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Abstract: Plants serve as reservoirs of bioactive compounds endowed by nature, rendering them
promising subjects for investigating chemical diversity. Despite their potential, much remains un-
tapped, whether in standardized extracts or isolated pure compounds. This unexplored terrain
has paved the way for significant discoveries in pharmaceuticals. Notably, research has delved
into the medicinal properties of Mallotus philippensis, a prominent plant in South Asia. Employing
meticulous extraction techniques such as maceration, the fruit of this plant underwent initial an-
timicrobial screening, revealing encouraging results. Subsequent fractionation of the plant’s extracts
via liquid–liquid extractions, utilizing dichloromethane and absolute ethanol, facilitated further
analysis. Evaluating these fractions for antibacterial activity demonstrated efficacy against various
pathogenic microorganisms, particularly Pseudomonas aeruginosa and Escherichia coli, notably by the
ethanolic and dichloromethane extracts. Furthermore, a comprehensive phytochemical analysis
unveiled the presence of alkaloids, flavonoids, saponins, glycosides, phenols, and tannins. An as-
sessment of the extracts’ antioxidant potential via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free
radical scavenging assay showcased significant activity, with a radical scavenging rate of 97%. This
underscores the significance of utilizing fruit remnants, which are often rich in valuable chemical
constituents yet commonly discarded, thereby adding value to both the species and the environment.
Further investigation focused on the composition of Mallotus philippensis fruit, encompassing volatile
and non-volatile metabolites through HPLC-MS analysis. Additionally, this study introduced the
application of ionic liquid-loaded polysulfone microcapsules to enrich target constituents from crude
extracts. An exploration of the key separation conditions, results, and recycling performance of
these microcapsules provided insights for future research endeavors. Overall, this comprehensive
study of Mallotus philippensis fruit extracts establishes a foundation for the ongoing exploration and
development of this medicinal plant.

Keywords: Mallotus philippensis; medicinal plant; phytochemical analysis; antibacterial and antiox-
idant activities; ionic liquid-loaded polysulfone microcapsules; separation conditions; bioactive
compounds; recycling performance; liquid–liquid extractions

1. Introduction

Medicinal plants are reservoirs rich in bioactive compounds that are highly regarded
for their therapeutic potential in natural environments. The extraction and characterization
of these valuable constituents from medicinal flora are integral to advancing innovative
healthcare products. These compounds are renowned for their substantial therapeutic
efficacy and ability to address various medical conditions [1]. Throughout human history,
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traditional therapeutics have tapped into a vast wealth of natural constituents, spanning
terrestrial flora, animal byproducts, marine organisms, and microbial fermentation deriva-
tives. This enduring reliance on natural remedies, with their proven therapeutic efficacy,
has spurred the meticulous extraction of bioactive compounds from traditional medicinal
botanicals. As a result, natural products play a crucial role, serving as primary reservoirs in
the early stages of pharmaceutical exploration within our modern medical paradigms [2].
Mallotus philippensis belongs to the Euphorbiaceae family, a taxonomic group characterized by
its diverse genus hosting a plethora of plant species indigenous to tropical and sub-tropical
locales, spanning arboreal and shrub varieties across the globe [3]. Often referred to as
Kamala, Kampillaka, or Shendri, Mallotus philippinensis is a perennial shrub or small tree
typically endemic to the outer Himalayas, flourishing at elevations up to 1500 m. A distinc-
tive feature of this plant is its fruit, which bears glandular hairs meticulously harvested
and processed into reddish-brown powders. These powders are obtained through the
manual agitation and rubbing of the fruits, with the resultant residue collected on the fabric.
Traditionally, Kamala has been utilized as a natural dye for coloring silk. Furthermore,
the powders derived from this botanical specimen are believed to harbor a spectrum of
medicinal properties. Within the domain of Ayurvedic medicine, Kamala finds application
in alleviating a myriad of symptoms, including cough, constipation, wounds, and ulcers.
Moreover, it is administered topically to address various dermatological afflictions such
as sores, dermatoses, and parasitic infestations. In the Indian subcontinent, the powders
derived from the leaves and bark are commonly employed as a poultice for treating skin
disorders, with approximately 20 recognized species exhibiting medicinal uses [4]. Table S1
of the Supplementary Information (S.I.) comprehensively describes Mallotus philippinensis.
Kamala, characterized by its crimson-hued powders composed of glandular hairs from the
fruit capsule, is commonly utilized for its anthelmintic and cathartic properties, and vari-
ous other pharmacological applications [5]. The plant holds many steroids, diterpenoids,
triterpenoids, flavonoids, phenols, proteins, saponins, alkaloids, and carbohydrates [6].
Medicinal plants are an exceptional resource for acquiring antimicrobial medications [7].
Hence, conducting further study on these plants is imperative to understand better their
properties, safety, and effectiveness [8]. According to Ayurvedic principles, leaves exhibit
bitterness, offer cooling properties, and serve as appetizers. Diverse botanical components,
such as glands and hairs found in capsules or fruits, are harnessed for their warming,
purgative, anthelmintic, vulnerary, cleansing, ripening, carminative, and alexiteric at-
tributes. These constituents have effectively addressed bronchitis, abdominal disorders,
and splenomegaly. When consumed with milk or yogurt, they can notably aid in the
expulsion of tapeworms [9]. Alternatively called Kampillakah, Kamala is commonly used
as an orally administered medicinal substance. This botanical specimen has a longstanding
application history due to its anthelmintic and purgative properties [10,11]. In the northern
regions of Thailand, the fruits and bark have assumed multifaceted roles in traditional
medicine and as a reservoir of natural dye. Researchers have extracted numerous bioactive
compounds from these fruits, unveiling a spectrum of pharmacological effects, including
but not limited to antiallergic, anti-inflammatory, antifungal, and antibiotic properties [12].
Moreover, the powders and specific constituents extracted from Kamala are utilized as sup-
plementary agents in external therapeutic interventions designed to facilitate the healing of
ulcers and wounds. These components specifically address dermatological ailments trig-
gered by parasites, encompassing conditions like scabies, ringworms, and herpes. In India,
formulations derived from Kamala leaves and bark are frequently employed as poultices
for managing skin disorders [13,14]. This research entails a comprehensive phytochemical
investigation targeting alkaloids, flavonoids, saponins, glycosides, phenols, and tannins
in the fruit extract of the medicinal plant Mallotus philippinensis. Furthermore, it reports
findings on the fruit extract’s potential antibacterial properties. Additionally, the DPPH
method, a commonly employed technique for such assessments, was utilized to gauge the
antioxidant capacity of ethanolic extracts derived from the fruit of M. philippinensis [15,16].
After a comprehensive assessment of the notable selectivity and separation efficacy ex-
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hibited by ionic liquids (ILs), they were utilized to augment the concentration of targeted
components from the crude extract, facilitating their subsequent utilization in associated
domains.

