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Abstract: In the present study, oily wastewater generated during car washing was separated using
ultrafiltration (UF). Wastewater was collected from the settling tank of two manual car washes. In
addition to pollutants removed from cars, such wastewater contains surfactants, the impact of which
on the process of ultrafiltration has been analyzed. For this purpose, the application of commercial
UF polyethersulfone (PES) membranes (10 and 100 kDa) and polyvinylidene fluoride (PVDF) tubular
membranes (100 kDa) was comprehensively examined. Almost 100% removal of oil contaminants
was achieved; however, intensive fouling was noticed. The membrane morphology and deposit
composition were studied using a scanning electron microscope coupled with energy dispersion
spectrometry. The fouling phenomenon was reduced by washing the membranes with an alkaline
cleaning agent (pH = 11.5), which is used in car washes to remove insects. The filtration/membrane
washing cycle was repeated many times to achieve stable operation of the membrane modules. The
UF process was carried out for 120–140 h, and the separation efficiency was analyzed based on the
rejection of dextrans, COD, BOD, total N and P, turbidity, and anionic surfactants. It has been found
that cyclic repeated washing did not deteriorate the membrane’s performance, and a permeate with a
turbidity of 0.12–0.35 NTU was obtained. Thus, cleaning agents used for washing cars can also be
used for membrane cleaning.

Keywords: ultrafiltration; oily wastewater; carwash wastewater; fouling

1. Introduction

Oils and greases are used to reduce friction in various car mechanisms. They are
generally isolated from the environment; however, small leaks often occur due to seal
damage. As a result, when washing cars, the wastewater generated during the car wash
also contains oil contaminants [1–3]. Their content is most often in the range of 10–50 mg/L;
nevertheless, concentrations above 500 mg/L also occur [4]. This is a very important
challenge for researchers since effluents containing such amounts of oil contaminants may
destroy the ecological environment and seriously endanger human health [5]. Therefore,
the treatment of oily wastewater is necessary.

Industrial methods used for oily wastewater treatment include conventional methods,
such as precipitation, centrifugal, flotation, coagulation, and biological treatment. However,
it has been widely documented that they are usually not efficient for the separation of
wastewater with low oil concentration and finely dispersed oil droplets [6–9].

Undoubtedly, the membrane processes can be used most effectively for the treatment
of this wastewater [10]. Pressure-driven membrane processes, such as microfiltration (MF),
ultrafiltration (UF), and nanofiltration (NF), are most often used to remove oil contaminants
from water [10–13]. The main issue that hinders their use is the formation of deposits on
the membrane surface (fouling) [14–16].

One of the methods to reduce the intensity of the above-mentioned phenomenon is pre-
treatment using conventional cleaning methods. Such extensive multi-stage installations
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have been successfully used to treat wastewater from car washes [17,18]. These solutions
are used in large automatic stations. However, in many countries, small manual car washes
dominate. Unfortunately, their owners will not invest in the construction of expensive
multi-stage purification systems. However, simple and small membrane installations are
accepted. Hence, the possibility of using such types of installations is investigated in
this work.

During the long-term operation of modules, apart from fouling, the degradation
of membranes is also an operational challenge. Organic substances may interact with
the polymeric membrane matrix. Therefore, one of the major constraints is the durabil-
ity of membranes, particularly during the separation of wastewater containing various
surface-active contaminants (e.g., oils and surfactants) [19]. Such changes in the properties
of membranes often occur very slowly; hence, they can only be observed after several
weeks of wastewater filtration [20]. Meanwhile, in many publications, the wastewater
treatment process is often presented on the basis of short tests, which does not allow for
a proper assessment of the possibilities of industrial application [5]. For this reason, in
the present work, multi-week tests on the separation of wastewater from a car wash were
carried out. For this purpose, selected membranes with high chemical resistance, such as
polyethersulfone (PES) and polyvinylidene fluoride (PVDF), were used.

