Characterization and Quantitation of Anthocyanins of the Pigmented Tea Cultivar TRI 2043 (Camellia sinensis L.) from Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Sample Preparation
2.4. Ultra-High-Performance Liquid Chromatography (UHPLC) Analysis for the Quantitation of Anthocyanins
2.5. UHPLC Ion Mobility Spectrometry Time of Flight (TOF) Mass Spectrometry for Qualification of Anthocyanins
3. Results and Discussion
3.1. Identification
3.2. Anthocyanin Contents in Leaf Blades
3.3. Anthocyanin Contents in Stems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, A. The chemistry and biochemistry of black tea production—The non-volatiles. In Tea; Willson, K.C., Clifford, M.N., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 555–601. ISBN 978-94-010-5027-2. [Google Scholar]
- Sharangi, A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—A review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Feild, T.S.; Lee, D.W.; Holbrook, N.M. Why Leaves Turn Red in Autumn. The Role of Anthocyanins in Senescing Leaves of Red-Osier Dogwood. Plant Physiol. 2001, 127, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.D.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Punyasiri, P.A.N.; Abeysinghe, S.B.; Kumar, V. Preformed and induced chemical resistance of tea leaf against Exobasidium vexans infection. J. Chem. Ecol. 2005, 31, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.-H.; Suh, H.-J. Antioxidant activities of five different mulberry cultivars in Korea. LWT Food Sci. Technol. 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Joshi, R.; Rana, A.; Gulati, A. Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India. Food Chem. 2015, 176, 357–366. [Google Scholar] [CrossRef]
- Kerio, L.C.; Bend, J.R.; Wachira, F.N.; Wanyoko, J.K.; Rotich, M.K. Attenuation of t-Butylhydroperoxide induced oxidative stress in HEK 293 WT cells by tea catechins and anthocyanins. J. Toxicol. Environ. Health Sci. 2011, 3, 367–375. [Google Scholar]
- Jiang, L.; Shen, X.; Shoji, T.; Kanda, T.; Zhou, J.; Zhao, L. Characterization and activity of anthocyanins in Zijuan tea (Camellia sinensis var. kitamura). J. Agric. Food Chem. 2013, 61, 3306–3310. [Google Scholar] [CrossRef] [PubMed]
- Kottawa-Arachchi, J.D.; Ranatunga, M.; Amarakoon, A.; Gunasekare, M.; Attanayake, R.N.; Sharma, R.K.; Chaudhary, H.K.; Sood, V.K.; Katoch, R.; Banyal, D.K.; et al. Variation of catechin and caffeine content in exotic collection of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka and potential implication in breeding cultivars with enhanced quality and medicinal properties. Food Chem. Adv. 2022, 1, 100108. [Google Scholar] [CrossRef]
- Gunesekara, M.T. Planting materials. In Handbook on Tea; Zoysa, A.K.N., Ed.; Tea Research Institute: Talawakelle, Sri Lanka, 2008; pp. 34–49. [Google Scholar]
- Hilal, Y.; Engelhardt, U. Characterisation of white tea—Comparison to green and black tea. J. Verbr. Lebensm. 2007, 2, 414–421. [Google Scholar] [CrossRef]
- Maeda-Yamamoto, M.; Saito, T.; Nesumi, A.; Tokuda, Y.; Ema, K.; Honma, D.; Ogino, A.; Monobe, M.; Murakami, A.; Tachibana, H. Chemical analysis and acetylcholinesterase inhibitory effect of anthocyanin-rich red leaf tea (cv. Sunrouge). J. Sci. Food Agric. 2012, 92, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Kerio, L.C.; Wachira, F.N.; Wanyoko, J.K.; Rotich, M.K. Characterization of anthocyanins in Kenyan teas: Extraction and identification. Food Chem. 2012, 131, 31–38. [Google Scholar] [CrossRef]