2. Materials and Methods
2.1. Chemicals and Reagents

Ethanol (99%), methanol (99%), and dichloromethane (99%) were provided by Alad-
din Company (Shanghai, China) and used for extraction. Tryptone, soy peptone, sodium
chloride, and agar were supplied by Aladdin Company (Shanghai, China), and ultra-
pure water was used for bacterial culture media preparations. Gentamicin (100 mg/mL)
(MA0322), ampicillin (100 mg/mL) (MA0317), and ofloxacin (50 mg/mL) (82419-36-1) were
bought from Meilun Biotechnology Co., Ltd. (Dalian China) and used as antibiotics. E. coli
(J0053DX), S. aureus (230508S01), and P. aeruginosa (230213S01) bacteria were acquired from
Guangdong Huankai Microbial Sci & Tech., Co., Ltd. (Guangzhou, China). Hydrochloric
acid magnesium ribbon, sodium hydroxide, chloroform, sulfuric acid, acid anhydrides,
pyridine, sodium nitroprusside, dinitro benzoic acid, ferric chloride, sodium nitrite, phthalic
anhydride, and lead acetate were also bought from Meilun Biotechnology Co., Ltd. (Dalian
China); 1,1-Diphenyl-2-picrylhydrazyl free radical (DPPH-D273092, 97%) was obtained
from Aladdin Company (Shanghai, China). Experimental ultrapure water was made by the
UPH-I-10T series ultrapure water producer, which was provided by ULUPURE Technology
Co., Ltd. (Chengdu, China). Ionic liquids were all directly provided by Aladdin Chemicals
Inc. (Shanghai, China). The LC-MS 8040 Series instrument was supplied by Shimadzu
(Kyoto, Japan).

2.2. Plant Collection and Identification

The research utilized the raw material derived from M. philippensis, sourced from
the fruit of the plant under study. Fresh specimens of M. philippensis were procured from
elevated terrain in Palo Dheri, Rustam, District Mardan, Khyber Pakhtunkhwa, Pakistan.
Plant samples were collected during the flowering period spanning March and April 2023.

The medicinal plant M. philippensis sample resource, a spurge family member, was
authenticated by Professor Yanfang Li from the Department of Pharmaceutical and Biologi-
cal Engineering at Sichuan University. Authentication was conducted through meticulous
comparison with existing literature surveys.

2.3. Plant Materials

Following the separation of fruits from the plant, the raw material underwent a
meticulous washing process before being finely ground into small fragments. Subsequently,
the fragmented fruits were carefully subjected to shade drying for 20–30 days. This process
ensures protection from external contaminants and dust by minimizing exposure to light,
thereby maintaining the purity of the raw material. The dried raw material was then finely
pulverized into powder form (60 mesh) utilizing a stainless-steel mini laboratory mill
grinder. Finally, the resultant fine powders were stored in small polyethylene laboratory
bags at ambient temperature.

2.4. Extraction (Maceration)

By the widely employed maceration technique [17], 20 gm of desiccated and pulver-
ized fruit materials were enclosed within a sealed reagent bottle constructed from Pyrex
glass. Subsequently, 200 mL of absolute ethanol was introduced utilizing a graduated
cylinder. The reagent bottle was covered with aluminum foil and kept for up to 2–3 weeks
at room temperature, and frequent shaking was performed daily to release plant-soluble
phytoconstituents. The extract acquired via wetting was filtered through a standard What-
man filter paper to collect concentrated ethanolic extract and evaporated solvents at 40 ◦C
using a laboratory rotary evaporator. Furthermore, 20 g of air-dried powders of fruit
M. philippensis were kept in a conical flask, and 200 dichloromethane was added. The coni-
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cal flask was covered with the help of aluminum foil and transparent cotton tape, and the
conical flask was kept for 2 weeks at room temperature with continuous shaking (300 rpm).
The plant fruit powders release inorganic soluble phytochemicals in a conical flask. These
extracts were obtained by filtration using Whatman filter paper and subsequent solvent
removal using a rotary evaporator under vacuum.

