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Abstract: Levofloxacin (LFX), which is difficult to degrade effectively due to its molecular stability,
has become an problem that needs to be solved urgently. The advanced oxidation technology of
persulfate has received increasing attention from researchers. In this study, a Ce-MOF derivative (Ce-
MOF-T) was prepared by hydrothermal synthesis and calcination, which synergistically responded to
electroactivation to generate sulfate radicals for the efficient degradation of LFX. It has been proven
that electrical activation and the Ce-MOF derivatives work together to generate sulfate radicals and
effectively degrade LFX. Ce-MOF-550-modified carbon cloth was used as the cathode and a platinum
electrode as the anode, the concentration of LFX was 20 mg·L−1, the loading of Ce-MOF-550 was
15 mg, pH = 5, the concentration of sodium persulfate (PMS) was 0.3 g·L−1, the current density was
100 A·m−2, and the degradation rate was 82.05% after 1 h of reaction and 95% after 3 h of reaction.
After five cycle tests, the degradation rate was still higher than 75.00%, indicating that the material
had good stability. In addition, the degradation of LFX was consistent with a quasi-primary kinetic
reaction with apparent rate constants of 2.26 × 10−2 min−1.
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1. Introduction

Levofloxacin (LFX) is a new fluoroquinolone antibiotic, mainly used to treat pneumo-
nia, urinary tract infections, acute pyelonephritis, and skin and soft tissue infections [1].
However, LFX is difficult to absorb and decompose after entering the human body or
animal body, which would enter surface water through medical wastewater and other
routes, leading to the production of drug-resistant bacteria and drug-resistant genes, and
then cause ecological imbalance and pose a threat to human health [2]. Due to its stable
molecular structure and poor biodegradability, advanced oxidation techniques (AOPs)
such as O3 oxidation, TiO2 photocatalytic oxidation, Fenton oxidation, and electro-Fenton
oxidation are currently the main degradation methods for LFX [3–5]. These methods are
effective in the oxidative degradation of organic pollutants by generating reactive free
radicals (e.g., –OH) with strong oxidizing properties [6,7].

Nowadays, the technology of AOPs based on sulfate radicals (SO4
•−) has emerged.

Compared with •OH, SO4
•− offers several advantages [8–10]: (1) greater oxidation poten-

tial with a standard oxidation potential of 2.5–3.1 V; (2) its oxidation principle is similar to
the hydroxyl radical, showing higher stability and being more conducive to the complete
removal of organic pollutants; and (3) it is less affected by the water samples in nature and
the scope of application is wider. As a result, persulfate advanced oxidation technology
has gained widespread attention among researchers.

However, sodium persulfate (PMS) usually needs to be activated to break the O–O
bond and produce sulfate radicals with high redox potential to degrade pollutants [11].
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Currently, there are two main types of persulfate activation: physical activation and chemi-
cal activation. Physical activation employs light waves [12], heat [13,14], and sound [15,16]
to break the peroxide bond in the persulfate anion through energy transfer, resulting in the
formation of two sulfate radicals. Chemical activation involves alkali activation [17,18],
transition metal activation [19,20], electrical activation [21–23], carbonaceous material
activation [24,25], etc., which produce separate sulfate radicals by electron transfer.

Electrochemical oxidation with the transition metal synergistic activation of persulfate
is an emerging wastewater treatment method which is gaining attention. Transition metals
receive electron pairs directly from electricity and then act as electron carriers to rapidly
activate persulfates to degrade pollutants. This method employs electricity to generate a
low-valence state of transition metals and interconverts them, resulting in the consistent
production of potent oxidizing agents. Additionally, it alleviates the problems of low
mass transfer efficiency and the spatial limitation defects of traditional electrochemical
activation. Sun et al. [26] prepared a composite cathode (FeO–CoFeO/GF) with Co–Fe-
oxide-modified graphite felt for the activated persulfate degradation of atrazine (ATZ). The
composite achieved a 100% removal of ATZ within 35 min and showed good stability in
six consecutive cycles. Long et al. [27] developed a three-dimensional particle electrode
(TDE) loaded with active substances from manganese slag (Cu:Fe = 1:1) and used it in the
electro-Fenton-persulfate (3D electro-Fenton-PS) process with the addition of persulfate.
The results showed a 96.3% removal rate of diclofenac (DIC) at a persulfate dosage of
1.50 mmol·L−1 and Fe0 dosage of 3.00 mmol·L−1.

