Achievements in Preparation of Cyclodextrin–Based Porous Materials for Removal of Pollutants
Abstract
:1. Introduction
2. Crosslinked β–CD Polymers
Adsorbents | Crosslinking Agents | Specific Surface Area (m2/g) | Pollutants | Adsorption Capacities (mg/g) | Ref. |
---|---|---|---|---|---|
β–CD nanospheres | epichlorohydrin | 1.5 | p–nitrophenol | 17.2 | [33] |
PhAEs–β–CD | phthalic anhydride | 332.1 | basic green 4 | 3288.8 | [38] |
crystal violet | 2407.9 | ||||
astrazon pink FG | 2264.4 | ||||
CA–β–CD | citric acid | 0.8 | bisphenol A | 83.0 | [40] |
methylene blue | 295.2 | ||||
Cu2+ | 585.6 | ||||
polyCTR–β–CD | citric acid | 0.6 | paraquat | 20.8 | [41] |
β–CD polymer | tetrafluorophenonitrile | 270.8 | Pb2+ | 196.4 | [45] |
Cu2+ | 164.4 | ||||
Cd2+ | 136.4 | ||||
CDP | epichlorohydrin | 2.4 | C.I. Basic Blue 3 | 42.4 | [51] |
C.I. Basic Violet 3 | 35.8 | ||||
C.I. Basic Violet 10 | 53.2 | ||||
β–CD–TDI | 2,4–toluene diisocyanate | 2.5 | 2,4–dinitrophenol | 3.9 | [52] |
β–CD–HDI | hexamethylene diisocyanate | 14.0 | 2,4–dinitrophenol | 3.4 | [52] |
CDPU–HCP | 4,4′–diphenylmethane diisocyanate | 1133.1 | bisphenol A | 371.8 | [53] |
BnCD–HCPP | formaldehyde dimethyl acetal | 1225.0 | 4–chlorophenol | 141.4 | [54] |
BnCD–DCX | dichloroxylene | 1209.0 | bisphenol A | 278.0 | [55] |
3. Immobilized β–CD
3.1. Inorganic Support-Immobilized β–CD
3.2. Organic Synthetic Support-Immobilized β–CD
3.3. Natural Polymer Support-Immobilized β–CD
4. Conclusion and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zawierucha, I.; Nowik-Zajac, A.; Girek, T.; Lagiewka, J.; Ciesielski, W.; Pawlowska, B.; Biczak, R. Arsenic(V) Removal from Water by Resin Impregnated with Cyclodextrin Ligand. Processes 2022, 10, 253. [Google Scholar] [CrossRef]
- Sikder, M.T.; Rahman, M.M.; Jakariya, M.; Hosokawa, T.; Kurasaki, M.; Saito, T. Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives. Chem. Eng. J. 2019, 355, 920–941. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, L.; Jia, Q. Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. Chin. Chem. Lett. 2022, 33, 11–21. [Google Scholar] [CrossRef]
- Tsiepe, J.T.; Mamba, B.B.; Inamuddin; Mishra, A.K. Fe3O4-β-cyclodextrin-Chitosan Bionanocomposite for Arsenic Removal from Aqueous Solution. J. Inorg. Organomet. Polym. Mater. 2018, 28, 467–480. [Google Scholar] [CrossRef]
- Ikuta, D.; Hirata, Y.; Wakamori, S.; Shimada, H.; Tomabechi, Y.; Kawasaki, Y.; Ikeuchi, K.; Hagimori, T.; Matsumoto, S.; Yamada, H. Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins. Science 2019, 364, 674–677. [Google Scholar] [CrossRef]
- Erichsen, A.; Peters, G.H.J.; Beeren, S.R. Templated Enzymatic Synthesis of δ-Cyclodextrin. J. Am. Chem. Soc. 2023, 145, 4882–4891. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Aslani, S.; Han, H.; Tang, C.; Wu, G.; Li, X.; Wu, H.; Stern, C.L.; Guo, Q.; Qiu, Y.; et al. Mirror-image cyclodextrins. Nat. Synth. 2024. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. Chemosphere 2020, 241, 125043. [Google Scholar] [CrossRef]
- Tian, B.; Hua, S.; Tian, Y.; Liu, J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: A review. Environ. Sci. Pollut. R. 2021, 28, 1317–1340. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Zhao, B.; Jia, Q. Supramolecular adsorbents in extraction and separation techniques—A review. Anal. Chim. Acta 2020, 1122, 97–113. [Google Scholar] [CrossRef]