2.5. Investigation on Bioactivities for the Samples
2.5.1. Antibacterial Assay

The McFarland standard was used to prepare for the suspension of microorgan-
isms [17]. In analyzing antibacterial sensitivity testing, 3 g tryptone, 1 g soy peptone, 1 g
sodium chloride, 3 g agar, and 200 mL UP water were used in bacterial media preparation.
The solution was mixed thoroughly and boiled to dissolved agar powders to obtain a
gelatinous solution. Then, the bacterial media was autoclaved at 121 ◦C temperature for
15 min. The press was allowed to cool at room temperature and then poured into the sterile
Petri dishes, and the Petri dishes were left for 1 h to solidify. The bacteria were spread
in each Petri dish with the help of cotton swabs that covered the whole media without
leaving any gaps. Four sterile filter paper discs were placed in each Petri plate, separated
from each other by a 3 cm distance. Then, 0.01 mm (10 µL) fraction was loaded in the first
discs; antibiotics ofloxacin, gentamicin, and ampicillin were loaded in the second, third,
and fourth discs. After that, all the Petri plates were stored in an incubator at 37 ◦C for 24 h.

2.5.2. DPPH Radical Scavenging Assay

This study used ethanolic extracts of M. philippinesis for the antioxidant analysis. It
was created to dilute DPPH in methanol. A UV-1800PC spectrophotometer (MAPADA
Instruments Co. Ltd., Shanghai, China) was employed to assess the mixture’s absorbance
at 517 nm after 24 h of dark incubation at room temperature. The DPPH was diluted in
methanol to create the blank [18].

2.6. Phytochemical Analysis for Related Samples
2.6.1. Preliminary Analysis with Various Tests

A total of 2 mL of ethanolic and dichloromethane fruit extracts was added to sepa-
rate test tubes, and phytochemical tests were conducted to detect bioactive compounds.
Moderately adjusted from the reported methods, all the experiments and related details in
preliminary analysis for bioactive constituents can be found in Table S2 of SI.

2.6.2. Analysis of Alkaloids and Flavonoids Using Thin-Layer Chromatography (TLC)

Here, the thin chromatographic analysis was first employed to examine the ethanolic
extracts of M. philippinesis by using 50 × 100 mm silica gel (Sil-G) plates from Ocean
Chemical Co., Ltd. (Qingdao, China), with layer thickness from 0.20 to 0.25 mm. As part of
the technique, 5 mg of the extracts was weighed out, dissolved in 10 mL of methanol, and
then homogenized before applying aliquots to the plates, with a 1 cm gap between each
application. The method used Sil-G plates developed with the upper phase of ethyl acetate-
water (7:3) for alkaloid identification. Furthermore, a solution of water/n-butanol/acetic
acid (4:4:2) was applied as a developing reagent for flavonoid identification. Then, the
KH-3000 plus T.L.C. scanner (Kezhe Inc., Shanghai, China) was used.

2.6.3. Liquid Chromatography–Mass Spectroscopy (LC-MS) Assessments

The LC-MS 8040 Series instrument (Shimadzu Kyoto, Japan) was employed to anno-
tate the unknown metabolites in the crude ethanolic and dichloromethane extracts of M.
philippensis fruit. The dry material was first dissolved in 10 mg/mL of methanol and di-
chloromethane and then filtered through common Whatman filter paper and microporous
membrane in sample preparation for analysis. The LC-MS system consisted of a stationary
phase, an Agilent Eclipse plus C18 column (2.1 × 150 mm, 3.5 µm). The mobile phase
involved a gradient of acetonitrile and 0.1% volume/volume formic acid dissolved in water.
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The instrument was configured with n = 3 levels of fragmentation and used the Turbo
Detection Data Scanning (TDDS) feature to analyze the fragmentation pattern of eluted
chemicals. Literature data were analyzed for comparison purposes. The quantification of
identified unknown compounds was carried out utilizing linear calibration curves. The
examination was conducted three times, and the outcomes were presented as the mean
plus standard deviation (S.D.).

3. Results and Discussion
3.1. Antibacterial Activities

Tables 1 and 2 show the results of the antibacterial activity of two extracts. The
mean ± standard deviation indicates the inhibited zone for each fraction and active drug
measured. Extracted plant antibiotics are antimicrobial compounds from diverse plants
known for their robust antibacterial properties. These natural antibiotics are safe and
demonstrate efficacy in combating bacterial infections. They generally entail minimal
side effects, rendering them a preferred alternative to synthetic antibiotics [19]. Active
phytochemicals, potent compounds abundantly present in plants, exert a significant influ-
ence in eliciting biological activities, including their notable antimicrobial efficacy against
diverse pathogens. Their pivotal contribution to the continual quest for novel antibiotic
drug discovery and development is substantial [16,20,21]. The current study highlights the
effectiveness of ethanolic and dichloromethane fruit extracts of M. philippensis as potent
antibacterial agents. The ethanolic and dichloromethane extracts of M. philippensis fruit
showed significant growth inhibition of the test bacteria. The dichloromethane extract
derived from M. philippensis fruit exhibited the highest efficacy at a 10 µL dosage (see
Table 1 and Figures 1A and 2B), showing 3.2 ± 0.2 mm, 2.7 ± 0.2 mm, and 2.6 ± 0.2 mm
for E. coli., P. aeruginosa, and S. aureus., respectively. The M. philippensis fruit absolute
ethanolic extracted fraction also showed obvious inhibition at 10 µL, and the results were
3.2 ± 0.2 mm against P. aeruginosa, with a 2.8 ± 0.2 mm and 2.3 ± 0.2 mm inhibited zone for
S. aureus and E. coli, respectively (see Table 2 and Figures 1B and 2A). Absolute ethanolic and
dichloromethane extracted fractions showed the highest inhibition zone with P. aeruginosa
and E. coli, at 3.2 ± 0.2 mm (shown in Table 2 and Figures 1B and 2A) and 3.2 ± 0.2 mm
(see Table 1 and Figures 1A and 2B), as compared with those of the standard antibiotics
ofloxacin (2.7 ± 0.2 mm) and gentamicin (3.0 ± 0.2 mm) with significant inhibition activity.
In comparison, ampicillin exhibited an inhibition zone diameter of 3.3 ± 0.2 mm (shown in
Table 2 and Figures 1B and 2A).