The aim of this study was to prepare a Ce-MOF-derivative-modified carbon cloth
electrode by hydrothermal synthesis and calcination to achieve the synergistic activation of
PMS with electrochemistry for the efficient degradation of LFX. This work also investigated
the effects of catalyst loading, PMS concentration, current density, LFX concentration, and
initial pH on the LFX removal rate and determined the preferred degradation process con-
ditions. In addition, the stability of the electrode and the potential degradation mechanism
of LFX were investigated.

2. Experimental Section
2.1. Materials and Reagents

Anhydrous sodium sulfate, sodium thiocyanate (NaSCN), Ce(NO3)3·6H2O, and
benzene-1,3,5-tricarboxylic acid (BTC) were purchased from Aladdin (Shanghai, China).
N,N-dimethyl formamide (DMF), phosphoric acid (H3PO4), sulfuric acid, isopropanol, and
absolute ethanol (C2H5OH) were purchased from Sinopharm Chemical. High-purity nitro-
gen (99.999%) and perfluorosulfonic acid–PTFE copolymer (Nafion 5%w/w solution) were
bought from ShangHai Hesen Electric Company Limited (Shanghai, China). Levofloxacin
(C18H20FN3O4) and the commercial CeO2 were bought from macklin (Shanghai, China).
Hydrophilic carbon cloth (W0S1011) was purchased from Carbon Energy Technology
Company Limited (Beijing, China).

2.2. Preparation of Sodium Persulphate (PMS)

Electrolysis was carried out using a platinum sheet electrode as the anode and a
Hastelloy alloy cathode with a cationic membrane. The concentration of sodium sulfate in
the anode solution was 450 g·L−1, the concentration of sulfuric acid was 300 g·L−1, and the
concentration of NaSCN was 0.8 g·L−1. The concentration of sulfuric acid in the cathode
solution was 250 g·L−1. The volume of each was 320 mL. The electrolysis temperature
was 35 ◦C and the current was 4 A. After electrolyzing at a constant current for 10 h,
the anode solution was taken out of the anode chamber and the crystals were obtained
after pumping. These crystals were washed with ethanol 3 times, put into a freeze dryer
with the temperature set to −80 ◦C, and dried for 12 h. White powder crystals of PMS
were obtained.
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2.3. Preparation of Ce-MOF Derivatives (Ce-MOF-T) and Electrodes

Synthesis of Ce-MOF: Ce (NO3)3·6H2O (4.65 mmol) and BTC (3.3 mmol) were dis-
persed in 15 mL of N,N-dimethylformamide and poured into an autoclave hydrothermal
kettle. The mixture was placed in an oven at 100 ◦C for 24 h. The resulting white precipitate
was washed and centrifuged with ethanol to remove uncoordinated cerium ions and BTC.
The precipitate was then dried in a vacuum oven at 60 ◦C for 8 h, resulting in Ce-MOF.

Synthesis of Ce-MOF derivatives: The synthesized Ce-MOF was ground into a fine
powder. Then, 0.5 g of the material was placed into a porcelain boat and heated to the
desired temperature (T = 450, 550, 650, and 750 ◦C) at a heating rate of 5 ◦C·min−1 in an
N2 atmosphere. The material was held at this temperature for 2 h to obtain the Ce-MOF-T
hybrids. N2 was fed into the tube furnace for at least 30 min to remove O2, and the flow
rate was set at 100 sccm.

Preparation of the modified carbon cloth cathodes (Ce-MOF-T/Carbon-C): The Ce-
MOF-T catalyst was weighed and placed in a sample tube. Next, 1 mL of ethanol, 0.4 mL
of isopropanol, and 4 µL of 5% Nafion solution were added. The mixture was then
ultrasonicated for 30 min to ensure complete and even dispersion of the catalyst. All of the
resulting solution was evenly dripped onto a carbon cloth (2 cm × 2 cm) under heating
conditions of 80 ◦C to obtain the Ce-MOF-derivative-modified carbon cloth electrode. The
catalyst-coated carbon cloth electrode was then secured onto the clamp electrode for the
experiments.

2.4. Characterization

A Rigaku Ultima IV X-ray diffractometer (Tokyo, Japan) was used for X-ray diffraction
(XRD) measurements. The operating voltage and current were 35 kV and 15 mA, respec-
tively. A Hitachi S4800 (Tokyo, Japan) with a working accelerating voltage of 10 kV was
used to take the scanning electron microscope (SEM) images. N2 adsorption–desorption
isotherms were measured using a Micromeritics ASAP 2460 automated sorption analyzer
(Norcross, GA, USA). Infrared chromatography was performed using a Nicolet 6700 FTIR
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with a scanning wavelength
range of 4000 to 400 cm−1.