- Xu, M.; Jiang, H.; Xie, Z.; Li, Z.; Xu, D.; He, F. Highly efficient selective adsorption of anionic dyes by modified β-cyclodextrin polymers. J. Taiwan Inst. Chem. E 2020, 108, 114–128. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, G.; Lu, J.; Chen, H.; Zhou, Y. PDA-cross-linked beta-cyclodextrin: A novel adsorbent for the removal of BPA and cationic dyes. Water. Sci. Technol. 2020, 81, 2337–2350. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Shi, J.; Zhao, Y.; Liu, L.; Yan, M.; Zhu, H.; Zhang, H.; Wang, Y.; Guo, J.; Wang, Y.; et al. Facile preparation of core-shell structure β-cyclodextrin/diatomite as an efficient adsorbent for methylene blue. Eur. Polym. J. 2020, 136, 109925. [Google Scholar] [CrossRef]
- Qin, X.; Bai, L.; Tan, Y.; Li, L.; Song, F.; Wang, Y. β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: Fabrication, performance and mechanisms. Chem. Eng. J. 2019, 372, 1007–1018. [Google Scholar] [CrossRef]
- Sikder, M.T.; Mihara, Y.; Islam, M.S.; Saito, T.; Tanaka, S.; Kurasaki, M. Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem. Eng. J. 2014, 236, 378–387. [Google Scholar] [CrossRef]
- Duan, Z.; Song, M.; Li, T.; Qin, R.; He, C.; Wang, Y. Characterization and adsorption properties of cross-linked yeast/β-cyclodextrin polymers for Pb (II) and Cd (II) adsorption. RSC Adv. 2018, 8, 31542–31554. [Google Scholar] [CrossRef]
- Kono, H.; Onishi, K.; Nakamura, T. Characterization and bisphenol A adsorption capacity of β-cyclodextrin-carboxymethylcellulose-based hydrogels. Carbohyd. Polym. 2013, 98, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, Y.; Teng, W.; Tan, J.; Liang, Y.; Tang, Y. Preparation of core-shell magnetic molecular imprinted polymer with binary monomer for the fast and selective extraction of bisphenol A from milk. J. Chromatogr. A 2016, 1462, 2–7. [Google Scholar] [CrossRef]
- Cui, Y.; Bi, Y.; Yang, C. Solvent regulation and template-free synthesis of β-cyclodextrin-based microporous organic network nanosheets for ultrafast and efficient removal of aromatic pollutants. Chem. Eng. J. 2022, 435, 134829. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Gao, X.; Hu, B.; Meng, Q.; Zhao, C.; Yang, L.; Zheng, H. A novel self-floating cyclodextrin-modified polymer for cationic dye removal: Preparation, adsorption behavior and mechanism. Sep. Purif. Technol. 2022, 290, 120838. [Google Scholar] [CrossRef]
- Okasha, A.T.; Abdel-Khalek, A.A.; Alenazi, N.A.; AlHammadi, A.A.; Al Zoubi, W.; Alhammadi, S.; Ko, Y.G.; Abukhadra, M.R. Progress of synthetic cyclodextrins-based materials as effective adsorbents of the common water pollutants: Comprehensive review. J. Environ. Chem. Eng. 2023, 11, 109824. [Google Scholar] [CrossRef]
- Hu, X.; Xu, G.; Zhang, H.; Li, M.; Tu, Y.; Xie, X.; Zhu, Y.; Jiang, L.; Zhu, X.; Ji, X.; et al. Multifunctional β-Cyclodextrin Polymer for Simultaneous Removal of Natural Organic Matter and Organic Micropollutants and Detrimental Microorganisms from Water. Acs Appl. Mater. Inter. 2020, 12, 12165–12175. [Google Scholar] [CrossRef] [PubMed]
- Gidwani, B.; Vyas, A. Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer. Colloid Surf. B 2014, 114, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Lazaridis, N.K.; Bikiaris, D.N. Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohyd. Polym. 2013, 91, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cheng, L.; Zhang, L. Graphene oxide based molecularly imprinted polymers modified with β-cyclodextrin for selective extraction of di(2-ethylhexyl) phthalate in environmental waters. J. Sep. Sci. 2019, 42, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Surikumaran, H.; Mohamad, S.; Sarih, N.M. Molecular imprinted polymer of methacrylic acid functionalised beta-cyclodextrin for selective removal of 2,4-dichlorophenol. Int. J. Mol. Sci. 2014, 15, 6111–6136. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Li, L.; Xing, J. Selective adsorption behavior of Cd (II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism. J. Hazard. Mater. 2017, 321, 103–110. [Google Scholar] [CrossRef]