Wastewater from the car wash is collected in a settling tank from which it flows
through an oil separator. This allows for the oil suspension to be separated; however, the
finely dispersed oil droplets are not retained [3]. It should be noted that the remaining oil
content is small, and standards are usually met, allowing for such pre-treated wastewater
to be discharged to the municipal sewage treatment plant. According to the requirements
of some countries, a significant portion of the water should be treated and returned to car
washing [21,22]. In this case, the application of the UF process is recommended.

Ultrafiltration is a known and effective method for the treatment of oily wastewater [23,24].
However, as has been indicated above, the main challenge in the application of the UF
process is the occurrence of the fouling phenomenon. To wash cars, detergents and alkaline
agents are used, which, in addition to oil, are also present in the wastewater. Such washing
agents may affect the separation of oils as well as the fouling of membranes [25], which
was investigated in this study by conducting long-term UF tests.

It is widely accepted that the fouling of membranes makes it necessary to clean them
periodically [10]. In the case of separation of oily wastewater, alkaline detergent solutions
are used to wash the membranes, for instance, P3 Ultrasil 11 from Hankel (Germany) [26].
Such agents are aggressive; therefore, repeated cleaning may cause membrane degradation.
The effects presented in several publications, e.g., three–five work cycles, provide limited
information [27]. Therefore, in the present work, long-term research was carried out. The
membranes were washed with alkaline agents in a much larger number of cycles. To wash
the membranes, a solution of Insect agents was used, which is used in car washes to remove
insects. These agents, similar to P3 Ultrasil 11, contain NaOH, EDTA tetrasodium salt, and
surfactants [26–28]. Its advantage is that, unlike commercial agents used for membrane
washing, it is approved for use in car washes. Long-term tests check whether it can also
be used to wash tested membranes and whether its use does not affect the separation of
oil contaminants.

2. Materials and Methods

The UF process was tested using real wastewater collected from a car wash settling
tank. Wastewater was collected in autumn from two manual car washes. The installations
were supplied with tap water, which was softened using ion exchangers. Cars were
washed with a detergent solution, which was prepared by adding 0.5% Active Green agent
concentrate to softened water. A 0.5% wax solution (Hydrowax) was used to polish car
bodies. An alkaline agent (Insect) containing NaOH was used to remove insects from the
car surface. The composition of these cleaning agents was presented in work [29]. The
ingredients of these agents may cause fouling; hence, synthetic wastewater prepared by
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mixing commercial agents (0.5% Active Green and 0.2% Hydrowax) was also used in the
UF tests.

The diagram of the UF installation used is shown in Figure 1. Feed was taken from
the tank (2 L) using a model 3CP1221 piston pump (CAT PUMPS, Hampshire, England)
and returned to the tank after passing through the UF modules.
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Two types (UE10 and UE50) of commercial ultrafiltration PES membranes from TriSep
Corporation (Goleta, CA, USA) were used in this study. The nominal molecular weight
cut-offs (MWCO) declared by the manufacturer were 10 kDa and 100 kDa for the UE10 and
UE50 membranes, respectively. The PES membranes were mounted on the plate cross-flow
modules, and the active membrane area was 24 cm2. The modules were made of ASI
316 acid-resistant steel, and their construction and selection of operating conditions were
presented in work [29]. Additionally, a PVDF tubular FP100 membrane (100 kDa) from PCI
(Kostrzyń, Poland) was also applied for UF studies. In this case, the feed flowed inside the
tube with 12.5 mm diameter and 25 cm long.

The UF studies were carried out at a transmembrane pressure (TMP) of 0.1 MPa.
Changes in the membrane permeability were measured for deionized (DI) water at TMP in
the range of 0.1–0.3 MPa. The procedure of membrane cleaning was performed with the
alkaline 0.5% Insect solution (pH = 11.5). The prepared Insect solution (1 L) was recycled
for 30 min through the UF module. Before and after this operation, the UF installation was
rinsed with DI water (2L). Permeate flux was reported in units of L/(h m2), abbreviated as
LHM. The estimated measurement error was 2–4%.