2.5. LFX Degradation Experiments

The constant-current electrolysis experiments were carried out using a diaphragmless
electrolyzer with a Ce-MOF-T-modified carbon cloth electrode as the cathode and a plat-
inum electrode as the anode. The reaction solution was 50 mL of a given concentration of
LFX wastewater and PMS, and the reaction temperature was 25 ◦C with a stirring speed
of 700 rpm. Samples of 0.8 mL were taken at 10 min intervals and 0.2 mL of ethanol was
added to perform the free radical quenching. The sample was filtered through a 0.22 µm
pore-size polyethersulfone PES membrane and poured into a liquid phase vial for analysis
by high-performance liquid chromatography (HPLC). The amount of cerium ions dissolved
in the solution was determined by ICP-MS (Agilent-7500a, Santa Clara, CA, USA).

The liquid chromatographic parameters were determined on a high-performance
liquid chromatography (HPLC) UltiMate 3000 (Thermo Fisher Scientific) with a C18 col-
umn (250 × 4.6 mm) at 30 ◦C and a UV detector at 293 nm. The mobile phase was
acetonitrile/pure water (15:85, V/V, pH = 4 ± 0.1 adjusted with phosphoric acid and
triethylamine), at a flow rate of 1 mL·min−1.

3. Results and Discussion
3.1. Structural and Morphological Characterization of Ce-MOF-T

Figure 1 shows the XRD patterns of different Ce-MOF-T samples. It could be seen
that the Ce-MOF skeleton gradually collapses with the increase in calcination temperature
from the figure. Compared with Ce-MOF, when the calcination temperature reached
550 ◦C, the diffraction peaks between 10◦ and 20◦ in the XRD patterns of the samples
disappeared, while apparent diffraction peaks appeared at 28.52◦, 33.03◦, 47.42◦, and
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56.33◦, corresponding to the (111), (200), (220), and (311) crystal planes of CeO2 based
on PDF#00-034-0394, respectively, indicating that Ce-MOF had been pyrolyzed to CeO2.
Meanwhile, compared with Ce-MOF-650 and Ce-MOF-750, the diffraction peak width of
Ce-MOF-550 was wider, and the crystallinity of the pyrolyzed CeO2 was better. In general,
the wider peaks mean more nanocrystals, and more CeO2 nanoparticles can generate more
oxygen vacancies with stronger catalytic activity [28].
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Figure 1. XRD patterns of Ce-MOF, Ce-MOF-450, Ce-MOF-550, Ce-MOF-650, and Ce-MOF-750. 
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Figure 1. XRD patterns of Ce-MOF, Ce-MOF-450, Ce-MOF-550, Ce-MOF-650, and Ce-MOF-750.

The Ce-MOF-T after calcination at different temperatures was observed using a scan-
ning electron microscope and the results are shown in Figure 2. From Figure 2a, it can be
seen that the uncalcined Ce-MOF was in the form of smooth rods. After calcination, it can
be seen that cracks began to appear on the rod-like surface (Figure 2b–e), which was due to
the formation of CeO2 grains during the calcination process. With increasing calcination
temperature, the cracks in the rod structure became more and more obvious, and when the
calcination temperature was 750 ◦C, the Ce-MOF rod structure was almost broken by the
high temperature; at this time, the structure of Ce-MOF was very similar to that of CeO2.
Combined with the elemental analysis (Figure 2f), the main elements of Ce-MOF-550 were
C, O, and Ce, indicating that the derivatives of Ce-MOF were successfully prepared.

Figure 3 shows the N2 isothermal adsorption and desorption curves of different sam-
ples. Before calcination, the specific surface area of Ce-MOF was only 0.42 m2·g−1 (Table 1).
Meanwhile, as the calcination temperature increased, the organic ligands were burnt off,
the specific surface area and the pore volume increased dramatically, and the specific
surface area of Ce-MOF-T increased from 40.72 m2·g−1 (Ce-MOF-450) to 266.58 m2·g−1

(Ce-MOF-550). When the calcination temperature was further increased, the specific surface
area of Ce-MOF-650 decreased to 226.83 m2·g−1. This was because the high temperature
caused the collapse of the MOF structure, which reduced the specific surface area and led
to the reduction in active sites, which was consistent with the SEM results.