- Ranatunga, M.A.B.; Arachchi, J.D.K.; Gunasekare, K.; Yakandawala, D. Floral Diversity and Genetic Structure of Tea Germplasm of Sri Lanka. Int. J. Biodivers. 2017, 2017, 2957297. [Google Scholar] [CrossRef]
- Gunasekare, M.T.K. Tea Plant (Camellia sinensis) Breeding in Sri Lanka. In Global Tea Breeding; Chen, L., Apostolides, Z., Chen, Z.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 125–176. [Google Scholar]
- Govindasamy, K.; Sugumar, D.A.S.; Kandan, N.M.; Nagaprasad, N.; Ramaswamy, K. Seasonal variations in the phenolic profile, antioxidant activity, and mineral content of south Indian black tea (Camellia sinensis (L.) O. Kuntze). Sci. Rep. 2023, 13, 18700. [Google Scholar] [CrossRef] [PubMed]
- Juadjur, A.; Winterhalter, P. Development of a novel adsorptive membrane chromatographic method for the fractionation of polyphenols from bilberry. J. Agric. Food Chem. 2012, 60, 2427–2433. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Stewart, A.J.; Mullen, W.; Burns, J.; Lean, M.E.J.; Brighenti, F.; Crozier, A. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem. 2004, 52, 2807–2815. [Google Scholar] [CrossRef]
- Dou, J.; Lee, V.S.Y.; Tzen, J.T.C.; Lee, M.-R. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. J. Agric. Food Chem. 2007, 55, 7462–7468. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, Y.; Li, W.; Zhao, L.; Meng, F.; Wang, Y.; Tan, H.; Yang, H.; Wei, C.; Wan, X.; et al. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant Camellia sinensis. PLoS ONE 2013, 8, e62315. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Leandro, M.C.; de Freitas, V.; Spranger, M.I. Fractionation of red wine polyphenols by solid-phase extraction and liquid chromatography. J. Chromatogr. A 2006, 1128, 27–38. [Google Scholar] [CrossRef]
- Degenhardt, A.; Engelhardt, U.H.; Lakenbrink, C.; Winterhalter, P. Preparative separation of polyphenols from tea by high-speed countercurrent chromatography. J. Agric. Food Chem. 2000, 48, 3425–3430. [Google Scholar] [CrossRef]
- Ma, Y.; Shang, Y.; Liu, F.; Zhang, W.; Wang, C.; Zhu, D. Convenient isolation of strictinin-rich tea polyphenol from Chinese green tea extract by zirconium phosphate. J. Food Drug Anal. 2018, 26, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Honma, D.; Tagashira, M.; Kanda, T.; Nesumi, A.; Maeda-Yamamoto, M. Anthocyanins from new red leaf tea ‘Sunrouge’. J. Agric. Food Chem. 2011, 59, 4779–4782. [Google Scholar] [CrossRef] [PubMed]
- Pachulicz, R.J.; Yu, L.; Jovcevski, B.; Bulone, V.; Pukala, T.L. Structural Analysis and Identity Confirmation of Anthocyanins in Brassica oleracea Extracts by Direct Injection Ion Mobility-Mass Spectrometry. ACS Meas. Sci. Au 2023, 3, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Renslow, R.S.; Makola, M.M.; Webb, I.K.; Deng, L.; Thomas, D.G.; Govind, N.; Ibrahim, Y.M.; Kabanda, M.M.; Dubery, I.A.; et al. Structural Elucidation of cis/trans Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry. J. Phys. Chem. Lett. 2017, 8, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Corinti, D.; Maccelli, A.; Crestoni, M.E.; Cesa, S.; Quaglio, D.; Botta, B.; Ingallina, C.; Mannina, L.; Tintaru, A.; Chiavarino, B.; et al. IR ion spectroscopy in a combined approach with MS/MS and IM-MS to discriminate epimeric anthocyanin glycosides (cyanidin 3-O-glucoside and -galactoside). Int. J. Mass Spectrom. 2019, 444, 116179. [Google Scholar] [CrossRef]
- Meier, F.; Brunner, A.-D.; Koch, S.; Koch, H.; Lubeck, M.; Krause, M.; Goedecke, N.; Decker, J.; Kosinski, T.; Park, M.A.; et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteom. 2018, 17, 2534–2545. [Google Scholar] [CrossRef] [PubMed]
