Polyphenols from Sage Leaves (Salvia officinalis L.): Environmentally Friendly Extraction under High Hydrostatic Pressure and Application as a Corrosion Inhibitor for Tinplate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Extraction Procedure with High Hydrostatic Pressure
2.3. Total Polyphenols
2.4. HPLC-DAD Analysis of the Polyphenolic Compounds
2.5. Electrochemical Measurements
2.6. Analysis of Attenuated Total Internal Reflection and Fourier Transform in the Infrared (ATR-FTIR)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Extraction with High Hydrostatic Pressure on Total Polyphenols
3.2. Effect of Extraction with High Hydrostatic Pressure on Individual Polyphenols
3.3. Evaluation of Sage Inhibition Efficiency on Tinplate in a 3% Sodium Chloride Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berdhal, D.B.; McKeague, J. Rosemary and Sage Extracts as Antioxidants for Food Preservation; Woodhead Publishing: Cambridge, UK, 2015; Volume 276. [Google Scholar]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef] [PubMed]
- Generalić, I.; Skroza, D.; Ljubenkov, I.; Katalinić, A.; Burčul, F.; Katalinić, V. Influence of the phenophase on the phenolic profile and antioxidant properties of Dalmatian sage. Food Chem. 2011, 127, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Sik, B.; Lakatos-Henczné, E.; Kapcsándi, V.; Ajtony, Z. Covnetional and nonconventional extraction techniques for optimal extraction processes of rosmarinic acid from six Lamiaceae plants as determined by HPLC-DAD measurement. J. Pharm. Biom. Anal. 2020, 184, 113137. [Google Scholar] [CrossRef] [PubMed]
- Miljanović, A.; Dent, M.; Grbin, D.; Pedisić, S.; Zorić, Z.; Marijanović, Z.; Jerković, I.; Bielen, A. Sage, Rosemary and Bay Laurel Hydrodistillation By-Products as a Source of Bioactive Compounds. Plants 2023, 12, 2394. [Google Scholar] [CrossRef] [PubMed]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Cañas-Sarazúa, R. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem. 2019, 278, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Molina, G.A.; Gonzalez-Fuentes, F.; Loske, A.M.; Fernandez, F.; Estevez, M. Shock wave-assisted extraction of phenolic acids and flavonoids from Eysenhardtia polystachya heartwood: A novel method and its comparison with conventional methodologies. Ultrason. Sonochem. 2020, 61, 104809. [Google Scholar] [CrossRef] [PubMed]
- Zeković, Z.; Pintać, D.; Majkić, T.; Vidović, S.; Mimica-Dukić, N.; Teslić, N.; Versari, A.; Pavlić, B. Utilization of sage by-products as raw material for antioxidants recovery-Ultrasounds versus microwave-assisted extraction. Ind. Crop. Prod. 2017, 99, 49–59. [Google Scholar] [CrossRef]
- Xi, J.; Luo, S. The mechanism for enhancing extraction of ferulic acid from Radix Angelica sinensis by high hydrostatic pressure. Sep. Purific. Technol. 2016, 165, 208–213. [Google Scholar] [CrossRef]
- Chen, T.; Li, B.; Shu, C.; Tian, J.; Zhang, Y.; Gao, N.; Cheng, Z.; Xie, X.; Wang, J. Combined effect of thermosonication and high hydrostatic pressure on bioactive compounds, microbial load, and enzyme activities of blueberry juice. Food Sci. Technol. Int. 2022, 28, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Moreira, S.A.; Silva, S.; Costa, E.; Pinto, S.; Sarmento, B.; Saraiva, J.A.; Pintado, M. Effect of high hydrostatic pressure extraction on biological activities and phenolics composition of winter savory leaf extracts. Antioxidants 2020, 9, 841. [Google Scholar] [CrossRef] [PubMed]