Table 1. BET surface area, pore volume, and pore size of different samples.

Samples BET Surface Area (m2g−1) Pore Volume (cm3g−1) Pore Size (nm)

Ce-MOF 4.70 0.0034 32.8459
Ce-MOF-450 40.72 0.0723 7.1008
Ce-MOF-550 266.58 0.3429 5.1457
Ce-MOF-650 226.83 0.3397 5.9909
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Figure 3. Nitrogen adsorption–desorption isotherms of Ce-MOF, Ce-MOF-450, Ce-MOF-550, and 
Ce-MOF-650. 
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Figure 3. Nitrogen adsorption–desorption isotherms of Ce-MOF, Ce-MOF-450, Ce-MOF-550, and
Ce-MOF-650.

3.2. LFX Degradation Study
3.2.1. Effect of PMS Activation Mode on the Degradation Rate of LFX

The effect of PMS activation on the degradation rate of LFX using different activation
methods is shown in Figure 4 ((A) the loading amount of catalyst (Ce-MOF-550) on the
cathode (Mcat.): 0 mg, current density (i): 50 A·m−2; (B) Mcat.: 15 mg, i: 0 A·m−2; (C) Mcat.:
15 mg, i: 50 A·m−2). The degradation was carried out in 20 mg·L−1 of LFX wastewater at an
initial concentration (CLFX) of 50 mL with a concentration of PMS (CPMS) of 0.3 g·L−1 and a
pH of 5. From the figure, it can be seen that the degradation rate of LFX was only 6.13%
when only Ce-MOF-550 catalysis was used, and 40.60% when electroactivation was used.
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Compared with Ce-MOF-550 catalysis, electroactivation could provide a continuous supply
of electrons to activate the PMS to generate sulfate radicals, whereas the conversion of Ce3+

in Ce-MOF-550 to Ce4+ could not be reversibly reduced to Ce3+ by itself. By combining the
two activation methods, using Ce-MOF-550-modified carbon cloth as a cathode to degrade
LFX by electrolysis, the degradation rate of LFX increased to 72.90% within the same time,
which showed a significant improvement, indicating that both of them worked together in
activating PMS to degrade LFX. On the one hand, the two different methods could activate
PMS, and on the other hand, Ce4+ could be effectively reduced to Ce3+ at the cathode, thus
realizing a reversible cycle between low-valence and high-valence Ce states, which could
be continuously used for the generation of sulfate radicals to improve the degradation
efficiency of LFX.
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3.2.2. Effect of Calcined Temperature

In order to investigate the effect of Ce-MOF-T/Carbon-C at different calcination
temperatures on the degradation of LFX, the degradation was carried out in 20 mg·L−1 of
LFX wastewater at an initial concentration of 50 mL with a concentration of Na2S2O8 of
0.3 g·L−1, a pH of 5, a current density of 50 A·m−2, and a loading amount of catalyst on
the cathode of 15 mg. As shown in Figure 5, it could be found that the degradation rate of
loaded pure cerium oxide was 43.80% after 1 h of reaction, while the degradation rates of
Ce-MOF, Ce-MOF-450, Ce-MOF-550, Ce-MOF-650, and Ce-MOF-750 loaded with the same
amount were 60.52%, 65.72%, 72.90%, 70.44%, and 64.05% at the same time, which was a
significant improvement in the degradation rate. This might be due to the fact that pure
CeO2 is mainly Ce4+ with a small specific surface area and few active sites, thus contributing
little to degradation, while more Ce3+ was present in Ce-MOF derivatives. Ce3+ could
effectively transfer electrons with persulfate to activate it. Among them, Ce-MOF-550 had
the highest degradation rate due to its larger specific surface area, which could provide
more active sites. Therefore, Ce-MOF-550 was used as the catalyst for subsequent studies.
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(CLFX: 20 mg·L−1; CPMS: 0.3 g·L−1; pH: 5; i: 50 A·m−2; Mcat.: 15 mg).