In addition to carwash wastewater, synthetic oily wastewater was also used in the
UF research. An emulsion concentrate containing 526 mg oil/L was used to prepare them.
The oil emulsion concentrate was prepared by adding 5 mL of engine oil to 1 L of DI water.
Subsequently, the content was intensively shaken for 15 min, and then the mixture was
subjected to the action of ultrasounds (Sonic-6D, 620 W, POLSONIC, Warszawa, Poland)
for 60 min. These operations were repeated at least 5 times during 3 consecutive days.
The emulsion was then stabilized for over a month. During this time, some of the oil
separated due to coalescence, but the remainder formed a stable emulsion, both in terms of
concentration and droplet size distribution.

The determination of oil droplet size distribution was carried out using a laser light
scattering system, Mastersizer 3000E (Malvern Instruments, Grovewood Rd, UK).

The oil content in the solutions was examined by an infrared method using an oil
content analyzer OCMA 500 manufactured by Horiba (Osaka, Japan). This apparatus
performs an automatic extraction of oil from aqueous solutions with S316 solvent (Horiba,
Osaka, Japan). The volume ratio of solvent to water sample amounted to 10:20 mL. OCMA
500 analyzer allows you to detect oil in water at a level of 0.1 mg/L.

The changes in membrane performance were analyzed based on the changes in rejec-
tion of dextrans (molecular weight of 20–500 kDa, Polfa, Warszawa, Poland), biological
oxygen demand (BOD), chemical oxygen demand (COD), and surfactants. The Hach cu-
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vette tests were used to determine the concentration of surfactants (LCK 334—nonionic;
LCK 344—anionic), COD (LCK 1014), and BOD (LCK 555). The concentration of dextrans
was analyzed using a high-performance liquid chromatograph (UlitiMate 3000, Dionex,
Sunnyvale, USA) with a PolySep-GFC-P 4000 column (Phenomenex, Torrance, LA, USA).

The membrane morphology and deposit composition were studied using an SU8020
(Hitachi High Technologies Co., Tokyo, Japan) scanning electron microscope (SEM) coupled
with energy dispersion spectrometry (EDS). All samples were sputter-coated with chromium.

The pH of solutions was measured using a 6P Ultrameter (Myron L Company, Carls-
bad, CA, USA). Elemental analysis in the liquid samples was performed by inductively
coupled plasma—optical emission spectrometry (ICP-OES) (Optima 5300 DV, Perkin Elmer,
Waltham, MA, USA). The concentration of elements such as Fe, Cu, Zn, P, Al, K, Ca, Mg,
Ba, Mn, etc. was measured.

3. Results and Discussion
3.1. Carwash Wastewater

Wastewater was collected from two manual car washes (Manual 1 and Manual 2). At
these stations, the effluents from car washing, after flowing through the settling tank and
oil separator, were discharged into the municipal sewage system. Active Green solution
was used to create foam in car washes, which gave the wastewater a slightly green color.
The composition of the collected samples is presented in Table 1. Wastewater from the
Manual 1 car wash contained more suspension and oil, which resulted in higher COD and
BOD values.

Table 1. Composition of wastewater collected from manual car washes.

Parameter Manual 1 Manual 2

COD [mg/L] 240 181
BOD [mg/L] 30 16

Turbidity [NTU] 28.2 19.1
pH 7.9 7.6

N total [mg/L] 3.92 3.52
P total [mg/L] 3.95 4.61

Anionic surfactants [mg/L] 3.12 1.96
Oil [mg/L] 9.3 7.6

In addition to organic pollutants, car wash wastewater contains various metals. Ele-
ments detected in wastewater by ICP analysis, in amounts above 0.1 mg/L, are presented
in Table 2. The content of the marked ingredients for manual car washes was similar. For
comparison, wastewater from an automatic car wash was also tested, which contained
significantly less Na. This was due to the water-softening process. The car washes were
supplied with water from the municipal water supply network, which was softened with
ion exchangers in manual car washes. They were regenerated with NaCl solution, which
resulted in an increase in Na concentration in the wastewater.