- Ninčević Grassino, A.; Pedisić, S.; Dragović-Uzelac, V.; Karlović, S.; Ježek, D.; Bosiljkov, T. Insight into High-Hydrostatic Pressure Extraction of Polyphenols from Tomato Peel Waste. Plan. Food Hum. Nutr. 2020, 75, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Shinwari, K.J.; Rao, P.S. Thermal-assisted high hydrostatic pressure extraction of nutraceuticals from saffron (Crocus sativus): Process optimization and cytotoxicity evaluation against cancer cells. Innov. Food Sci. Emer. Technol. 2018, 48, 296–303. [Google Scholar] [CrossRef]
- Torres-Ossandón, M.J.; Vega-Gálvez, A.; López, K.; Stucken, R.; Romero, J.; Di Scala, K. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). J. Supercrit. Fluids 2018, 138, 215–220. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, P.; Huang, Y.; Pu, Y.; Hou, X.; Song, L. Identification and antioxidant activity of flavonoids extracted from Xinjiang Jujube (Ziziphus jujube Mill.) leaves with ultra-high-pressure extraction technology. Molecules 2019, 24, 122. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xiang, F.; He, F. Polyphenols from Artemisia agryi leaves: Environmentally friendly extraction under high hydrostatic pressure and biological activities. Ind. Crop. Prod. 2021, 171, 113951. [Google Scholar] [CrossRef]
- Mok, I.-K.; Jung, H.; Kim, H.; Kim, D. Biotransformation of ginsenosides from Korean wild-simulated ginseng (Panax ginseng C.A. Mey.) using the combination of high hydrostatic pressure, enzymatic hydrolysis, and sonication. Food Biosci. 2023, 53, 102687. [Google Scholar] [CrossRef]
- Teles, A.S.C.; Chavez, D.W.H.; Coelho, M.A.Z.; Rosenthal, A.; Gottschalk, L.M.F.; Tonon, R.V. Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J. Food Eng. 2021, 288, 110128. [Google Scholar] [CrossRef]
- Pradipta, I.; Kong, D.; Tan, J.B.L. Natural organic antioxidant from green tea inhibit corrosion of steel reinforcing bars embedded in mortar. Constr. Build Mater. 2019, 227, 117058. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, B.; Bao, H.; Xie, Y.; Mou, Y.; Li, P.; Chen, D.; Shi, Y.; Li, X.; Yang, W. Evaluation of Ficus tikoua leaves as an eco-friendly corrosion inhibitor for carbon steel in HCl media. Bioelectrochemistry 2019, 128, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, Z.; Wang, W.; Jiang, L.; Zhang, Y.; Guo, M.; Song, F.; Xu, N. Effect of ginger extract as green inhibitor on chloride-induced corrosion carbon steel in simulated concrete pore solution. J. Clean. Prod. 2019, 214, 298–307. [Google Scholar] [CrossRef]
- Ehsani, A.; Mahjani, M.G.; Hosseini, M.; Safari, R.; Moshrefi, R.; Mohammad Shiri, H. Evaluation of Thymus Vulgaris Plant Extracts as an Eco-friendly Corrosion Inhibitor for Stainless Steel 3014 in Acidic Solution by Means of Electrochemical Impedance Spectroscopy, Electrochemical Noise Analysis and Density Functional Theory. J. Coll. Int. Sci. 2017, 490, 444. [Google Scholar] [CrossRef] [PubMed]
- Nazari, A.; Ramezanzadeh, B.; Guo, L.; Dehghani, A. Application of green active bio-molecules from the aquatic extract of Mint Leaves for steel corrosion control in hydrochloric acid (1M) solution: Surface, elecrochemical, and theoretical explorations. Colloids Surf. 2023, 656, 130540. [Google Scholar] [CrossRef]
- Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B. Green Eucalyptus leaf extract: A potent source of bio-active corrosion inhibitors for mild steel. Bioelectrochemistry 2019, 130, 107339. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.S.; Eissa, M.; Fakih, M. Pomegranate aqueous extract (PAE) as an eco-friendly inhibitor for carbon steel use din Sanitatios plants: Kinetics and bacteria affect. J. Bio- Tribo-Corros. 2019, 5, 5. [Google Scholar] [CrossRef]
- Vorobyova, V.; Skiba, M. Peach pomace extract as efficient sustainable inhibitor for carbon steel against chloride-induced corrosion. J. Bio- Tribo-Corros. 2021, 7, 3–11. [Google Scholar] [CrossRef]
- Valdez, N.J.A.; Lopez-Sesenes, R.; Larios-Gálvez, A.K.; Uruchurtu-Chavarin, J.; Gonzalez-Rodríguez, J.G. Corrosion inhibition of aluminium 2024-T3 in 3.5% NaCl by using litchi chinesis extract. Rev. Mex. Ing. Quim. 2022, 12, Mat2504. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Jiang, Y.; Qian, Y.; Guo, X.; Wang, L.; Zhang, J. Orange peel extracts as biodegradable corrosion inhibitor for magnesium alloy in NaCl solution: Experimental and theoretical studies. J. Taiwan Inst. Chem. Eng. 2020, 115, 35–46. [Google Scholar] [CrossRef]
- Barbouchi, M.; Benzidia, B.; Aouidate, A.; Ghaleb, A.; El Idrissi, M.; Choukrad, M. Theoretical modeling and experimental studies of Terebinth extracts as green corrosion inhibitor for iron in 3 % NaCl medium. J. King Saud. Univ. Sci. 2020, 32, 2995–3004. [Google Scholar] [CrossRef]
- Fekri, M.H.; Omidalli, F.; Alemnezhad, M.M.; Ghaffarinejad, A. Turnip peel extract as green corrosion bio-inhibitor for copper in 3.5% NaCl solution. Mater. Chem. Phys. 2022, 286, 126150. [Google Scholar] [CrossRef]
- Ben Harb, M.; Abubshait, S.; Etteyeb, N.; Kamoun, M.; Dhouib, A. Olive leaf extract as a green corrosion inhibitor of reinforced concrete contaminated with seawater. Arab. J. Chem. 2020, 13, 04846–04856. [Google Scholar] [CrossRef]
- Tomić, M.V.; Mičić, V.M.; Godec, R.F.; Pavlović, M.G.; Vaštag, D.; Riđošić, M.G.; Pavlović, M.M. Sage Extract as Inhibitors of Steel Corrosion in 4% HCl. Int. J. Electrochem. Sci. 2016, 11, 3339–3350. [Google Scholar] [CrossRef] [PubMed]
- Znini, M.; Majidi, L.; Bouyanzer, A.; Paolini, J.; Desjobert, J.-M.; Costa, J.; Hammouti, B. Essential oil of Salvia aucheri mesatlantica as a green inhibitor for the corrosion of steel in 0.5 M H2SO4. Arab. J. Chem. 2012, 5, 467–474. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Halambek, J.; Djaković, S.; Rimac Brnčić, S.; Dent, M.; Grabarić, Z. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corosion inhibitor. Food Hydrocoll. 2016, 52, 265–274. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Grabarić, Z.; Pezzani, A.; Squitieri, G.; Berković, K. Corrosion inhibition with different protective layers in tinplate cans for food preservation. J. Sci. Food Agric. 2010, 90, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Dent, M.; Fuchs-Godec, R. Sage extract as natural source of corrosion inhibitor for tinplate in 3.0% NaCl. Food Technol. Biotechnol. 2021, 59, 413–421. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Compunting. Available online: https://www.r-project.org/ (accessed on 5 September 2023).
