2021, 423, 129817. [Google Scholar] [CrossRef]
- Hong, X.; Cui, Y.; Li, M.; Xia, Y.; Du, D.; Yi, C. Butyl benzyl phthalate in urban sewage by magnetic-based immunoassay: Environmental levels and risk assessment. Biosensors 2022, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zou, Y.; Huang, M.; Dong, S.; Wu, X.; Liang, G.; Han, Z.; Zhang, Z. A sensitive, colorimetric immunosensor based on Cu-MOFs and HRP for detection of dibutyl phthalate in environmental and food samples. Talanta 2018, 186, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Balderas-Hernández, V.E.; Ornelas-Salas, J.T.; Barba De La Rosa, A.P.; De Leon-Rodriguez, A. Diminution of migration of phthalic acid esters in tequila beverage by the year of production. J. Environ. Sci. Health B 2020, 55, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Del Carlo, M.; Pepe, A.; Sacchetti, G.; Compagnone, D.; Mastrocola, D.; Cichelli, A. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography–mass spectrometry. Food Chem. 2008, 111, 771–777. [Google Scholar] [CrossRef]
- Gebrehiwot, D.G.; Castro, R.; Hidalgo-Gárate, J.C.; Robles, A.D.; Durán-Guerrero, E. Method development of stir bar sportive extraction coupled with thermal desorption-gas chromatography-mass spectrometry for the analysis of phthalates in Peruvian pisco. J. Chromatogr. A 2023, 1711, 464470. [Google Scholar] [CrossRef]
- Diamantidou, D.; Begou, O.; Theodoridis, G.; Gika, H.; Tsochatzis, E.; Kalogiannis, S.; Kataiftsi, N.; Soufleros, E.; Zotou, A. Development and validation of an ultra high performance liquid chromatography-tandem mass spectrometry method for the determination of phthalate esters in Greek grape marc spirits. J. Chromatogr. A 2019, 1603, 165–178. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, S.; Xie, Q. Rapid determination of phthalate esters in alcoholic beverages by conventional ionic liquid dispersive liquid–liquid microextraction coupled with high performance liquid chromatography. Talanta 2014, 119, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Kong, L.; Xue, R.; Wang, W.; Xia, X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci. Technol. 2020, 96, 222–232. [Google Scholar] [CrossRef]
- Ickes, C.M.; Cadwallader, K.R. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens. Percept. 2017, 10, 119–134. [Google Scholar] [CrossRef]
- Arslan, M.; Tahir, H.E.; Zareef, M.; Shi, J.; Rakha, A.; Bilal, M.; Huang, X.; Li, Z.; Zou, X. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci. Technol. 2021, 107, 80–113. [Google Scholar] [CrossRef]
- He, N.X.; Bayen, S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3916–3950. [Google Scholar] [CrossRef] [PubMed]
- Hortolomeu, A.; Mirila, D.C.; Georgescu, A.M.; Rosu, A.M.; Scutaru, Y.; Nedeff, F.M.; Sturza, R.; Nistor, I.D. Retention of phthalates in wine using nanomaterials as chemically modified clays with H20, H30, H40 Boltron dendrimers. Nanomaterials 2023, 13, 2301. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, Y. Analysis of phthalates in wine using liquid chromatography tandem mass spectrometry combined with a hold-back column: Chromatographic strategy to avoid the influence of pre-existing phthalate contamination in a liquid chromatography system. J. Chromatogr. A 2014, 1372, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Montevecchi, G.; Masino, F.; Di Pascale, N.; Vasile, S.G.; Antonelli, A. Study of the repartition of phthalate esters during distillation of wine for spirit production. Food Chem. 2017, 237, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.D.; Salazar, C.; Moreta, C.; Tena, M.T. Determination of phthalates in wine by headspace solid-phase microextraction followed by gas chromatography–mass spectrometry: Fibre comparison and selection. J. Chromatogr. A 2007, 1164, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Silva, C.L.; Algarra, M.; Câmara, J.S. Monitoring phthalates in table and fortified wines by headspace solid-phase microextraction combined with gas chromatography–mass spectrometry analysis. J. Agric. Food Chem. 2020, 68, 8431–8437. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Notardonato, I.; Cinelli, G.; Avino, P. Evaluation of an analytical method for determining phthalate esters in wine samples by solid-phase extraction and gas chromatography coupled with ion-trap mass spectrometer detector. Anal. Bioanal. Chem. 2012, 402, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Su, Q.; Li, K.Y.; Sun, C.F.; Zhang, W.B. Rapid analysis of phthalates in beverage and alcoholic samples by multi-walled carbon nanotubes/silica reinforced hollow fibre-solid phase microextraction. Food Chem. 2013, 141, 3714–3720. [Google Scholar] [CrossRef] [PubMed]
- King, L.; Aplin, R.; Gill, C.; Naimi, T. A state-of-the-science review of alcoholic beverages and polycyclic aromatic hydrocarbons. Environ. Health Perspect. 2024, 132, 016001. [Google Scholar] [CrossRef] [PubMed]
- Montevecchi, G.; Masino, F.; Zanasi, L.; Antonelli, A. Determination of phthalate esters in distillates by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction (USVADLLME) coupled with gas chromatography/mass spectrometry. Food Chem. 2017, 221, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Guo, R.; Sun, X.; Li, H.; Zhao, M.; Zheng, F.; Sun, J.; Huang, M.; Wu, J. Assessment of phthalate ester residues and distribution patterns in Baijiu raw materials and Baijiu. Food Chem. 2019, 283, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Gemenetzis, E.G.; Alygizakis, N.A. Development and validation of an HPLC-UV method for the determination bis(2-ethylhexyl) phthalate ester in alcoholic beverages. Appl. Sci. 2023, 13, 3194. [Google Scholar] [CrossRef]
- Jurica, K.; Brčić Karačonji, I.; Lasić, D.; Vukić Lušić, D.; Anić Jurica, S.; Lušić, D. Determination of phthalates in plum spirit and their occurrence during plum spirit production. Acta Aliment. 2016, 45, 141–148. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Zhang, Q.; Xiong, J.; Li, H. Determination of phthalate esters in Chinese spirits using isotope dilution gas chromatography with tandem mass spectrometry. J. Sep. Sci. 2015, 38, 1700–1710. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Zhao, G.; Xu, L.; Dong, J.; Cheng, P. Direct determination of trace phthalate esters in alcoholic spirits by spray-inlet microwave plasma torch ionization tandem mass spectrometry. J. Mass Spectrom. 2018, 53, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Xin, D.; Yang, Y. Dispersive micro-solid-phase extraction based on decanoic acid coated-Fe3O4 nanoparticles for HPLC analysis of phthalate esters in liquor samples. J. Food Sci. 2015, 80, C2452–C2458. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, Y.; Tang, Z.; Hou, M.; Wang, C.; Wang, X.; Wang, Q.; Xiao, Q. Simultaneous determination of 15 phthalate esters in commercial beverages using dispersive liquid–liquid microextraction coupled to gas chromatography-mass spectrometry. Anal. Methods 2017, 9, 1912–1919. [Google Scholar] [CrossRef]
- Leitz, J.; Kuballa, T.; Rehm, J.; Lachenmeier, D.W. Chemical analysis and risk assessment of diethyl phthalate in alcoholic beverages with special regard to unrecorded alcohol. PLoS ONE 2009, 4, e8127. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, G.; Avino, P.; Notardonato, I.; Centola, A.; Russo, M.V. Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors. Food Chem. 2014, 146, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Habschied, K.; Kartalović, B.; Lazić, D.; Krstanović, V.; Mastanjević, K. Survey on phthalates in beer packaged in aluminum cans, PET and glass bottles. Fermentation 2023, 9, 125. [Google Scholar] [CrossRef]