3.2. Membrane Performance

In the UF tests, two membranes made of PES (UE10 and UE50) and a tubular mem-
brane FP100 with a skin layer made of PVDF were used. These membranes (Figure 2),
like most commercial UF membranes, have an asymmetric structure with a thin skin layer
0.1–1 µm thick, exposed to the feed side [10,30]. This skin is supported on a highly porous
layer 50–250 µm thick, giving the requirement of high permeability and mechanical strength
of membranes. The structure of the UE10 membrane was similar to the UE50 images shown
in Figure 2 [29]. The MWCO value declared by the UE50 and FP100 manufacturers was
similar (100 kDa). However, the surface of the FP100 membranes was much more uneven,
and in some places, there were pores with sizes of 0.1–0.2 µm (Figure 2a).
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Table 2. Elemental ICP analysis [mg/L]—wastewater collected from manual and automatic
car washes.

Element Manual 1 Manual 2 Automatic

Na 455.02 431.52 147.36
K 11.86 10.95 17.63
Ca 67.85 90.24 77.58
Mg 10.68 19.66 19.89
Fe 9.83 9.46 1.49
P 0.62 0.22 1.22

Ba 7.32 5.26 0.46
Cs 11.56 8.36 0.74
Mn 0.42 0.85 0.23
Sr 0.37 1.13 0.55
Pt 0.21 0.34 0.33
Al 0.19 0.35 0.39
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In the case of the UE10 membrane (10 kDa), the MWCO value was 10 times lower than
that declared by the manufacturer for UE50 and FP100 membranes. Dextran separation
tests, however, did not show such a significant difference and UE50 membranes retained
dextrans at only 10–20% less (Figure 3). The lowest retention rate was demonstrated by
FP100 membranes, which retained 500 kDa dextran by 80%. SEM examinations showed
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pores up to 0.2 µm on the surface of these membranes (Figure 2a), which probably resulted
in a deterioration of the separation of the tested dextrans solutions.
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The deposit layer on the membrane surface usually improves the separation properties
of the UF process [25]. It has been shown that not only the pollutants removed from cars but
also the components of the liquids used to wash them cause the fouling phenomenon [28].
It is worth noting that waxes used to polish the car body can also be deposited on the
membranes. The results of the separation of the mixture containing 0.5% Active Green and
0.2% Hydrowax are shown in Figure 4. Samples of the feed and permeate were collected
after 5 h of filtration tests. Although the lowest degree of retention was obtained as before
for FP100 membranes, the differences were not as significant as in the case of dextrans
separation (Figure 3). Compared to UE10 membranes, the more porous UE50 membranes
retained the ingredients to a greater extent which resulted from their greater fouling [29].
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3.3. Ultrafiltration Oil Emulsion with Surfactants

In addition to concentration, the size of oil droplets also has a significant impact on
the emulsion filtration process and membrane fouling [23,31]. Surfactants stabilize the
dispersion of oil in water; thus, their presence affects the intensity of fouling. Membrane
permeability may also be reduced by the adsorption of surfactants on their surface [29,32].
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Therefore, in order to determine the influence of oil on the fouling, in the first stage of the
process, the membranes were stabilized using the foaming agent solution (Figure 5). The
permeate flux obtained for DI water after adding 0.5% Active Green decreased from 1300
to 600 LHM (UE50) and from 290 to 190 LHM for UE10 membranes. A further decrease
was recorded, and after 7 h, the permeate flux stabilized at 350 and 170 LHM for UE50 and
UE10, respectively.
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Figure 5. Changes in the permeate flux (wastewater) and maximum permeate flux (water) during
filtration of 0.5% Active Green solution through UE10 and UE50 membranes. R—after terminate
series, S1–S4 membranes were washed (30 min) with 0.5% Insect solution (pH = 11.5).