- Wang, H.; Provan, G.J.; Helliwell, K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem. 2004, 87, 307–311. [Google Scholar] [CrossRef]
- Dincer, C.; Topuz, A.; Sahin-Nadeem, H.; Ozdemir, K.S.; Burak Sam, I.; Tontul, I.; Gokturk, R.S.; Ay, S.T. A comparative study on phenolic composition, antioxidant activity and essential oil content of wild abd cultivated sage (Salvia fruticosa Miller) as influenced by starge. Ind. Crop. Prod. 2012, 39, 170–176. [Google Scholar] [CrossRef]
- Durling, N.E.; Catchpole, O.J.; Grey, J.B.; Webby, R.F.; Mitchell, K.A.; Foo, L.Y.; Perry, N.B. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Satapathy, A.K.; Gunasekaran, G.; Sahoo, S.C.; Kumar, A.; Rodrigues, P.V. Corrosion inhibition by Justica gendarussa plant extract in hydrochloric acid solution. Corros. Sci. 2009, 51, 2848–2856. [Google Scholar] [CrossRef]
- Rahal, C.; Masmoudi, M.; Abdelhedi, R.; Sabot, R.; Jeanin, M.; Bouaziz, M.; Refait, P. Olive leaf extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: A study by voltammetry around OCP. J. Electroanal. Chem. 2016, 769, 53–61. [Google Scholar] [CrossRef]
- Fang, Y.; Suganthan, B.; Ramasamy, R.P. Electrochemical characterization of aromatic corrosion inhibitors from plant extracts. J. Electrochem. Chem. 2019, 840, 74–83. [Google Scholar] [CrossRef]
- Zakeri, A.; Bahmani, E.; Aghdam, A.S.R. Plant extract as sustainable and green corrosion inhibitors for protection of ferrous metal sin corrosive media: A mini review. Corros. Comunic. 2022, 5, 25–38. [Google Scholar] [CrossRef]
- Tehrani, M.E.H.N.; Ghahremani, P.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B. Theoretical and experimental assesment of a green corrosion inhibitor extracted from Malva sylvestris. J. Environm. Chem. Eng. 2021, 9, 105526. [Google Scholar] [CrossRef]
- Fuchs-Godec, R.; Zerjav, G. Corrosion resistance of high level hydrophobic layers in compination with vitamin E (a-tocopherol) as green inhibitor. Corros. Sci. 2015, 97, 7–16. [Google Scholar] [CrossRef]
- Velázquez-González, M.A.; Gonzalez-Rodriguez, J.G.; Valladares-Cisneros, M.G.; Hermoso-Diaz, I.A. Use of Rosmarinus officinalis as green corrosion inhibitor for carbon steel in acid medium. AJAC 2014, 5, 55–64. [Google Scholar] [CrossRef]
- Tezeghdenti, M.; Dhouibi, L.; Etteyeb, N. Corrosion inhibition of carbon steel in 1 M sulphuric acid solution by extract of eucalyptus globulus leaves cultivated in Tunisia arid zones. J. Bio-Tribo-Corros. 2015, 1, 16. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A. Sustainable Inhibitors for Corrosion Mitigation in Aggressive Corrosive Media: A Comprehensive Study. J. Bio-Tribo-Corros. 2021, 7, 67. [Google Scholar] [CrossRef]