3.2.3. The Effect of Ce-MOF-550 Loading

The effect of Ce-MOF-550 loading on the degradation of LFX wastewater was investi-
gated. The cathodic loadings were 7.5 mg, 10 mg, 12.5 mg, 15 mg, 17.5 mg, and 20 mg, with
the results shown in Figure 6. When the loading amount of Ce-MOF-500 was increasing
from 7.5 mg to 15 mg, the degradation rate of LFX gradually increased from 51.51% to
72.90%. And when the loading amount was further increased up to 20 mg, the degradation
rate of LFX decreased to 63.36%. This may be due to the fact that as the catalyst dosage
was increased, the active area of the reaction was increased, which accelerated the electron
transfer rate of the sulphate radicals at a given PMS dosage, making the unit LFX molecule
more susceptible to degradation by attack by the reactive species. However, if the sulphate
radicals were produced too quickly and the concentration in the unit area was too high, the
auto-quenching reaction was prone to occur.
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3.2.4. Effect of PMS Concentration

In this experiment, the effect of PMS concentration on the degradation of LFX wastew-
ater was investigated by adding PMS to LFX wastewater at 0.1 g·L−1, 0.2 g·L−1, 0.3 g·L−1,
0.4 g·L−1, and 0.5 g·L−1, and the other conditions were the same as in Section 3.2.1. As
shown in Figure 7, when the PMS concentration was increased from the low concentra-
tion, the degradation rate of LFX also gradually increased to 54.06% (0.1 g·L−1), 64.17%
(0.2 g·L−1), and 72.90% (0.3 g·L−1). But when the PMS concentration was further increased,
the degradation rate of LFX started to decrease slightly to 70.32% (0.4 g·L−1) and 68.56%
(0.5 g·L−1). With the increase in PMS concentration, the concentration of SO4

•− generated
by the electroactivation of PMS at the Ce-MOF-derivative-modified cathode increased and
the degradation rate of LFX was enhanced. However, if the concentration of PMS was
too high, the excess SO4

•− might react with itself in a burst reaction or with persulfate,
reducing the SO4

•− content in the solution and leading to a decrease in the degradation
rate of LFX. The reactions were as follows:

2SO•
4
− → S2O 2−

8 (1)

SO•
4
− + S2O2−

8 → S2O−
8 + SO2−

4 (2)
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3.2.5. Effect of pH

Figure 8 shows that the initial pH had a significant impact on the degradation rate
of LFX. The degradation rates for LFX were 56.33%, 72.90%, 70.44%, and 67.60% at pH
values of 3, 5, 7, and 9, respectively. These results indicated that periplasmic PMS could
be activated for LFX removal under acidic, neutral, and alkaline conditions. However,
when the acidity was too strong, H+ might react with S2O8

2− to form HSO4
−. This reaction

reduced the concentration of PMS that could be activated, resulting in fewer sulfate radicals
being produced. If the alkalinity was too high, OH− could react with SO4

•− to form •OH,
which led to a self-bursting reaction.
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15 mg).

3.2.6. Effect of Current Density

Figure 9 shows the degradation rate of LFX effluent at different current densities.
The current densities were 20 A·m−2, 40 A·m−2, 50 A·m−2, 75 A·m−2, 100 A·m−2, and
150 A·m−2 and the other conditions were the same as in 3.2.1. It could be seen from the
Figure 9 that the degradation rate increased with the increase in current density, which
were 52.48%, 69.53%, 72.90%, 79.02%, 82.05%, and 83.40%. This was because the increase in
current density accelerated the electron transfer, which facilitated both the direct electron
activation of peroxynitrite and the rapid conversion of Ce4+ to Ce3+ for activation of
peroxynitrite, resulting in an increase in the rate of sulphate radical production and an
increase in the rate of LFX removal. It could be seen that when the current density was low,
the degradation rate of LFX increased more markedly as the current density increased, but
as the current density increased, the degradation rate of LFX was not very marked, although
it did increase. This indicated that when the current density exceeded a certain amount,
the main factor affecting the degradation rate of LFX was no longer the current density, but
increasing the current would instead increase the electrical energy consumption. Therefore,
considering all the factors, it was appropriate to choose a current density of 100 A·m−2 for
the actual treatment of wastewater.
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3.2.7. Effect of LFX Concentration

The effect of LFX concentration on its degradation rate was investigated by varying
the concentration of LFX to 10 mg·L−1, 20 mg·L−1, 30 mg·L−1, 40 mg·L−1, and 50 mg·L−1,
with a current density of 100 A·m−2 and the other conditions as in Section 3.2.1 (Figure 10).
After reacting for 1 h, the degradation rates of LFX were 85.34%, 82.05%, 77.28%, 74.20%,
and 71.35%, respectively. This indicated that the system had superior degradation perfor-
mance for LFX at both high and low concentrations. In addition, it could be seen that the
degradation rate decreased but the amount of degradation increased with increasing LFX
concentration, which suggested that the reaction depended on the rate of generation of
sulfate radicals when LFX was high in concentration. Currently, the efficient degradation
of high concentrations of LFX could be achieved by adjusting the amount of PMS added
and the current density, among other factors.
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3.3. Stability Testing
3.3.1. Structural Analysis of Electrode Materials before and after Reaction