Membrane rinsing with DI water significantly increased the flux; however, it did
not restore the initial value. Values similar to the initial flux were obtained only after
30 min of washing the membranes with an alkaline 0.5% Insect solution (Figure 5, R).
Significantly greater performance decreases were observed for the UE50 membranes. This
finding indicates their greater susceptibility to fouling. In paper [33], it was indicated that
an increase in MWCO leads to a greater fouling caused by surfactants. In the present study,
after 27 h of the UF process, the maximum permeate flux for UE50 decreased to 600 LHM,
while for UE10, it was 180 LHM. Rejection tests carried out after 22 h of the process showed
that slightly better efficiency was achieved for the UE50 membrane (Figure 6), which also
indicated greater fouling of this membrane.

During the filtration of 0.5% Active Green, the rejection degree of nonionic surfactants
was 20% higher than that obtained for the feed containing 0.5% Active Green and 0.2%
Hydrowax (Figure 4). However, the retention of anionic surfactants and COD was over
10% lower. These results indicate that the composition of the treated wastewater and
the resulting fouling have a significant impact on separation efficiency. The degree of
surfactant rejection is also significantly influenced by their concentration. Surfactants exist
as monomers in water when their concentrations are below the critical micelle concentration
(CMC). When the CMC value is exceeded, the emerging micelles are better retained, and
for the PES membrane (10 kDa), a surfactant rejection of 60–80% was achieved [33].

After filtering the Active Green solution (Figure 5), the installation was rinsed with DI
water and fed with an oil-in-water emulsion. After adding the emulsion concentrate to DI
water, the oil content in the feed was 12.6 ppm. For such a feed, the permeate flux was 410
and 210 LHM for UE50 and UE10, respectively (Figure 7). It is important to note that no
oil was detected in the obtained permeates, which indicated that the tested membranes
retained it 100%. This was probably due to the fact that most of the oil drops in the feed
had sizes above 1 µm (Figure 8).
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wastewater (Oil + surfactant) through UE10 and UE50 membranes. R denotes cleaning of membranes
with 0.5% Insect solution (30 min).

Studies on the size distribution of oil droplets in the feed showed changes occurring
over the process time. Initially, the feed contained oil drops mainly with sizes of 10–100 µm
(Figure 8, t = 5 min). After 20 min of circulation of the feed in the UF installation, the
disappearance of larger drops and an increase in the share of drops with sizes below 20 µm
were observed. After 40 min of the UF process, the droplet size distribution profile in
this range almost did not change, but larger droplets disappeared. The fact that the oil
content in the feed decreased from 12.6 to 8.4 mg/L indicates that larger drops settled on
the surface of the UF installation. As a result of coalescence and creaming, some of the
drops were released on the surface of the feed in its tank.

After 2 h of filtration of the oil emulsion, 0.1% of Active Green foaming agent was
added to the feed. As a result, the flux decreased by 30% (Figure 7, Oil + surfactant). At
the same time, there were changes in the size distribution of oil drops (Figure 9). Apart
from small changes in the range of 0.2–20 µm, much larger drops in the range of 20–200 µm
appeared in the feed. Moreover, during the 120-minute measurement, the number of drops
in the range of 300–1000 µm increased significantly. It can be assumed that the addition
of the surfactant caused large oil drops to be washed off the surface of the UF installation.
The addition of surfactants stabilized the emulsion and prevented further coalescence, and
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no oil separation was observed on the surface of the feed in its tank. The adsorption of
the surfactant on the oil droplets makes them more plastic, which facilitates the droplet’s
deformation and penetration into the pores [23]. However, an analysis of the permeate
composition carried out after adding Active Green did not show the presence of oil. The
application of the Hermia model showed that during the UF of carwash wastewater, the
dominant fouling mechanism was the cake formation [29,34]. A similar result for emulsions
stabilized with surfactants was presented in [32]. The formation of cake on the membranes
surface of membranes improves the efficiency of this process [25].
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wastewater (Oil + surfactant).