w(Total Polyphenols)/(mg GAE/100 g dm) | |||||
---|---|---|---|---|---|
T(Extraction Temperature)/(°C) | 25 | 60 | |||
p(Hydrostatic Pressure)/(MPa) | t(Extraction Time)/(min) | 30% Ethanol | 96% Ethanol | 30% Ethanol | 96% Ethanol |
300 | 5 | 108.50 ± 0.90 | 100.25 ± 0.99 | 2616.71 ± 9.62 | 1255.22 ± 6.54 |
10 | 113.14 ± 1.21 | 102.39 ± 0.82 | 2602.90 ± 8.51 | 1676.75 ± 7.31 | |
15 | 122.55 ± 0.98 | 218.32 ± 1.01 | 2703.79 ± 6.45 | 1903.35 ± 5.96 | |
450 | 5 | 104.82 ± 0.52 | 251.38 ± 1.25 | 2949.22 ± 10.51 | 1461.60 ± 5.98 |
10 | 230.22 ± 0.90 | 262.40 ± 0.98 | 2846.79 ± 7.97 | 1641.50 ± 7.41 | |
15 | 236.97 ± 1.31 | 296.57 ± 0.99 | 2901.91 ± 8.98 | 1788.43 ± 8.82 | |
600 | 5 | 112.66 ± 0.78 | 294.02 ± 1.32 | 3811.84 ± 4.98 | 3528.31 ± 6.11 |
10 | 135.63 ± 1.23 | 302.80 ± 1.25 | 3491.41 ± 8.54 | 2288.97 ± 9.21 | |
15 | 121.05 ± 1.28 | 309.63 ± 0.87 | 2887.13 ± 8.53 | 1644.05 ± 8.13 |
Extraction Conditions | Df | Sum Sq | Mean Sq | F Value | p Value | Pr (>F) |
---|---|---|---|---|---|---|
Total polyphenols | ||||||
Temperature | 1 | 45,734,968 | 45,734,968 | 209.7043 | 2.42 × 10−15 *** | <0.001 |
Ethanol | 1 | 2,137,103 | 2,137,103 | 9.7991 | 0.00379 *** | <0.001 |
Pressure | 1 | 1,216,634 | 1,216,634 | 5.5785 | 0.02464 *** | <0.001 |
Time | 1 | 88,912 | 88,912 | 0.4077 | 0.52784 | |
Residuals | 31 | 6,760,871 | 218,093 | |||
Rosmarinic acid | ||||||
Temperature | 1 | 545,171 | 545,171 | 70.2266 | 2.36 × 10−9 *** | <0.001 |
Ethanol | 1 | 137,041 | 137,041 | 17.6530 | 0.0002188 *** | <0.001 |
Pressure | 1 | 4679 | 4679 | 0.6028 | 0.4435977 | |
Time | 1 | 6833 | 3417 | 0.4401 | 0.6480596 | |
Residuals | 30 | 232,890 | 7763 |
p(Hydrostatic Pressure)/(MPa) | 300 | 450 | 600 | ||||||
---|---|---|---|---|---|---|---|---|---|
t(Extraction Time)/(min) | 5 | 10 | 15 | 5 | 10 | 15 | 5 | 10 | 15 |
w(Polyphenols)/(mg/100 g dm) | |||||||||
30% ethanol | |||||||||
Rosmarinic acid | 2.87 ± 0.13 | 3.83 ± 0.13 | 1.48 ± 0.11 | 5.59 ± 0.23 | 35.90 ± 0.13 | 5.85 ± 0.13 | 4.69 ± 0.28 | 4.43 ± 0.65 | 4.21 ± 0.13 |
Salvianolic I acid | nd | 0.85 ± 0.02 | nd | nd | 1.35 ± 0.08 | 1.35 ± 0.10 | nd | nd | |
Salvianolic K acid | nd | nd | 2.24 ± 0.22 | nd | 17.84 ± 0.05 | 23.60 ± 0.56 | nd | 8.32 ± 0.23 | nd |
Chlorogenic acid | 0.46 ± 0.02 | 0.25 ± 0.01 | 0.38 ± 0.15 | 0.34 ± 0.05 | nd | nd | 0.50 ± 0.02 | 0.37 ± 0.17 | 0.33 ± 0.02 |