Table 1. Results of antibacterial activity of dichloromethane extract.

Samples Dosage
(µL) Concentration (%) S. aureus

(mm)
E. coli
(mm)

P. aeruginosa
(mm)

Dichloromethane 10 10 2.6 ± 0.2 3.2 ± 0.2 2.7 ± 0.2
DMSO (-control) 10 10 1 ± 0 1 ± 0 1 ± 0
Ofloxacin (+control) 10 10 4.6 ± 0.5 4.0 ± 0.5 4.0 ± 0.5
Gentamicin (+control) 10 10 4.2 ± 0.5 3.5 ± 0.2 4.4 ± 0.5
Ampicillin (+control) 10 10 4.3 ± 0.5 3.7 ± 0.2 3.7 ± 0.2

Table 2. Results of antibacterial activity of absolute ethanolic extract.

Samples Dosage
(µL) Concentration (%) S. aureus

(mm)
E. coli
(mm)

P. aeruginosa
(mm)

Dichloromethane 10 10 2.8 ± 0.2 2.3 ± 0.2 3.2 ± 0.2
DMSO (-control) 10 10 1 ± 0 1 ± 0 1 ± 0
Ofloxacin (+control) 10 10 2.7 ± 0.2 4.3 ± 0.5 2.7 ± 0.2
Gentamicin (+control) 10 10 4.3 ± 0.5 3.5 ± 0.2 3.0 ± 0.2
Ampicillin (+control) 10 10 4.3 ± 0.5 4.2 ± 0.5 3.3 ± 0.2
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Plants possess a rich repository of medicinal compounds, including many bioactive
substances, which have captured substantial interest from researchers and herbal practi-
tioners alike. Terpenoids, steroids, saponins, tannins, and flavonoids stand out as pivotal
constituents in the pharmacological arsenal of the plant realm [22]. A comprehensive
investigation has scrutinized the antimicrobial potency of extracts derived from Mollotus
philippensis fruits. These extracts are enriched with a spectrum of bioactive compounds
intrinsic to the plant, comprising flavonoids, tannins, and phenolic compounds. Each of
these constituents exhibits remarkable antibacterial efficacy against prevalent pathogens
such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa [23].
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3.2. Antioxidant Activity by DPPH Free Radical Scavenging Assay

The advocated method [24] assessed the plant extracts’ antioxidant capacity against
DPPH. A methanolic solution of DPPH (250 mg) at a concentration of 4 M was prepared.
Afterward, 1 mL portions were extracted from each sample within the methanolic extract.
Samples were extracted at 2, 3, 4, and 5 mg/mL concentrations, respectively (see Table 3).
Four replicates were generated for each sample at every concentration, with 3 mL of
the methanolic DPPH dilution subsequently introduced into each aliquot. The findings
regarding milligrams of quercetin per milligram of dry weight equivalence are presented.
The calibration curve was generated using the subsequent quercetin concentrations: 0.002,
0.003, 0.004, and 0.005 mg/mL (see Table 3). The following formula was employed to
calculate the percentage of radical scavenging assay (% R.S.A.) as Equation (1).

%RSA =
absorbance o f control − absorbance o f sample

absorbance o f controle
× 100 (1)
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Table 3. Antioxidant activity by DPPH of fruit methanolic extract of M. philippensis.

Concentration (µg/mL) Control Sample %RSA IC50

20 0.78 0.201 73.07 10.6
30 0.78 0.503 37.51 0.6
40 0.78 0.024 74.92 9.39
50 0.78 0.028 96.41 19.39

The antioxidant activity of the methanolic extract of M. philippensis fruit was investi-
gated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Prior
studies in the literature have yet to be conducted on the antioxidant activities. As presented
in Table 3, the methanolic extract showed significant activity of IC50: 19.39 µg/mL and
10.6 µg/mL at 50 and 20 µg/mL concentrations.

3.3. Preliminary Phytochemicals Analysis

Concurrently modulating numerous cellular processes within plants, they substan-
tively influence a plant’s distinctive hue, aroma, and taste. Moreover, an expanding corpus
of scholarly investigation underscores the indispensable medicinal advantages offered by
phytochemicals, often accompanied by minimal adverse effects. The delineation and as-
sessment of phytochemicals have become pivotal prerequisites in developing plant-derived
pharmaceuticals. These bioactive compounds are initially extracted from plant matter,
subsequently identified, and quantified through established methodologies adhering to
standardized protocols for phytochemical analysis [25]. Examining the comprehensive
outcomes from phytochemical analysis for the two extracts of fruit M. philippinensis (Table 4
and Figure 3), the ethanolic extract revealed significant levels of alkaloids, flavonoids,
steroids, saponin, and phenols. At the same time, the D.C.M extract specifically exhibited
elevated glycoside content.

Table 4. Results of phytochemical screening of M. philippinensis fruit.