- Pereira, C.; Cunha, S.C.; Fernandes, J.O. Commercial beers: A source of phthalates and di-ethylhexyl adipate. Food Chem. X 2023, 19, 100768. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramos, R.; Socas-Rodríguez, B.; Santana-Mayor, Á.; Rodríguez-Delgado, M.Á. A simple, fast and easy methodology for the monitoring of plastic migrants in alcoholic and non-alcoholic beverages using the QuEChERS method prior to gas chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Vidal, R.B.P.; Ibañez, G.A.; Escandar, G.M. A green method for the quantification of plastics-derived endocrine disruptors in beverages by chemometrics-assisted liquid chromatography with simultaneous diode array and fluorescent detection. Talanta 2016, 159, 336–343. [Google Scholar] [CrossRef] [PubMed]
- March, J.G.; Cerdà, V. An innovative arrangement for in-vial membrane-assisted liquid-liquid microextraction: Application to the determination of esters of phthalic acid in alcoholic beverages by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 4213–4217. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Notardonato, I.; Avino, P.; Cinelli, G. Determination of phthalate esters at trace levels in light alcoholic drinks and soft drinks by XAD-2 adsorbent and gas chromatography coupled with ion trap-mass spectrometry detection. Anal. Methods 2014, 6, 7030. [Google Scholar] [CrossRef]
- Russo, M.V.; Notardonato, I.; Avino, P.; Cinelli, G. Fast determination of phthalate ester residues in soft drinks and light alcoholic beverages by ultrasound/vortex assisted dispersive liquid–liquid microextraction followed by gas chromatography-ion trap mass spectrometry. RSC Adv. 2014, 4, 59655–59663. [Google Scholar] [CrossRef]
- Tireki, S. A Review on Packed Non-Alcoholic Beverages: Ingredients, Production, Trends and Future Opportunities for Functional Product Development. Trends Food Sci. Technol. 2021, 112, 442–454. [Google Scholar] [CrossRef]
- Abdel-Rahman, G.N.; Ahmed, M.B.M.; Sabry, B.A.; Ali, S.S.M. Heavy Metals Content in Some Non-Alcoholic Beverages (Carbonated Drinks, Flavored Yogurt Drinks, and Juice Drinks) of the Egyptian Markets. Toxicol. Rep. 2019, 6, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Pelegrín, C.J.; Flores, Y.; Jiménez, A.; Garrigós, M.C. Recent Trends in the Analysis of Chemical Contaminants in Beverages. Beverages 2020, 6, 32. [Google Scholar] [CrossRef]
- Karačonji, I.B.; Jurica, S.A.; Lasić, D.; Jurica, K. Facts about Phthalate Toxicity in Humans and Their Occurrence in Alcoholic Beverages. Arch. Ind. Hyg. Toxicol. 2017, 68, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Zamora, C.; Jiménez-Skrzypek, G.; González-Sálamo, J.; Hernández-Borges, J. Extraction of Phthalic Acid Esters from Soft Drinks and Infusions by Dispersive Liquid-Liquid Microextraction Based on the Solidification of the Floating Organic Drop Using a Menthol-Based Natural Deep Eutectic Solvent. J. Chromatogr. A 2021, 1646, 462132. [Google Scholar] [CrossRef] [PubMed]
- Santana-Mayor, Á.; Herrera-Herrera, A.V.; Rodríguez-Ramos, R.; Socas-Rodríguez, B.; Rodríguez-Delgado, M.Á. Development of a Green Alternative Vortex-Assisted Dispersive Liquid–Liquid Microextraction Based on Natural Hydrophobic Deep Eutectic Solvents for the Analysis of Phthalate Esters in Soft Drinks. ACS Sustain. Chem. Eng. 2021, 9, 2161–2170. [Google Scholar] [CrossRef]
- Rafiei Nazari, R.; Noorian, S.; Arabameri, M. Migration Modelling of Phthalate from Non-alcoholic Beer Bottles by Adaptive Neuro-fuzzy Inference System. J. Sci. Food Agric. 2018, 98, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, H.; Moazzen, M.; Shariatifar, N.; Khaniki, G.J.; Dehghani, M.H.; Arabameri, M.; Alikord, M. Measurement of Phthalate Acid Esters in Non-Alcoholic Malt Beverages by MSPE-GC/MS Method in Tehran City: Chemometrics. Environ. Sci. Pollut. Res. 2021, 28, 51897–51907. [Google Scholar] [CrossRef] [PubMed]
- Moazzen, M.; Mahvi, A.H.; Shariatifar, N.; Jahed Khaniki, G.; Nazmara, S.; Alimohammadi, M.; Ahmadkhaniha, R.; Rastkari, N.; Ahmadloo, M.; Akbarzadeh, A.; et al. Determination of Phthalate Acid Esters (PAEs) in Carbonated Soft Drinks with MSPE/GC–MS Method. Toxin Rev. 2018, 37, 319–326. [Google Scholar] [CrossRef]