Catehine | 5.07 ± 0.18 | 1.91 ± 0.12 | 5.18 ± 0.23 | 2.25 ± 0.19 | 7.61 ± 0.22 | 4.35 ± 0.22 | 5.01 ± 0.11 | 4.10 ± 0.25 | 0.70 ± 0.03 |
Epicatehine | 3.57 ± 0.25 | 2.15 ± 0.14 | 5.36 ± 0.17 | 1.61 ± 0.25 | 29.16 ± 0.65 | 22.33 ± 0.48 | 4.26 ± 0.12 | 1.90 ± 0.18 | 2.78 ± 0.28 |
6-hidroxyluteolin-7-glucoside | 0.28 ± 0.01 | 0.36 ± 0.01 | 0.48 ± 0.09 | 0.19 ± 0.03 | 0.68 ± 0.12 | 0.95 ± 0.05 | 0.30 ± 0.01 | 0.59 ± 0.09 | 0.74 ± 0.08 |
Luteolin-7-glucuronide | 0.55 ± 0.05 | 13.39 ± 0.31 | 1.00 ± 0.03 | 0.79 ± 0.15 | 4.13 ± 0.15 | 3.68 ± 0.10 | 0.65 ± 0.05 | 1.23 ± 0.05 | 0.86 ± 0.09 |
Luteolin-3-glucuronide | 0.27 ± 0.01 | 0.27 ± 0.02 | 0.27 ± 0.02 | 0.39 ± 0.08 | 0.40 ± 0.08 | 0.29 ± 0.02 | 0.31 ± 0.02 | 0.39 ± 0.02 | 0.48 ± 0.05 |
Apigenin-O-pentoside | 1.03 ± 0.11 | 1.09 ± 0.21 | 2.36 ± 0.03 | 0.93 ± 0.25 | 1.04 ± 0.02 | 0.72 ± 0.03 | 1.17 ± 0.05 | 1.27 ± 0.01 | 1.48 ± 0.10 |
Apigenin-7-O-glucuronide | 0.32 ± 0.01 | 0.19 ± 0.01 | 0.46 ± 0.05 | 0.17 ± 0.04 | 0.55 ± 0.01 | 0.6 ± 0.09 | 0.42 ± 0.02 | 0.36 ± 0.02 | 0.36 ± 0.05 |
Apigenin-7-O-glucoside | 1.66 ± 0.22 | 0.37 ± 0.03 | 2.24 ± 0.08 | 0.41 ± 0.03 | 0.44 ± 0.02 | 0.08 ± 0.01 | 0.48 ± 0.03 | 0.67 ± 0.07 | 2.34 ± 0.02 |
96% ethanol | |||||||||
Rosmarinic acid | 20.54 ± 0.28 | 22.18 ± 0.28 | 39.27 ± 0.15 | 22.51 ± 0.23 | 23.66 ± 0.31 | 16.43 ± 0.12 | 1.53 ± 0.20 | 2.33 ± 0.11 | nd |
Luteolin-7-glucuronide | 1.70 ± 0.06 | 1.62 ± 0.05 | 1.79 ± 0.02 | 1.03 ± 0.05 | 1.18 ± 0.04 | 1.17 ± 0.02 | 1.17 ± 0.03 | 2.23 ± 0.31 | 0.39 ± 0.04 |
Luteolin-3-glucuronide | nd | nd | 0.12 ± 0.01 | 0.52 ± 0.02 | 0.60 ± 0.02 | 0.42 ± 0.01 | nd | 0.20 ± 0.02 | nd |
Apigenin-O-pentoside | 4.28 ± 0.08 | 4.53 ± 0.08 | 4.88 ± 0.18 | 3.91 ± 0.11 | 4.22 ± 0.12 | 2.14 ± 0.06 | 2.96 ± 0.07 | 5.59 ± 0.12 | 1.12 ± 0.12 |
p(Hydrostatic Pressure)/(MPa) | 300 | 450 | 600 | ||||||
---|---|---|---|---|---|---|---|---|---|
t(Extraction Time)/(min) | 5 | 10 | 15 | 5 | 10 | 15 | 5 | 10 | 15 |
w(Polyphenols)/(mg/100 g dm) | |||||||||
30% ethanol | |||||||||
Rosmarinic acid | 408.70 ± 1.19 | 374.65 ± 1.39 | 310.66 ± 1.45 | 355.84 ± 1.15 | 352.31 ± 2.19 | 358.49 ± 1.99 | 526.14 ± 1.23 | 384.30 ± 1.49 | 403.01 ± 1.69 |
Rosmarinic acid hexoside | 4.15 ± 0.50 | 5.10 ± 0.30 | 1.75 ± 0.19 | 1.13 ± 0.02 | 7.52 ± 0.09 | 3.31 ± 0.11 | 5.14 ± 0.37 | 1.49 ± 0.89 | 2.86 ± 0.61 |
Salvianolic I acid | 6.52 ± 0.21 | 6.04 ± 0.91 | 5.29 ± 0.99 | 6.57 ± 0.32 | 6.51 ± 0.82 | 6.18 ± 0.71 | 8.84 ± 0.93 | 5.95 ± 0.29 | 6.59 ± 0.88 |