- Nchoe, O.B.; Klink, M.J.; Mtunzi, F.M.; Pakade, V.E. Synthesis, characterization, and application of β-cyclodextrin-based ion-imprinted polymer for selective sequestration of Cr (VI) ions from aqueous media: Kinetics and isotherm studies. J. Mol. Liq. 2020, 298, 111991. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Zhang, B.; Fang, J.; Zhu, L. Interfacially crosslinked β-cyclodextrin polymer composite porous membranes for fast removal of organic micropollutants from water by flow-through adsorption. J. Hazard. Mater. 2020, 384, 121187. [Google Scholar] [CrossRef] [PubMed]
- Klemes, M.J.; Ling, Y.; Ching, C.; Wu, C.; Xiao, L.; Helbling, D.E.; Dichtel, W.R. Reduction of a Tetrafluoroterephthalonitrile-β-Cyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. Angew. Chem. Int. Ed. 2019, 58, 12049–12053. [Google Scholar] [CrossRef]
- Crini, G.; Peindy, H. Adsorption of C.I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigm. 2006, 70, 204–211. [Google Scholar] [CrossRef]
- Pratt, D.Y.; Wilson, L.D.; Kozinski, J.A.; Mohart, A.M. Preparation and sorption studies of β-cyclodextrin/epichlorohydrin copolymers. J. Appl. Polym. Sci. 2010, 116, 2982–2989. [Google Scholar] [CrossRef]
- Salgın, S.; Salgın, U.; Ayluçtarhan, M. Synthesis of β-Cyclodextrin-Epichlorohydrin Nanospheres: Its Application for Removal of p-nitrophenol. Am. Chem. Sci. J. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Yamasaki, H.; Makihata, Y.; Fukunaga, K. Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles. J. Chem. Technol. Biotechnol. 2006, 81, 1271–1276. [Google Scholar] [CrossRef]
- Yamasaki, H.; Makihata, Y.; Fukunaga, K. Preparation of crosslinked β-cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater. J. Chem. Technol. Biotechnol. 2008, 83, 991–997. [Google Scholar] [CrossRef]
- Chin, Y.P.; Mohamad, S.; Abas, M.R.B. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer. Int. J. Mol. Sci. 2010, 11, 3459–3471. [Google Scholar] [CrossRef]
- Kono, H.; Nakamura, T. Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity. React. Funct. Polym. 2013, 73, 1096–1102. [Google Scholar] [CrossRef]
- Sun, S.; Yu, E.; Hu, R.; Li, Y.; Wei, Z. Synthesis and study of poly (phthalic anhydride-β-cyclodextrin) for the efficient adsorption of cationic dyes from industrial wastewater. Chem. Eng. Res. Des. 2023, 194, 768–778. [Google Scholar] [CrossRef]
- Moulahcene, L.; Skiba, M.; Senhadji, O.; Milon, N.; Benamor, M.; Lahiani-Skiba, M. Inclusion and removal of pharmaceutical residues from aqueous solution using water-insoluble cyclodextrin polymers. Chem. Eng. Res. Des. 2015, 97, 145–158. [Google Scholar] [CrossRef]
- Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups. J. Taiwan Inst. Chem. E. 2018, 82, 189–197. [Google Scholar] [CrossRef]
- Junthip, J. Water-insoluble cyclodextrin polymer crosslinked with citric acid for paraquat removal from water. J. Macromol. Sci. Part A Pure Appl. Chem. 2019, 56, 555–563. [Google Scholar] [CrossRef]
- Zhao, F.; Repo, E.; Yin, D.; Meng, Y.; Jafari, S.; Sillanpää, M. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes. Environ. Sci. Technol. 2015, 49, 10570–10580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Repo, E.; Meng, Y.; Wang, X.; Yin, D.; Sillanpää, M. An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J. Colloid Interf. Sci. 2016, 465, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, Y.; Wang, C.; Zhang, K.; Lin, D.; Kong, L.; Liu, J. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl. Surf. Sci. 2017, 426, 29–39. [Google Scholar] [CrossRef]