Studies on droplet size changes with/without surfactants in a dynamically mixed
emulsion were additionally performed using the MS3000E apparatus with the Hydro EV
attachment, which has a unique dip-in centrifugal pump and stirrer design that achieves
full and rapid dispersion in standard laboratory beakers. The stirrer speed in the tests was
set at 1000 rpm. Laboratory beakers were filled with an emulsion containing 15.8 mg/L
of oil, and after the first measurement, a 5 mL 0.1% solution of Active Green was added
to it. After adding surfactants, the initial droplet size distribution (t = 1 min) changed
quickly (t = 7 min) and then changed only slightly (Figure 10, t = 60 min). The resulting oil
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droplet size distribution profile was similar to that obtained in the UF installation (Figure 9).
This result confirms that the presence of surfactants in the emulsion stabilizes as well as
influences the oil droplet size distribution.

Separations 2024, 11, x FOR PEER REVIEW 10 of 19 
 

 

Studies on droplet size changes with/without surfactants in a dynamically mixed 
emulsion were additionally performed using the MS3000E apparatus with the Hydro EV 
attachment, which has a unique dip-in centrifugal pump and stirrer design that achieves 
full and rapid dispersion in standard laboratory beakers. The stirrer speed in the tests was 
set at 1000 rpm. Laboratory beakers were filled with an emulsion containing 15.8 mg/L of 
oil, and after the first measurement, a 5 mL 0.1% solution of Active Green was added to it. 
After adding surfactants, the initial droplet size distribution (t = 1 min) changed quickly 
(t = 7 min) and then changed only slightly (Figure 10, t = 60 min). The resulting oil droplet 
size distribution profile was similar to that obtained in the UF installation (Figure 9). This 
result confirms that the presence of surfactants in the emulsion stabilizes as well as influ-
ences the oil droplet size distribution. 

 

0.1 1 10 100 1000 
0 

2 

4 

6 

8 

10 

12 

14 
Time [min]: 
          1 
          7 
          60 

Diameter [μm] 

Vo
lu

m
e 

[%
] 

 
Figure 10. Changes in oil droplet size distribution in the synthetic oily wastewater (Oil + surfactant) 
during recirculation inside MS3000E apparatus. Time t = 1 min—only engine oil dispersed in the DI 
water. 

The results presented in Figures 9 and 10 showed that in the presence of surfactants, 
there are also larger oil drops in the emulsion. Such drops adsorb more easily on the mem-
brane surface, which may explain the observed drop in efficiency after adding Active 
Green agent to 310 LHM (UE50) and to 140 LHM (UE10) (Figure 7). A reduction in per-
meate fluxes after adding a surfactant was also found in other studies [32,35]. After wash-
ing the membranes with 0.5% Insect solution, the maximum permeate flux increased to 
630 LHM (UE50) and 260 LHM (UE10) (Figure 7). This washing operation was repeated 
cyclically during 57 h UF of the oil emulsion with the addition of 0.1% Active Green (Fig-
ure 11, rinsing). As a result, the obtained maximum permeate flux (feed–water) was rela-
tively stable for the first 20 h of the test, after which it decreased, and after 35 h, UF stabi-
lized at the level of 400 LHM (UE50) and 220 LHM (UE10). 

Figure 10. Changes in oil droplet size distribution in the synthetic oily wastewater (Oil + surfactant)
during recirculation inside MS3000E apparatus. Time t = 1 min—only engine oil dispersed in the
DI water.