The X-ray diffraction analysis of the pure carbon cloth and Ce-MOF-550/Carbon-C
before and after the reaction is shown in Figure 11 Compared with the pure carbon cloth,
the modified carbon cloth showed carbon peaks at 2θ of 25.66◦, while the peaks at 2θ of
28.58◦, 33.06◦, 47.50◦, 56.22◦, 69.38◦, and 77.08◦ corresponded to the (111), (200), (220), (311),
(400), and (331) crystalline surfaces of CeO2. This indicated that the Ce-MOF-550 catalyst
was effectively loaded on the carbon cloth. The XRD peaks of the electrode material before
and after the electrolysis reaction were consistent, indicating that the electrode material had
no obvious structural changes due to electrolysis. Thus, Ce-MOF-550 had good stability,
which could be recycled.
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3.3.2. Efficiency of LFX Degradation in Recycling Tests

The stability of electrolysis of the initial Ce-MOF-550-modified carbon cloth was in-
vestigated in five cycle experiments. The experimental conditions were as follows: 50 mL
of levofloxacin wastewater with an initial concentration of 20 mg·L−1 was degraded,
corresponding to the addition of 0.3 g·L−1 of Na2S2O8, a pH of 5, a current density of
100 A·m−2, electrolysis for 1 h, and an initial value of the catalyst loading on the cathode
of 15 mg. The carbon cloth electrodes were washed three times in deionized water after
each electrolysis and placed in a vacuum oven at 60 ◦C for 2 h after drying. As shown
in Figure 12, the five LFX degradation rates were 82.05%, 80.28%, 79.22%, 77.80%, and
75.86%, with an average degradation rate of 79.04% and a variance of 0.0022, which in-
dicated that Ce-MOF-550/Carbon-C had high stability and the electrolysis process was
able to degrade LFX efficiently. The degradation rate constants of LFX during the five
cycles are shown in Figure 13. The degradation of LFX was consistent with a quasi-
primary kinetic reaction. The apparent rate constants were 2.26 × 10−2 min−1 (R2 = 0.978),
2.10 × 10−2 min−1 (R2 = 0.958), 2.01 × 10−2 min−1 (R2 = 0.953), 2.10 × 10−2 min−1

(R2 = 0.982), and 2.10 × 10−2 min−1 (R2 = 0.981), respectively. Through ICP-MS, the cerium
ion dissolution was determined and the dissolution rates were only 2.61%, 3.51%, 3.79%,
2.90% and 4.61% for the five cycles, which meant that the concentration of cerium ions
in the electrolyte was less than 14 mg/L. The reasons for the decrease in the degradation
efficiency were investigated, which may be due to the following: (1) the adsorption of
pollutants on the surface of Ce-MOF-550/Carbon-C resulted in a reduction in active sites;
(2) some of the organic small molecules were adsorbed on the cathode surface after the
degradation reaction occurred on the cathode surface, reducing the catalytic activity; (3) a
small number of cerium ions leached out in the course of the reaction; and (4) Ce-MOF-
550 became detached due to the washing of the cathode surface during the repetition of
the experiments.
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3.3.3. Study of the LFX Degradation Mechanism

In order to speculate on the intermediates and pathways of levofloxacin degradation
products, liquid chromatography–mass spectrometry (LC-MS) was used to determine
the structure of the intermediates and analyze the possible degradation pathways of
LFX. Figure 14a,b show the reaction intermediates. Combined with the relevant litera-
ture [29–31], the presumed degradation pathway of levofloxacin is shown in Figure 15. In
pathway I, the N atom in the piperazine group of LFX is attacked by free radicals, and the
N-dealkylation reaction occurs. Pathway II is the hydroxylation of LFX, which breaks the
piperazine bond and defluorinates and decarboxylates it. Pathway III is the destruction of
the piperazine group to continue decarboxylation and defluorination. Pathway IV is the
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transformation of LFX into a small-molecule product through decarboxylation, N dealkyla-
tion reaction, and defluorination. Finally, LFX is converted to CO2, H2O, NH4

+, NO3
−, and

F− after mineralization.
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