Phytochemical
Components

Dichloromethane Extracts
(%)

Ethanolic Extracts
(%)

Alkaloids 0.85 0.87
Flavonoids 0.82 0.83

Steroids 0.70 0.77
Saponin 0.58 0.61

Glycosides 0.53 0.51
Phenols 0.82 0.87
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In alkaloid analysis, the extracts from M. philippensis fruits in ethanol and dichloromethane
showed distinct color changes with Mayer’s, Wagner’s, and Hager’s reagents, confirming
alkaloid presence (as depicted in Table 4 and Figure 3). As diverse nitrogen-containing
compounds, alkaloids are crucial for a plant’s defense and make up approximately 60% of
plant-based drugs, with notable pharmacological effects [26]. They are commonly found in
various plant families, including Amaryllidaceae, Apocynaceae, Papaveraceae, Asteraceae,
Solanaceae, Rutaceae, Fabaceae, and Rubiaceae [27]. Plant alkaloids constitute a robust
treatment modality for chronic afflictions such as cancer, diabetes, and neurological dis-
orders. Originally evolved as plant defenses, these compounds demonstrate remarkable
efficacy in combating infections, exemplifying many therapeutic advantages that transcend
conventional medicinal applications [28,29]. Plant alkaloids also curb inflammation by
blocking vital proinflammatory protein complexes in relevant signaling pathways [30,31].
Alkaloids show potential in treating neurodevelopmental disorders by inhibiting M.A.O.,
acetylcholinesterase, and butyrylcholinesterase. They also act as NMDA receptor antago-
nists and muscarinic and adenosine receptor agonists [32].

Other phytochemicals recognized for their biological and pharmacological activities
include a group of compounds known as flavonoids (shown in Table 4 and Figure 3). The
copious and biologically active compounds have incited comprehensive investigation,
elucidating various characteristics, including anticancer, anti-inflammatory, antioxidant,
antimutagenic, antithrombotic, antiviral, antibacterial, and vasodilator effects [33,34]. As
plant-made pigments, flavonoids can shield against U.V. exposure [35,36]. A red ring
formed after adding concentrated sulfuric acid to the M. philippensis fruit extracts con-
firmed the presence of steroids (Table 4 and Figure 3). Medicinal plants and herbs offer
potential for new therapies and inspire the creation of synthetic drugs [37]. They rely on
analyzing two crucial groups of isoprenoid compounds: steroids (including phytosterols)
and triterpenoids. Despite being present in low concentrations, these compounds are
essential for biological activity and pharmacological properties. They often work alone
or in synergy with other bioactive compounds, such as polyphenols, to amplify their
effects [38,39]. Phytosterols reduce blood lipid and cholesterol levels, including harmful
LDL-C [40]. They show clinical promise in preventing cardiovascular diseases, fatty
liver, inflammation, rheumatoid arthritis, and obesity-related illnesses while improving
insulin resistance and lipid metabolism. Likewise, triterpenoids offer diverse bioactive
properties due to their varied structures [41–43]. Such constituents provide numerous
benefits, such as anti-inflammatory, antimicrobial, antiviral, hepato-protective, antidiabetic,
and anticarcinogenic effects. Their wide array of bioactivities makes them indispensable
in pharmaceutical and industrial applications. They also gained attention as potential
weapons against multidrug-resistant microbes and fungi [44–48].

Besides that, saponins are important bioactive secondary metabolites with bubbling
behavior [49,50]. Existing in more than 500 plant species, saponins are amphiphilic glyco-
sides. They comprise hydrophilic glycones (sugar units) linked to hydrophobic aglycones
(steroids or terpenoids) [51–55]. Saponins form micelles and reduce surface tension when
dissolved in a solvent. Thus, they are considered naturally occurring surface-active com-
pounds that easily blend into ecological systems [56,57].

On the other hand, they are known to exhibit hemolytic potential [58,59]. They also
demonstrate antimicrobial effects against specific bacteria and viruses affecting mam-
mals. These properties, determined by the aglycone structure and sugar unit count, make
saponins a key ingredient in various preparations [60–62].

Cardiac glycosides were detected as green, and concentrated sulfuric acid was added
at the end using the Keller–Kiliani test. Medicinal plants contain diverse natural glycosides,
which serve as valuable reservoirs for therapeutic agents characterized by reduced toxicity
and fewer side effects. C-glycosides and their derivatives constitute a unique class of
carbohydrate patterns prevalent in many natural compounds as potential bioactive phar-
maceuticals and specialized chemicals [63–71]. Extracting and refining glycosides from
medicinal plants is crucial for pharmacological research and developing new drugs [72–74].
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Finally, central tests, including litmus, ferric chloride, Liebermann’s, and phthalein dye
tests, were conducted to identify phenols in fruit extracts of M. philippensis. These tests
confirmed the presence of phenols in the sample. Phenol and its derivatives are of interest
due to their prevalence in surface water as primary components of humic substances. Plants
produce various phenolic compounds, which are also valuable for the pharmaceutical or
dye industry [75–77]. Tannins were detected in the sample post ferric chloride, gelati-
nous solution, and lead acetate tests. They comprise diverse chemical compositions [78].
As a high-molecular-weight phenolic in plants, tannins vary from 500 to over 20,000 Da.
There are over 8000 variations of tannins, which can be found both free and bound within
plant cells [79].