The results presented in Figures 9 and 10 showed that in the presence of surfactants,
there are also larger oil drops in the emulsion. Such drops adsorb more easily on the
membrane surface, which may explain the observed drop in efficiency after adding Active
Green agent to 310 LHM (UE50) and to 140 LHM (UE10) (Figure 7). A reduction in permeate
fluxes after adding a surfactant was also found in other studies [32,35]. After washing the
membranes with 0.5% Insect solution, the maximum permeate flux increased to 630 LHM
(UE50) and 260 LHM (UE10) (Figure 7). This washing operation was repeated cyclically
during 57 h UF of the oil emulsion with the addition of 0.1% Active Green (Figure 11,
rinsing). As a result, the obtained maximum permeate flux (feed–water) was relatively
stable for the first 20 h of the test, after which it decreased, and after 35 h, UF stabilized at
the level of 400 LHM (UE50) and 220 LHM (UE10).
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Fouling systematically reduces the module’s performance; hence, the effectiveness
of membrane cleaning is important. The obtained results indicate that after completing
the separation of the Active Green solution (Figure 5) and the synthetic oily wastewater
(Figure 11), washing the membranes with a 0.5% Insect solution allowed for obtaining a
permeate flux similar to the initial one (Figure 12a). A worse effect was obtained for UE50
membranes, the efficiency of which, despite washing, decreased by 30% (Figure 12b).
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Figure 12. The influence of TMP on the permeate flux for UE10 (a) and for UE50 (b) membranes after
UF process (S1, R1—Figure 5) and (S2, R2—Figure 11). S1, S2—membranes rinsed with water; R1,
R2—membranes washed with 0.5% Insect solution.

The obtained results (Figure 12) indicate that irreversible fouling was much greater in
the case of UE50 membranes. This is also confirmed by the image of membranes removed
from the modules after these tests. More contaminants accumulated on the UE50 membrane,
making its surface darker (Figure 13).
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3.4. Carwash Wastewater

Tests on the separation of real wastewater from the car wash confirmed the effective-
ness of cyclically repeated membrane washing with the Insect solution, which allowed for
maintaining a stable permeate flux during 140 h of the UF process. To increase the cleaning
effect, the Insect solution filled the modules every few days for 40 h. As a result, a signifi-
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cant increase in the maximum flow was achieved (Figures 14 and 15, S points). The tested
PES membranes are blended with polyvinylpyrrolidone (PVP) to increase hydrophilicity. It
has been shown that long-term contact with Insect solutions containing NaOH resulted
in the removal of PVP from the membrane matrix and an increase in pore size [29]. This
increased membrane permeability and a slight increase in permeate flux after 100 h UF
was observed.
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The increase in porosity of PES membranes caused by the leaching of PVP from the 
matrix membrane did not significantly affect the degree of separation (Figure 16). 
Throughout the entire UF study period, the turbidity of the obtained permeate was in the 
range of 0.15–0.32 NTU, which resulted in almost 100% suspension rejection. A slight in-
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The increase in porosity of PES membranes caused by the leaching of PVP from
the matrix membrane did not significantly affect the degree of separation (Figure 16).
Throughout the entire UF study period, the turbidity of the obtained permeate was in
the range of 0.15–0.32 NTU, which resulted in almost 100% suspension rejection. A slight
increase in the NTU value was observed after soaking the membranes for 40 h, i.e., after
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a greater reduction in the thickness of the fouling layer. For the first 60 h, the modules
were fed with wastewater from the Manual 1 car wash, which was more turbid than
the wastewater collected from the Manual 2 car wash (Table 1), which, however, did not
deteriorate the purity of the obtained permeate.
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Stable UF performance was also obtained for the FP100 tubular membranes fed with
Manual 2 wastewater (Figure 17). Also, in this case, the turbidity removal was close to
100%. During the tests, the membranes were rinsed only for 30 min with Insect solutions
without a two-day soaking. After 40 h of this process, the efficiency stabilized at the level of
70 LHM, which was almost twice lower than for UE50 membranes with a similar MWCO
value (100 kDa). This was probably due to the intensification of fouling caused by the
greater surface porosity of the FP100 membranes (Figure 2a). However, a more intense
fouling phenomenon led to an improvement in the degree of separation, and consequently,
the permeate turbidity was at the level of 0.12 NTU (Figure 18).
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SEM observations of the membranes after completing the carwash wastewater filtra-
tion tests confirmed that intense fouling occurred during wastewater separation (Figure 19).
The resulting precipitate caused the surface of the membranes to be much darker than
that shown in Figure 13b. After intensive rinsing in a 0.5% Insect solution, most of the
precipitate was removed, and the colour of the membrane was close to white. However,
SEM examinations showed that a thin layer of impurities still remained on the membranes
(Figure 19b,d,e). As a result, the initial permeate flux was not completely recovered af-
ter washing the membranes (Figures 14, 15, and 17, feed–water). As demonstrated, the
presence of this precipitate layer led to an improvement in the degree of separation.