- Xu, G.; Xie, X.; Qin, L. Simple synthesis of a swellable porous beta-cyclodextrin-based polymer in the aqueous phase for the rapid removal of organic micro-pollutants from water. Green Chem. 2019, 21, 6062. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Crini, G. Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog. Polym. Sci. 2013, 38, 344–368. [Google Scholar] [CrossRef]
- Crini, G. Cyclodextrin-epichlorohydrin polymers synthesis, characterization and applications to wastewater treatment: A review. Environ. Chem. Lett. 2021, 19, 2383–2403. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L.D.; Fenyvesi, É.; Crini, G. Water-insoluble β-cyclodextrin-epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci. 2018, 78, 1–23. [Google Scholar] [CrossRef]
- Crini, G. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour. Technol. 2003, 90, 193–198. [Google Scholar] [CrossRef]
- Crini, G. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigm. 2008, 77, 415–426. [Google Scholar] [CrossRef]
- Anne, J.M.; Boon, Y.H.; Saad, B.; Miskam, M.; Yusoff, M.M.; Shahriman, M.S.; Zain, N.N.M.; Lim, V.; Raoov, M. β-cyclodextrin-conjugated-bifunctional-isocyanate-linker-polymer-for-enhanced-removal-of-2-4. R. Soc. Open Sci. 2018, 5, 180942. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Huang, Q.; Ji, H.; Tang, X.; Zhang, Y.; Chai, K. Efficient adsorption of bisphenol A from water by a hierarchically porous hyper-crosslinked polymer containing β-cyclodextrin polyurethane. Sep. Purif. Technol. 2023, 319, 124076. [Google Scholar] [CrossRef]
- Li, H.; Meng, B.; Chai, S.; Liu, H.; Dai, S. Hyper-crosslinked β-cyclodextrin porous polymer: An adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules. Chem. Sci. 2016, 7, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, M.; Jia, J.; Ma, J.; Jia, Q. Design of a hyper-crosslinked β-cyclodextrin porous polymer for highly efficient removal toward bisphenol a from water. Sep. Purif. Technol. 2018, 195, 130–137. [Google Scholar] [CrossRef]
- Karthika, J.S.; Vishalakshi, B. Microwave-Assisted Synthesis and Characterization of Poly(2-(dimethylamino)ethyl methacrylate) Grafted Gellan Gum. Int. J. Polym. Anal. Charact. 2014, 19, 709–720. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, Y.; Huang, W.; Cheng, G.; Cui, C.; Lu, J. A novel amphoteric β-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chem. Eng. J. 2018, 341, 47–57. [Google Scholar] [CrossRef]
- Segura, J.L.; Mancheño, M.J.; Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications. Chem. Soc. Rev. 2016, 45, 5635–5671. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, J.; Wang, W. Progress in Synthesis and Application of Covalent Organic Frameworks. Ekoloji 2019, 28, 4369–4378. [Google Scholar]
- Zhang, T.; Zhang, G.; Chen, L. 2D Conjugated Covalent Organic Frameworks: Defined Synthesis and Tailor-Made Functions. Acc. Chem. Res. 2022, 55, 795–808. [Google Scholar] [CrossRef]
- Wang, R.; Wei, X.; Feng, Y. β-Cyclodextrin Covalent Organic Framework for Selective Molecular Adsorption. Chem. Eur. J. 2018, 24, 10979–10983. [Google Scholar] [CrossRef]
- Bucur, S.; Diacon, A.; Mangalagiu, I.; Mocanu, A.; Rizea, F.; Dinescu, A.; Ghebaur, A.; Boscornea, A.C.; Voicu, G.; Rusen, E. Bisphenol A Adsorption on Silica Particles Modified with Beta-Cyclodextrins. Nanomaterials 2022, 12, 39. [Google Scholar] [CrossRef]
- Feng, X.; Qiu, B.; Sun, D. Enhanced naproxen adsorption by a novel β-cyclodextrin immobilized the three-dimensional macrostructure of reduced graphene oxide and multiwall carbon nanotubes. Sep. Purif. Technol. 2022, 290, 120837. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Jiang, X.; Yu, J.; Chen, X.; Chen, X. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin. Appl. Surf. Sci. 2015, 329, 197–205. [Google Scholar] [CrossRef]