Salvianolic K acid | 169.68 ± 1.90 | 156.78 ± 1.19 | 123.23 ± 0.97 | 144.23 ± 0.87 | 156.34 ± 0.69 | 148.97 ± 0.80 | 212.63 ± 0.38 | 156.02 ± 0.77 | 155.32 ± 0.89 |
Methyl rosmarinate | 3.78 ± 0.28 | 5.10 ± 0.11 | 2.00 ± 0.01 | 3.44 ± 0.39 | 3.37 ± 0.51 | 3.81 ± 0.61 | 4.52 ± 0.22 | 4.11 ± 0.25 | 4.63 ± 0.15 |
Chlorogenic acid | nd | nd | 17.37 ± 0.72 | nd | nd | nd | 1.96 ± 0.22 | 0.39 ± 0.05 | nd |
Chlorogenic acid derivate | 1.74 ± 0.54 | 3.39 ± 0.28 | 2.47 ± 0.17 | 4.22 ± 0.68 | 1.52 ± 0.21 | 3.46 ± 0.31 | 12.99 ± 0.42 | 4.51 ± 0.22 | nd |
6-hidroxyluteolin-7-glucoside | 2.33 ± 0.11 | 1.35 ± 0.09 | 1.52 ± 0.05 | 1.32 ± 0.01 | 1.32 ± 0.22 | 1.37 ± 0.31 | 2.21 ± 0.35 | 1.42 ± 0.38 | 1.52 ± 0.41 |
Luteolin-7-glucuronide | 21.00 ± 0.34 | 22.34 ± 0.87 | 18.18 ± 0.61 | 13.64 ± 0.34 | 21.25 ± 0.29 | 24.46 ± 0.88 | 27.18 ± 0.71 | 16.97 ± 0.55 | 16.50 ± 0.29 |
Luteolin-3-glucuronide | 3.23 ± 0.28 | 2.93 ± 0.42 | 1.23 ± 0.35 | 2.82 ± 0.54 | nd | 3.09 ± 0.36 | 0.54 ± 0.08 | 2.49 ± 0.15 | 2.91 ± 0.39 |
Apigenin-O-pentoside | 3.79 ± 0.19 | 4.13 ± 0.64 | 3.21 ± 0.58 | 2.68 ± 0.62 | 4.08 ± 0.39 | 4.33 ± 0.71 | 4.70 ± 0.60 | 3.28 ± 0.17 | 3.05 ± 0.09 |
Apigenin-7-O-glucuronide | 3.52 ± 0.14 | 3.28 ± 0.39 | 3.04 ± 0.25 | 2.65 ± 0.08 | 3.14 ± 0.07 | 3.17 ± 0.27 | 4.42 ± 0.24 | 9.88 ± 0.09 | 2.29 ± 0.30 |
Apigenin-7-O-glucoside | 3.52 ± 0.54 | 2.77 ± 0.08 | 2.64 ± 0.04 | 2.91 ± 0.15 | 3.42 ± 0.28 | 3.02 ± 0.19 | 4.42 ± 0.41 | 2.96 ± 0.22 | 1.16 ± 0.07 |
Catehine | 6.86 ± 0.41 | 17.14 ± 0.88 | 7.78 ± 0.61 | 4.25 ± 0.29 | 7.26 ± 0.81 | 4.07 ± 0.61 | 6.69 ± 0.63 | 3.64 ± 0.71 | 4.41 ± 0.26 |
Epicatehine | 33.44 ± 0.90 | 31.18 ± 1.21 | 6.83 ± 0.91 | 37.35 ± 2.20 | 33.36 ± 1.11 | 29.17 ± 0.89 | 37.65 ± 0.71 | 26.34 ± 0.48 | 32.32 ± 0.81 |
96% ethanol | |||||||||
Rosmarinic acid | 115.41 ± 0.28 | 130.28 ± 0.78 | 116.73 ± 0.21 | 51.42 ± 0.15 | 69.02 ± 0.12 | 139.42 ± 0.51 | 340.01 ± 0.28 | 108.91 ± 0.28 | 102.15 ± 0.98 |
Rosmarinic acid hexoside | 12.13 ± 0.25 | 15.96 ± 0.13 | 16.03 ± 0.13 | 17.42 ± 0.03 | 20.20 ± 0.51 | 21.99 ± 0.72 | 11.88 ± 0.23 | 37.58 ± 0.14 | 17.47 ± 0.55 |
Salvianolic I acid | 1.51 ± 0.48 | 2.03 ± 0.12 | 1.31 ± 0.21 | 1.08 ± 0.04 | 1.21 ± 0.09 | 17.30 ± 0.96 | 6.87 ± 0.13 | 2.68 ± 0.09 | 0.96 ± 0.02 |
Chlorogenic acid derivative | 4.90 ± 0.13 | 7.52 ± 0.11 | 13.76 ± 0.14 | 11.02 ± 0.17 | 7.84 ± 0.14 | 1.49 ± 0.22 | 14.06 ± 0.12 | 11.44 ± 0.18 | 12.47 ± 0.44 |
γ(Sage Extract)/(g/L) | Ecorr/(mV) | icorr/(μA/cm2) | rcorr/(mm/year) | βc/(mV/dec) | βa/(mV/dec) | θ | η/(%) |
---|---|---|---|---|---|---|---|
Blank | −502.9 | 2.880 | 1.330 | −55.24 | 55.24 | ||