3.4. Thin-Layer Chromatography (TLC) for Alkaloids and Flavonoids Analysis

Following the studies, thin-layer chromatography (T.L.C.) was used in the phytochem-
ical research of ethanolic extracts of M. philippinensis based on preliminary tests; alkaloids
and flavonoids were found in the fruit extract. When compared to the applicable standards,
the samples’ intensity and color indicated their presence (see Figure 4). The outcomes of
the alkaloids and flavonoid determination assays validated the T.L.C. results [80]. The
following formula calculated the Rf value of flavonoids and alkaloids as Equation (2).

R f value =
distance travelled by solute

distance travelled by the solvant
(2)
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Figure 4. Thin-layer chromatography (TLC) for absolute ethanolic extract (A: 50 wt.%, B: 70 wt.%,
AB: 100 wt.%) of M. philippinesis developed with (1) the upper phase of ethyl acetate/water (7:3)
and (2) acetone/ethanol/water (4:2:4).

After completing the direct observation mentioned above, the spots of alkaloids and
flavonoids were assigned and located on the thin-layer plate using Mayer’s reagent and
alkaline reagent in Table S2. After labeling these relevant spots, thin-layer scanning was
performed with a TLC scanner and the contents of the two kinds of components were
determined by the percentage of their integrated area of the corresponding spots to the
total area. The related results are shown in Figure 5, indicating that the content of alkaloids
was higher than that of flavonoids in the ethanolic extract.
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TLC, scanning.

3.5. High Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS) Profiling

The annotation of secondary compounds in M. philippensis fruit absolute ethanol and
dichloromethane crude extracts was conducted using the HPLC-MS technique. In total,
compounds agreed from the ethanolic extract and D.C.M. extracts. First, it should be
noted that due to limited data in our LC-MS molecular library or the influence of testing
conditions, some compounds belonging to the previously discovered structural types were
not detected, which is also a predictable situation. Numerous studies in the literature
focused on qualitative analysis using LC-MS/MS for its powerful performance [81,82].
Therefore, a precise L.C.–MS/MS method was developed to detect 26 compounds in the
ethanol extract (Table 5 and Figure 6) and 15 compounds in the D.C.M. extract (Table 6
and Figure 6) derived from M. philippinensis. In this study, the ionization mode was
employed to analyze the compounds. Upon examining the comprehensive results of
the LC-MS/MS analysis, it is evident that phenolic and non-phenolic compounds are
abundant in the ethanolic and D.C.M. extracts of M. philippinensis fruit (Tables 5 and 6,
and Figure 6). Notably, considerable variations were noted in the flavonoid levels of M.
philippinensis fruit [83]. Furthermore, several compounds, such as 2-furoic acid, 2-octadecyl
furan, 3-methyladenine, 4-methoxy acetanilide, 4-vinyl resorcinol, all oxazine, acridine,
anthraquinone, cortistatin l, diminazens, and nicotine, were detected in the ethanol extract;
meanwhile, isoquinoline, spool, ox-on amide, rottlerin, toluidine, and zopfiellamide A
were detected in the D.C.M. extract. Furthermore, the ethanolic extract was much richer
than the D.C.M. extract [84]. In the literature survey, a few studies regarding the phenolic
and flavonoid constituents of M. philippinensis were determined using HPLC and G.C.–M.S.
techniques. In a previous study [85], the researchers isolated and further identified different
phenolic compounds such as chalcones, phloroglucinol, rottlerin, 4′-hydroxyrottlerin,
isorottlerin, 4′-hydroxyisorottlerin, iso-allorottlerin, and mallotophilippen F. These results
enrich the findings for valuable compounds from this plant together with our research.

Table 5. Results of HPLC-MS of tentative annotation of ethanolic extracts from the fruit of
M. philippinensis.

No. Identified Compounds Formulas Structures Calc. MW m/z RT [min]

01 10-Methylundec-3-en-4-
olide C12 H20 O2
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Table 5. Cont.

No. Identified Compounds Formulas Structures Calc. MW m/z RT [min]

02 1-
Hexadecanoylpyrrolidine C20 H39 N O
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Table 6. Results of HPLC-MS of tentative identification of D.C.M extracts from the fruit of M.
philipiensis.

No. Identified Compounds Formula Structures Calc. MW m/z RT [min]

01 1,3,6-Octatriene C8 H12

Separations 2024, 11, x FOR PEER REVIEW 14 of 22 
 

 

21 Anthraquinone C14 H8 O2 

 

208.05251 209.05978 10.73 

22 Cortistatin L C30 H36 N2 O2 

 

456.2785 474.3121 13.968 

23 Diminazene C14 H15 N7 

 

281.13939 282.14667 14.742 

24 Hexanoylcarnitine C13 H25 N O4 

 

259.17848 282.16779 14.749 

25 Nicotine C10 H14 N2 

 

162.11566 163.12294 18.065 

26 Siccayne C11 H10 O2 

 

174.06798 175.07535 19.294 

Table 6. Results of HPLC-MS of tentative identification of D.C.M extracts from the fruit of M. phili-
piensis. 

No. Identified Compounds Formula Structures Calc. MW m/z RT 
[min] 

01 1,3,6-Octatriene C8 H12 

 

108.09427 126.12807 18.833 

02 5,5-Dinitro-1,3-dioxane C4 H6 N2 O6 

 

178.02188 179.02916 11.559 

108.09427 126.12807 18.833

02 5,5-Dinitro-1,3-dioxane C4 H6 N2 O6

Separations 2024, 11, x FOR PEER REVIEW 14 of 22 
 

 

21 Anthraquinone C14 H8 O2 

 

208.05251 209.05978 10.73 

22 Cortistatin L C30 H36 N2 O2 

 

456.2785 474.3121 13.968 

23 Diminazene C14 H15 N7 

 

281.13939 282.14667 14.742 

24 Hexanoylcarnitine C13 H25 N O4 

 

259.17848 282.16779 14.749 

25 Nicotine C10 H14 N2 

 

162.11566 163.12294 18.065 

26 Siccayne C11 H10 O2 

 

174.06798 175.07535 19.294 

Table 6. Results of HPLC-MS of tentative identification of D.C.M extracts from the fruit of M. phili-
piensis. 