Roughly speaking, UF membranes retain suspensions and oil drops well but dissolved
substances less well. As a result, the rejection values of COD and surfactants were lower
(Figure 20). It can also be noticed that compared to the separation of synthetic wastew-
ater (Active Green + Hydrowax mixture), the values of some parameters have changed
significantly. It has been demonstrated that the degree of COD retention decreased almost
twofold, similar to the retention of anionic surfactants by FP100 membranes. It is interesting
to note that for UE10 and UE50 membranes, surfactant rejection also decreased, but only
by about 10%.

UF membranes do not desalinate water; therefore, as expected, the retention of de-
tected elements usually does not exceed a few percent (Table 3). This is due to the fact
that UF membranes have pores that are too large to separate ions. Some of the detected
elements, such as Fe, P, and Al, were retained by over 50%, which was due to the fact that
these elements, in addition to creating ions, also occur in suspensions [36].

In [33], a significant increase in element retention of over 60% with the addition of
the anionic surfactant SDBS was observed. Noteworthy, a similarly high degree of metal
retention was demonstrated as an effect of the gel layer formation UF [36]. The applied
TMP = 0.3 MPa increased the compression of the gel layer, which, however, resulted in
low-permeate flux (10–20 LHM). In another study, it was shown that the retention of metals
depends mainly on the form of their occurrence. For instance, most of the P is attached to
particulate matter or participating in gel formation, while the P present in the permeate
fractions could most likely be related to orthophosphate molecules (PO4

3−), which are able
to pass through the membrane pores [36]. In the examined case, the obtained permeate
contained approximately 100 mg/L of all detected elements (mainly Na—Table 3); thus, it
can be used for foam washing of cars.
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Table 3. Retention (R [%]) detected elements by studied membranes.

Elements UE10 UE50 FP100

Na 2.5 3.3 1.6
K 6.3 7.1 6.4
Ca 3.3 3.3 0.8
Mg 1.5 1.5 0.1
Fe 59.2 61.2 27.1
P 50.0 54.7 23.3

Ba 23.5 23.5 8.2
Cs 23.8 23.8 9.1
Mn 30.4 30.4 12.1
Sr 6.8 6.8 6.3
Pt 0.5 0.5 0.1
Al 56.1 55.1 40.1

4. Conclusions

In the present study, it has been clearly documented that the PES and PVDF mem-
branes (10–100 kDa) effectively removed oil contaminants from both synthetic emulsion
(DI water) and carwash wastewater containing surfactants. The close to 100% removal
of turbidity (NTU < 0.3) and a significant part of the remaining wastewater components
allow for the obtained UF permeate, which may be used as process water in the car wash,
especially at the stage of pre-washing and foam generation.

Both washing agents used in the car wash and oil contaminants cause significant
fouling during carwash wastewater filtration; hence, cyclical chemical cleaning of the
membranes is required. For this purpose, a 0.5% Insect solution (pH = 11.5) was applied,
which is used in car washes to remove insects. Finally, it should be pointed out that
membrane cleaning, carried out for 30 min and repeated 17–23 times during several weeks
of UF testing, did not damage the membranes and did not affect the degree of wastewater
separation achieved.

Author Contributions: Conceptualization, P.W. and M.G.; methodology, P.W. and M.G.; validation,
M.G.; formal analysis, M.G.; investigation, P.W.; writing—original draft preparation, P.W. and M.G;
writing—review and editing, M.G.; visualization, M.G.; project administration, M.G.; All authors
have read and agreed to the published version of the manuscript.
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