- Stow, S.M.; Causon, T.J.; Zheng, X.; Kurulugama, R.T.; Mairinger, T.; May, J.C.; Rennie, E.E.; Baker, E.S.; Smith, R.D.; McLean, J.A.; et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 2017, 89, 9048–9055. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-X.; Li, Z.-Y.; Zhu, W.; Wang, Y.-Q.; Liang, Y.-R.; Wang, K.-R.; Ye, J.-H.; Lu, J.-L.; Zheng, X.-Q. Anthocyanin metabolism and its differential regulation in purple tea (Camellia sinensis). Plant Physiol. Biochem. 2023, 201, 107875. [Google Scholar] [CrossRef]
- Hsu, C.-P.; Shih, Y.-T.; Lin, B.-R.; Chiu, C.-F.; Lin, C.-C. Inhibitory effect and mechanisms of an anthocyanins- and anthocyanidins-rich extract from purple-shoot tea on colorectal carcinoma cell proliferation. J. Agric. Food Chem. 2012, 60, 3686–3692. [Google Scholar] [CrossRef]
- Ndacyayisenga, J.; Maina, E.; Ngeny, L.; Wamunyokoli, F.; Tolo, F. Purple tea catechins exhibit high antiproliferative activity and synergism with cisplatin against the triple-negative breast cancer cell line 4T1. Arch. Biol. Sci. 2023, 75, 475–488. [Google Scholar] [CrossRef]
Peak | Compound | Formula | Retention Time [min] | m/z [M]+ | Mass Error [ppm] | Fragment Ion m/z | CCS [Å2] |
---|---|---|---|---|---|---|---|
Extracts of leaf blades and stems of cultivar TRI 2043 | |||||||
a | delphinidin-3-O-β-d-galactoside | C21H21O12 | 4.86 | 465.1026 | 0.3 | 303 | 205.3 |
b | cyanidin-3-O-β-d-galactoside | C21H21O11 | 6.09 | 449.1077 | 0.4 | 287 | 201.2 |
c | delphinidin-3-O-β-d-(6-(Z)-p-coumaroyl)galactopyranoside | C30H27O14 | 12.96 | 611.1401 | −0.9 | 303 | 226.3 |
d | cyanidin-3-O-β-d-(6-(Z)-p-coumaroyl)galactopyranoside | C30H27O13 | 14.54 | 595.1445 | 0.2 | 287 | 223.6 |
e | delphinidin-3-O-β-d-(6-(E)-p-coumaroyl)galactopyranoside | C30H27O14 | 15.05 | 611.1400 | −0.8 | 303 | 237.7 |
f | cyanidin-3-O-β-d-(6-(E)-p-coumaroyl)galactopyranoside | C30H27O13 | 16.69 | 595.1448 | −0.4 | 287 | 235.9 |
Commercial standards | |||||||
a | delphinidin-3-O-β-d-galactoside | C21H21O12 | 4.86 | 465.1023 | 1.0 | 303 | 204.9 |
b | cyanidin-3-O-β-d-galactoside | C21H21O11 | 6.11 | 449.1073 | 1.2 | 287 | 201.0 |
1 | cyanidin-3-O-β-d-glucoside | C21H21O11 | 6.96 | 449.1073 | 1.2 | 287 | 201.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hopfstock, P.; Punyasiri, P.A.N.; Kiene, M.; Kottawa-Arachchi, J.D.; Gök, R.; Winterhalter, P. Characterization and Quantitation of Anthocyanins of the Pigmented Tea Cultivar TRI 2043 (Camellia sinensis L.) from Sri Lanka. Separations 2024, 11, 157. https://doi.org/10.3390/separations11050157
Hopfstock P, Punyasiri PAN, Kiene M, Kottawa-Arachchi JD, Gök R, Winterhalter P. Characterization and Quantitation of Anthocyanins of the Pigmented Tea Cultivar TRI 2043 (Camellia sinensis L.) from Sri Lanka. Separations. 2024; 11(5):157. https://doi.org/10.3390/separations11050157
Chicago/Turabian StyleHopfstock, Philipp, Pitumpe Appuhamilage Nimal Punyasiri, Mats Kiene, Jeevan Dananjava Kottawa-Arachchi, Recep Gök, and Peter Winterhalter. 2024. "Characterization and Quantitation of Anthocyanins of the Pigmented Tea Cultivar TRI 2043 (Camellia sinensis L.) from Sri Lanka" Separations 11, no. 5: 157. https://doi.org/10.3390/separations11050157
APA StyleHopfstock, P., Punyasiri, P. A. N., Kiene, M., Kottawa-Arachchi, J. D., Gök, R., & Winterhalter, P. (2024). Characterization and Quantitation of Anthocyanins of the Pigmented Tea Cultivar TRI 2043 (Camellia sinensis L.) from Sri Lanka. Separations, 11(5), 157. https://doi.org/10.3390/separations11050157