- Tao Gonga, Y.Z.L.S. Effective Adsorption of Phenolic Pollutants from Water using β-cyclodextrin Polymer Assembled Fe3O4 magnetic. RSC Adv. 2016, 6, 80955–80963. [Google Scholar] [CrossRef]
- Shen, H.; Zhu, G.; Yu, W.; Wu, H.; Ji, H.; Shi, H.; She, Y.; Zheng, Y. Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel. Appl. Surf. Sci. 2015, 356, 1155–1167. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Rastogi, N.K. β-Cyclodextrin capped graphene-magnetite nanocomposite for selective adsorption of Bisphenol-A. Carbohyd. Polym. 2017, 168, 129–137. [Google Scholar] [CrossRef]
- Chen, B.; Chen, S.; Zhao, H.; Liu, Y.; Long, F.; Pan, X. A versatile β-cyclodextrin and polyethyleneimine bi-functionalized magnetic nanoadsorbent for simultaneous capture of methyl orange and Pb (II) from complex wastewater. Chemosphere 2019, 216, 605–616. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wu, Z.; Sun, Z.; Wei, X.; Wu, Z.; Ge, X.; Cravotto, G. A novel hybrid of β-cyclodextrin grafted onto activated carbon for rapid adsorption of naphthalene from aqueous solution. J. Mol. Liq. 2018, 255, 160–167. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, L.; Zhu, C.; Huang, W.; Hu, J. Water-insoluble β-cyclodextrin polymer crosslinked by citric acid: Synthesis and adsorption properties toward phenol and methylene blue. J. Inclusion Phenom. Macrocyclic Chem. 2009, 63, 195–201. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Li, X.; Sun, B.; Jiang, Z.; Wang, C. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue. Colloids Surf. B 2015, 136, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, X.; Tang, K. Adsorption of hydroquinone and Pb (II) from water by β-cyclodextrin/polyethyleneimine bi-functional polymer. Carbohyd. Polym. 2022, 294, 119806. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kwak, S.Y. Branched polyethylenimine-polyethylene glycol-β-cyclodextrin polymers for efficient removal of bisphenol A and copper from wastewater. J. Appl. Polym. Sci. 2019, 137, 48475. [Google Scholar] [CrossRef]
- Wu, D.; Hu, L.; Wang, Y.; Wei, Q.; Yan, L.; Yan, T.; Li, Y.; Du, B. EDTA modified β-cyclodextrin/chitosan for rapid removal of Pb (II) and acid red from aqueous solution. J. Colloid Interf. Sci. 2018, 523, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, B.; Xu, J. Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohyd. Polym. 2018, 182, 106–114. [Google Scholar] [CrossRef]
- Usman, M.; Ahmed, A.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Simultaneous adsorption of heavy metals and organic dyes by β-Cyclodextrin-Chitosan based cross-linked adsorbent. Carbohyd. Polym. 2021, 255, 117486. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wu, Y.; Jiang, X.; Lin, F.; Liu, X.; Lu, B. Removal of bisphenol A from aqueous solution via host-guest interactions based on beta-cyclodextrin grafted cellulose bead. Int. J. Biol. Macromol. 2019, 140, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Pu, Y.; Wang, C.; Han, J.; Zhong, Y.; Liu, K. Synthesis of a novel nanosilica-supported poly β-cyclodextrin sorbent and its properties for the removal of dyes from aqueous solution. Colloids Surf. A 2018, 538, 808–817. [Google Scholar] [CrossRef]
- Carvalho, L.B.; Chagas, P.M.B.; Marques, T.R.; Razafitianamaharavo, A.; Pelletier, M.; Nolis, P.; Jaime, C.; Thomasi, S.S.; de Matos Alves Pinto, L. Removal of the synthetic hormone methyltestosterone from aqueous solution using a β-cyclodextrin/silica composite. J. Environ. Chem. Eng. 2019, 7, 103492. [Google Scholar] [CrossRef]
- Vinod Kumar Gupta, S.A.H.S. Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J. Mol. Liq. 2017, 237, 466–472. [Google Scholar] [CrossRef]