No. Identified Compounds Formula Structures Calc. MW m/z RT 
[min] 

01 1,3,6-Octatriene C8 H12 

 

108.09427 126.12807 18.833 

02 5,5-Dinitro-1,3-dioxane C4 H6 N2 O6 

 

178.02188 179.02916 11.559 178.02188 179.02916 11.559

03 8,9-
dihydrolactimidomycin C26 H37 N O6

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

459.26195 460.26923 1.829

04 Benzotriazole C6 H5 N3

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

119.0487 120.05598 14.667

05 Flemiwallichin D C25 H26 O5

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

406.17808 405.17081 6.785

06 Isoquinoline C9 H7 N

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

129.05811 130.06538 18.746

07 Lespeol C25 H26 O4

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

390.18338 389.17621 7.504

08 N-Acetylvaline C7 H13 N O3

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

159.08946 182.07869 0.913

09 Oxonamide C4 H4 N4 O3

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

156.02799 157.03526 1.001

10 Pyrroloquinoline
quinone C14 H6 N2 O8

Separations 2024, 11, x FOR PEER REVIEW 15 of 22 
 

 

03 8,9-dihydrolactimido-
mycin 

C26 H37 N O6 

 

459.26195 460.26923 1.829 

04 Benzotriazole C6 H5 N3 
 

119.0487 120.05598 14.667 

05 Flemiwallichin D C25 H26 O5 

 

406.17808 405.17081 6.785 

06 Isoquinoline C9 H7 N 
 

129.05811 130.06538 18.746 

07 Lespeol C25 H26 O4 
 

390.18338 389.17621 7.504 

08 N-Acetylvaline C7 H13 N O3 

 

159.08946 182.07869 0.913 

09 Oxonamide C4 H4 N4 O3 

 

156.02799 157.03526 1.001 

10 Pyrroloquinoline  
quinone 

C14 H6 N2 O8 

 

330.01182 329.00455 13.211 

11 Rottlerin C30 H28 O8 

 

516.17867 517.18604 7.343 

12 Terrelumamide A  C20 H20 N6 O7 

 

456.13712 229.07584 4.022 

330.01182 329.00455 13.211



Separations 2024, 11, 165 16 of 22

Table 6. Cont.

No. Identified Compounds Formula Structures Calc. MW m/z RT [min]
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3.6. Enrichment of Target Components with Ionic Liquid-Loaded Microcapsules