- Yang, J.-F.; Yang, L.-M.; Zheng, L.-Y.; Ying, G.-G.; Liu, C.-B.; Luo, S.-L. Phthalates in Plastic Bottled Non-Alcoholic Beverages from China and Estimated Dietary Exposure in Adults. Food Addit. Contam. B 2017, 10, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Caldeirão, L.; Fernandes, J.O.; Da Silva Oliveira, W.; Godoy, H.T.; Cunha, S.C. Phthalic Acid Esters and Adipates in Herbal-Based Soft Drinks: An Eco-Friendly Method. Anal. Bioanal. Chem. 2021, 413, 2903–2912. [Google Scholar] [CrossRef]
- Wu, P.-G.; Pan, X.-D.; Ma, B.-J.; Wang, L.-Y.; Zhang, J. Determination of Phthalate Esters in Non-Alcoholic Beverages by GC–MS and Optimization of the Extraction Conditions. Eur. Food Res. Technol. 2014, 238, 607–612. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Abdel-Rahman, G.N.E.; Zaghloul, A.H.; Naguib, M.M.; Saad, M.M.E.D. Phthalates’ releasing pattern in low pH beverages of fermented milk, fruit juice, and soft drink packaged in plastic bottles. Biosci. Res. 2017, 14, 513–524. [Google Scholar]
Beverage | Alcohol Concentration Range (% ABV) |
---|---|
Beer | 5–12 |
Cider | 1.2–8.5 |
Wine | 8–14 |
Distilled beverages (whiskey, rum, tequila) | 20–95 |
Beverage | Analytes | Extraction Procedure | Analytical Technique | Recovery (%) | LOD (pg µL−1) | LOQ (pg µL−1) | Ref. |
---|---|---|---|---|---|---|---|
Grape juice | DPP, DiPP, DEEP, DNPP, BBP, DEHA, DBEP, DCHP, DnOP, DiNP, DiDP | QuEChERS method | GC-(QqQ)-MS/MS | 75–115 | NA | 0.034–1.415 | [86] |
Soft drink (soda, cola, bitter, tonic, beer, and a whisky and cola mix) | DMP, DEP, DiBP, DBP, BBP, DEHP, iBcEP | SPE | GC-IT/MS | 95.5–100.6 | 0.2–20 | 0.6–41 | [89] |
Soft drink (soda, cola, bitter, tonic, beer, and a whisky and cola mix) | DMP, DEP, DiBP, DBP, BcEP, BBP, DEHP | USVA-DLLME | GC-IT/MS | 94.2–99.6 | 0.03–0.10 | 0.11–0.28 | [90] |
Soft drink (green tea, tonic, and lime and lemon drink) | DPP, BBP, DBP, DiPP, DnPP, DCHP, DEHP, DiNP, DiDP | DLLME-SFO | HPLC-UV | 71–125 | 1.1–15.3 | 3.5–33.3 | [95] |
Tonic water | BBP, DAP, DBEP, DBP, DCHP, DEEP, DEHP, DEP, DiNP, DMEP, DMP, DnOP, DnPP, DPP, DEHA | VA-DLLME | UPLC-MS/MS | 71–124 | NA | 0.025–1.25 | [96] |
Non-alcoholic beer | DEHP | SPE | GC-MS | 99–100 | 0.1 | 0.3 | [97] |
Non-alcoholic malt beverages | DnOP, BBP, DMP, DEP, DBP, DEHP | MSPE | GC-MS | 94.2–104.3 | 0.013–0.03 | 0.039–0.09 | [98] |
Carbonated drinks (cola, orange, and lemon) | DMP, DEP, DBP, BBP, DEHP, DnOP | MSPE | GC-MS | 96.2–103.3 | 0.012–0.025 | NA | [99] |
Purified water, mineral water, soda water, carbonated drinks, functional drinks, juice drinks, and tea drinks | DMP, DEP, DBP, DOP, BBP, DEHP | LLE with dichlorometane solvent | GC-MS | 91.2–102 | 0.25–1.0 a | 0.80–3.3 a | [100] |
Herbal-based soft drinks (yerba mate and black tea) | DMP, DEP, DiBP, DBP, BBP, DEHA, DEHP | DLLME | GC-MS | 82–111 | 5.0–13 | 20–35 | [101] |
Sport drinks, tea drinks, coffees, and fruit juice | DMP, DEP, DPP, DBP, BBP, DEHP, DOP | SPE | GC-MS | 84–105 | 3–4 | 10 | [102] |
Fermented milk, fruit juice, and soft drink | DMP, DEP, DBP, DEHP, DnOP | Extraction with acetonitrile and ethyl acetate solvents | HPLC-DAD | Fermented milk: 75.77–82.95 Fruit juice: 77.68–80.51 Soft drink: 80.09–88.70 | 6.5 ± 2.5 b | 20 ± 5 b | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannone, A.; Di Fiore, C.; Carriera, F.; Avino, P.; Stillittano, V. Phthalates: The Main Issue in Quality Control in the Beverage Industry. Separations 2024, 11, 133. https://doi.org/10.3390/separations11050133
Iannone A, Di Fiore C, Carriera F, Avino P, Stillittano V. Phthalates: The Main Issue in Quality Control in the Beverage Industry. Separations. 2024; 11(5):133. https://doi.org/10.3390/separations11050133
Chicago/Turabian StyleIannone, Alessia, Cristina Di Fiore, Fabiana Carriera, Pasquale Avino, and Virgilio Stillittano. 2024. "Phthalates: The Main Issue in Quality Control in the Beverage Industry" Separations 11, no. 5: 133. https://doi.org/10.3390/separations11050133
APA StyleIannone, A., Di Fiore, C., Carriera, F., Avino, P., & Stillittano, V. (2024). Phthalates: The Main Issue in Quality Control in the Beverage Industry. Separations, 11(5), 133. https://doi.org/10.3390/separations11050133