- Chen, D.; Shen, Y.; Wang, S.; Chen, X.; Cao, X.; Wang, Z.; Li, Y. Efficient removal of various coexisting organic pollutants in water based on β-cyclodextrin polymer modified flower-like Fe3O4 particles. J. Colloid Interf. Sci. 2021, 589, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, K.; Liu, X.; Chen, Z.; Du, H.; Zhang, X. Synthesis of cationic-modified silica gel and its adsorption properties for anionic dyes. J. Taiwan Inst. Chem. E 2019, 102, 1–8. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Fourmentin, M.; Fourmentin, S.; Torri, G.; Crini, G. Synthesis of silica materials containing cyclodextrin and their applications in wastewater treatment. Environ. Chem. Lett. 2019, 17, 683–696. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed]
- Travlou, N.A.; Kyzas, G.Z.; Lazaridis, N.K.; Deliyanni, E.A. Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir 2013, 29, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B 2012, 90, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Li, Y.; Li, Q.; Du, Q.; Wang, D.; Sui, K.; Wang, C.; Li, H.; Xia, Y. Kinetic, Isotherm and Thermodynamic Studies for Removal of Methylene Blue Using β-Cyclodextrin/Activated Carbon Aerogels. J. Polym. Environ. 2018, 26, 3362–3370. [Google Scholar] [CrossRef]
- Bonvin, F.; Jost, L.; Randin, L.; Bonvin, E.; Kohn, T. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Res. 2016, 90, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Kovalova, L.; Knappe, D.R.U.; Lehnberg, K.; Kazner, C.; Hollender, J. Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ. Sci. Pollut. Res. 2013, 20, 3607–3615. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Rahmanian, O.; Fazlzadeh, M.; Heidari, M. Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound. J. Mol. Liq. 2018, 264, 591–599. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, L.; He, C.; Xu, X.; Duan, Z.; Liu, S.; Song, M.; Song, S.; Shi, J.; Li, Y.E.; et al. Adsorption performance and mechanisms of Pb (II), Cd (II), and Mn (II) removal by a β-cyclodextrin derivative. Environ. Sci. Pollut. Res. 2019, 26, 5094–5110. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, Y.; Wang, J.; Lu, J.; Zhou, Y. Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. J. Hazard. Mater. 2020, 389, 121897. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J. Electrospinning Polyvinyl alcohol/silica-based nanofiber as highly efficient adsorbent for simultaneous and sequential removal of Bisphenol A and Cu (II) from water. Chem. Eng. J. 2017, 314, 714–726. [Google Scholar] [CrossRef]
- Chai, F.; Wang, R.; Yan, L.; Li, G.; Cai, Y.; Xi, C. Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As (V) removal. Carbohyd. Polym. 2020, 245, 116511. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Xu, C.; Qian, G. Adsorption of Cu (II), Zn (II), and Pb (II) from aqueous single and binary metal solutions by regenerated cellulose and sodium alginate chemically modified with polyethyleneimine. RSC Adv. 2018, 8, 18723–18773. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Lee, I.; Hong, Y.; Kumar, V.; Kim, H. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater. Environ. Pollut. 2022, 292, 118447. [Google Scholar] [CrossRef] [PubMed]
- Alzate-Sánchez, D.M.; Ling, Y.; Li, C.; Frank, B.P.; Bleher, R.; Fairbrother, D.H.; Helbling, D.E.; Dichtel, W.R. β-Cyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water. ACS Appl. Mater. Interfaces 2019, 11, 8089–8096. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Meng, Q.; Lin, X.; Han, W.; Jiang, Q.; Wang, L.; Hu, Q.; Zhang, L.; Zhang, Y. Microwave-assisted synthesis of β-cyclodextrin functionalized celluloses for enhanced removal of Pb (II) from water: Adsorptive performance and mechanism exploration. Sci. Total Environ. 2021, 752, 141854. [Google Scholar] [CrossRef]