0.2 | −522 | 2.249 | 1.039 | −118.6 | 66.74 | 0.219 | 22.0 |
0.4 | −453 | 0.768 | 0.355 | −326.1 | 25.09 | 0.733 | 73.3 |
0.6 | −501.0 | 0.202 | 0.934 | −113.1 | 55.14 | 0.929 | 93.0 |
0.8 | −523.4 | 2.079 | 0.960 | −71.68 | 24.45 | 0.278 | 27.8 |
1.0 | −552.3 | 0.826 | 0.381 | −355.0 | 54.73 | 0.713 | 71.3 |
2.0 | −546.2 | 1.421 | 0.656 | −229.4 | 32.60 | 0.507 | 50.7 |
γ(Sage Extract)/(g/L) | Rp/(kΩcm2) | η/(%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
t(Immersion Time)/(h) | 2.5 | 5 | 8 | 10 | 12 | 2.5 | 5 | 8 | 10 | 12 |
Blank | 25.5 | 11.6 | 7.4 | 5.9 | 4.7 | - | - | - | - | - |
0.2 | 40.1 | 13.4 | 8.2 | 6.2 | 5.4 | 36.3 | 15.2 | 10.2 | 3.5 | 12.5 |
0.4 | 73.6 | 23.3 | 9.3 | 12.0 | 10.3 | 65.3 | 51.2 | 20.8 | 50.6 | 53.8 |
0.6 | 164.3 | 87.2 | 43.8 | 32.2 | 26.5 | 86.3 | 86.9 | 83.1 | 90.3 | 82.0 |
0.8 | 75.4 | 12.5 | 12.1 | 12.3 | 12.8 | 66.1 | 8.8 | 39.0 | 51.8 | 62.7 |
1.0 | 53.3 | 13.1 | 12.0 | 10.0 | 11.5 | 52.1 | 12.9 | 38.3 | 40.4 | 58.6 |
2.0 | 74.2 | 17.6 | 11.7 | 7.8 | 5.8 | 65.6 | 35.2 | 36.8 | 23.9 | 17.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dent, M.; Fuchs-Godec, R.; Pedisić, S.; Grbin, D.; Dragović-Uzelac, V.; Ježek, D.; Bosiljkov, T. Polyphenols from Sage Leaves (Salvia officinalis L.): Environmentally Friendly Extraction under High Hydrostatic Pressure and Application as a Corrosion Inhibitor for Tinplate. Separations 2024, 11, 158. https://doi.org/10.3390/separations11050158
Dent M, Fuchs-Godec R, Pedisić S, Grbin D, Dragović-Uzelac V, Ježek D, Bosiljkov T. Polyphenols from Sage Leaves (Salvia officinalis L.): Environmentally Friendly Extraction under High Hydrostatic Pressure and Application as a Corrosion Inhibitor for Tinplate. Separations. 2024; 11(5):158. https://doi.org/10.3390/separations11050158
Chicago/Turabian StyleDent, Maja, Regina Fuchs-Godec, Sandra Pedisić, Dorotea Grbin, Verica Dragović-Uzelac, Damir Ježek, and Tomislav Bosiljkov. 2024. "Polyphenols from Sage Leaves (Salvia officinalis L.): Environmentally Friendly Extraction under High Hydrostatic Pressure and Application as a Corrosion Inhibitor for Tinplate" Separations 11, no. 5: 158. https://doi.org/10.3390/separations11050158
APA StyleDent, M., Fuchs-Godec, R., Pedisić, S., Grbin, D., Dragović-Uzelac, V., Ježek, D., & Bosiljkov, T. (2024). Polyphenols from Sage Leaves (Salvia officinalis L.): Environmentally Friendly Extraction under High Hydrostatic Pressure and Application as a Corrosion Inhibitor for Tinplate. Separations, 11(5), 158. https://doi.org/10.3390/separations11050158