As the current hot point of green solvents, ionic liquids can be freely designed for dif-
ferent separation tasks and easily tailored by flexible cationic–anion combinations. A series
of ILs have been successfully used to extract and separate hundreds of target compounds
from natural products [86]. However, their application to extract M. philippinesis has yet to
be reported. Based on the above studies, many N-containing compounds have been found
in its extract, so the alkaloids were selected as the target constituents for the following
enrichment from ethanolic extract by using ionic liquid, which can be separated from those
coexisting non-alkaloid compounds and show higher activities for higher purity. In this
section, we prepared polysulfone microcapsules according to our reported method [87],
which was used as the carrier of potential ILs. Then, the candidate ILs were loaded in
them by an ultrasonic wave (100 W) for 3 h, and the mixture was then shaken in the
shaker (500 rpm) overnight. Before use, the residual ILs on the surface of the microcapsules
were washed with ethanol and further dried. After that, the ionic liquid-loaded microcap-
sules were added to the aqueous solution of M. philippinesis ethanolic extract, which was
stirred (500 rpm) for thorough adsorption. During this process, different ILs ([Amim][Br],
[Bmim][Br], [Bmim][PF6], [Bmim][CH3SO3], [Bmim][HSO4]), the solid/liquid ratio (dosage
of ionic liquid-loaded microcapsules, mg/mL), the initial concentration (mg/mL) of crude
extract, and time (h) were investigated for their effects on the adsorption efficiency (%)
of alkaloids. The potential impact of pH and temperature were not explored because we
aimed to make the separation operation more convenient and friendly (less acid/base
and energy consumption). After the saturation of adsorption was achieved, the number
of unabsorbed alkaloids in the supernatant was calculated via its residual concentration.
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For the quantitative analysis, 3-methyladenine in Table 5 was selected as the standard
compound for developing the working curve of total alkaloids, which was detected at
272 nm in water using U.V. spectroscopy [88]. The whole results can be found in Figure 7.
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ence was not obvious; simultaneously, the effect of anions was more significant. It can be 
found that the stronger the anion acidity, the higher the adsorption efficiency. As alkaline 
compounds, the target constituents will interact with acidic absorbents more easily. Sec-
ondly, the solid liquid is another key factor; if the sorbent dosage is insufficient, its enrich-
ment on alkaloids will be inadequate. On the other hand, if the adsorption saturation has 
been reached, an excessive solid-liquid ratio only results in an unnecessary excess of 
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As shown in Figure 7A, various loaded ILs exhibited a different performance, and
the order of adsorption efficiency was [Bmim][HSO4] > [Bmim][CH3SO3] > [Bmim][PF6]
> [Bmim][Br] > [Amim][Br]. When the investigated cations of ILs were changed, the
difference was not obvious; simultaneously, the effect of anions was more significant. It
can be found that the stronger the anion acidity, the higher the adsorption efficiency. As
alkaline compounds, the target constituents will interact with acidic absorbents more easily.
Secondly, the solid liquid is another key factor; if the sorbent dosage is insufficient, its
enrichment on alkaloids will be inadequate. On the other hand, if the adsorption saturation
has been reached, an excessive solid-liquid ratio only results in an unnecessary excess
of adsorbent. According to the trend in Figure 7B, it can be found that the adsorption
efficiency of alkaloids rises significantly with an increasing dosage of the [Bmim][HSO4]-
loaded microcapsule, which should be ascribed to the greater number of adsorption chances
available for these target molecules. Furthermore, when the solid/liquid ratio is higher
than 35:1, the adsorption efficiency is not improved, which means that the adsorption
equilibrium has been reached. Moreover, Figure 7C reflects the effect of the crude extract’s
initial concentration (mg/mL) on the adsorption efficiency. When the solid/liquid ratio
is constant, overly concentrated extraction solutions are dense and unsuitable for mass
transfer. Still, they may also exceed the processing capacity of IL-loaded microcapsules. In
contrast, an overly diluted sample solution will reduce the separation efficiency of each
enrichment process, so the concentration level in the middle is appropriate. As a result,
should be the optimal concentration (mg/mL) of the ethanolic extract aqueous solution.
Finally, enough adsorption duration should be ensured, which is important to achieve
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transfer phenomena in micropores and microchannels. Compared to the adsorption time
on commonly used sorbent particles, it will be longer for microcapsules. It can be observed
from Figure 7D that the adsorption efficiency becomes higher first and then reaches a stable
level with the increase of time after 240 min, indicating that the adsorption equilibrium is
achieved at that time. In this situation, surface adsorption is faster, intracapsular diffusion
is slower, and the latter determines the whole separation speed. A scientific post-treatment
is necessary to recover the enriched alkaloids and reuse the IL and microcapsules after
adsorption. For the adsorbed alkaloids, the corresponding microcapsules containing them
were first collected with filtration and then placed in an empty glass chromatography
column with a plunger. Subsequently, the mixture of methanol/acetone/ethyl acetate
(1:1:4, v/v) was added to the system to elute them thoroughly during desorption. After
continuous and sufficient contact between the fluent and microcapsules, the alkaloids in
the ionic liquid will diffuse from the microcapsules to the outer environment. When the
color of the effluent becomes very light, it indicates that the desorption process is over.
All the desorbed liquid was collected and combined, and related alkaloids were obtained
after solvent removal under vacuum. Under the same conditions in Tables 1 and 2, the
inhibition zone diameter of the enriched alkaloids reached 3.9 ± 0.2 mm, 3.7 ± 0.2 mm, and
3.4 ± 0.2 mm for S. aureus, E. coli, and P. aeruginosa, respectively. These data were more ideal
than those of the crude extract and were close to or even exceeded those of the control drugs.
Plant age plays an important role in containing phenolic compounds. In mature plants,
discernible distinctions exist between young and mature leaves. Young leaves exhibit higher
concentrations of ferulic acid and its precursor caffeic acid, purportedly rendering them
more resilient to bacterial infections than mature leaves. However, variations in phenolic
acid levels induced by bacterial infections are marginal and lack statistical significance in
mature plants [89].

4. Conclusions

According to the above research, it has been confirmed that extracts of the plant Mallo-
tus philippinensis have great antimicrobial potential and can be used for microbial infections
(bacterial strain). They also show the potential to be used as an antibiotic and traditional
medicine. The dichloromethane and absolute ethanolic extracts of the plant M. philippinensis
fruit showed obvious antibacterial activities. To comprehensively discover the potential
chemical substances as much as possible, a series of test methods and analytical techniques
were all employed, including classical reagents, thin-layer chromatography, and liquid
chromatography–mass spectrometry. The phytochemical activities of M. philippinensis fruit
extracts proved that the plant has good potential for alkaloids, flavonoids, phenols, tannins,
steroids, saponins, and glycosides. Therefore, the evaluation of M. philippinensis, a valuable
medicinal plant, holds significant importance, as it has the potential to aid in the explo-
ration and development of novel antibiotic drugs for the market. These results showed that
M. philippinensis has a high potential for antioxidant and antimicrobial activities; further
evaluation is crucial. We also examined the composition of the fruit of M. philipiensis,
specifically the volatile and non-volatile secondary metabolites, by LC-MS.

In summary, different methods have their features and limitations. LC-MS has high
sensitivity. However, the number of compounds in its commercial database is limited,
and many compounds cannot be recognized. Traditional methods have low sensitivity.
However, they are easy to operate, and the featured phenomenon of specificity has been
widely applied in daily work and has undergone many tests. Combining the two ways can
complement each other’s strengths, maximize the advantages, and comprehensively reflect
the chemical composition.

Finally, the enrichment of target components with ionic liquid-loaded microcapsules
was successfully achieved using the crude extract. This study is the first to report a
comprehensive chemical profile of this plant species, as prior studies have only reported a
limited amount of chemicals, particularly for non-volatile metabolites. Besides that, it also
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included the preparation technique of related valuable components with the combination
of green solvents, which is expected to provide the reader with more meaningful reference.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations11060165/s1, Table S1: Botanical description of M.
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