- Hao, Z.; Yi, Z.; Bowen, C.; Yaxing, L.; Sheng, Z. Preparing γ-Cyclodextrin-Immobilized Starchand the Study of its Removal Propertiesto Dyestuff from Wastewater. Pol. J. Environ. Stud. 2019, 28, 1701–1711. [Google Scholar] [CrossRef]
- Guo, P.; Anderson, J.D.; Bozell, J.J.; Zivanovic, S. The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohyd. Polym. 2016, 140, 171–180. [Google Scholar] [CrossRef]
- Habiba, U.; Afifi, A.M.; Salleh, A.; Ang, B.C. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 2017, 322, 182–194. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008, 99, 6709–6724. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Huang, J.; Jiang, F.; Lin, H.; Chen, Y. Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. J. Eng. Fiber. Fabr. 2019, 14, 1–10. [Google Scholar] [CrossRef]
α–CD | β–CD | γ–CD | |
---|---|---|---|
Number of glucose units | 6 | 7 | 8 |
Molecular weight (g/mol) | 972.0 | 1135.0 | 1297.0 |
Inside diameter (Å) | 4.7–5.3 | 6.0–6.5 | 7.5–8.3 |
Outside diameter (Å) | 14.6 ± 0.4 | 15.4 ± 0.4 | 17.5 ± 0.4 |
Cavity volume (Å3) | 174.0 | 262.0 | 427.0 |
Adsorbent | Supports | Pollutants | Equilibrium Time | Adsorption Capacities (mg/g) | Ref. |
---|---|---|---|---|---|
SiO2–β–CD–NH2 | SiO2 | bisphenol A | 180 min | 107.7 | [62] |
SiO2–β–CD–OH | SiO2 | bisphenol A | 180 min | 112.7 | [62] |
β–CD/rGO–MWCNTs | graphene oxide multiwall carbon nanotubes | naproxen | 24 h | 132.1 | [63] |
MCG | Fe3O4 graphene oxide | p–phenylenediamines | 120 min | 892.9 | [64] |
CDP–MNPs | Fe3O4 magnetic nanoparticles | bisphenol A | 250 min | 74.6 | [65] |
resorcin | 175 min | 114.9 | |||
β–CD@Si | silica gel | p–nitrophenol | 5 s | 41.5 | [66] |
G–Fe3O4–β–CD | bisphenol A | 240 min | 59.6 | [67] | |
Fe3O4–PEI/β–CD | Fe3O4 magnetic nanoparticles | methyl orange | 100 min | 192.2 | [68] |
Pb2+ | 200 min | 73.1 | |||
β–CD@AC | activated carbon | naphthalene | 10 s | 178.7 | [69] |
β–CDP | polyvinyl alcohol | methylene blue | 30 min | 105.0 | [70] |
phenol | 200 min | 13.8 | |||
PVA–SS–β–CD | polyvinyl alcohol | methylene blue | 240 min | 261.1 | [71] |
CD@TCT@PEI | polyethyleneimine | hydroquinone | 180 min | 364.9 | [72] |
Pb2+ | 360 min | 113.5 | |||
b–PEI–PEG–β–CD | polyethylenimine | bisphenol A | 1140 min | 60.1 | [73] |
Cu2+ | 1140 min | 50.1 | |||
CDCS–EDTA | chitosan | acid red 73 | 10 min | 754.6 | [74] |
Pb2+ | 20 min | 114.8 | |||
CRCSCD | chitosan | methyl orange | 180 min | 392.0 | [75] |
NTA–β–CD–CS | chitosan | methyl orange | 90 min | 132.5 | [76] |
Hg2+ | 90 min | 178.3 | |||
β–CD grafted cellulose | cellulose beads | bisphenol A | 360 min | 30.8 | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, K.; Zhang, A.; Cao, Y.; Xu, L. Achievements in Preparation of Cyclodextrin–Based Porous Materials for Removal of Pollutants. Separations 2024, 11, 143. https://doi.org/10.3390/separations11050143
Bao K, Zhang A, Cao Y, Xu L. Achievements in Preparation of Cyclodextrin–Based Porous Materials for Removal of Pollutants. Separations. 2024; 11(5):143. https://doi.org/10.3390/separations11050143
Chicago/Turabian StyleBao, Kaiyue, Anyun Zhang, Yiyao Cao, and Lei Xu. 2024. "Achievements in Preparation of Cyclodextrin–Based Porous Materials for Removal of Pollutants" Separations 11, no. 5: 143. https://doi.org/10.3390/separations11050143
APA StyleBao, K., Zhang, A., Cao, Y., & Xu, L. (2024). Achievements in Preparation of Cyclodextrin–Based Porous Materials for Removal of Pollutants. Separations, 11(5), 143. https://doi.org/10.3390/separations11050143