Current Trends and Technological Advancements in the Study of Honey Bee-Derived Peptides with an Emphasis on State-of-the-Art Approaches: A Review
Abstract
:1. Introduction
2. Honey, Its Characteristics and Constituents: A Brief Overview
(A) | |||||||||
Components | Composition in g/100 g | ||||||||
Honeydew | Blossom Honey | ||||||||
Moisture | 16.3 | 17.2 | |||||||
Fructose | 31.8 | 38.2 | |||||||
Glucose | 26.1 | 31.3 | |||||||
Sucrose | 0.5 | 0.7 | |||||||
Other disaccharides | 4 | 5 | |||||||
Melezitose | 4 | 0.1 | |||||||
Erlose | 1 | 0.8 | |||||||
Other oligosaccharides | 13.1 | 3.6 | |||||||
Acids | 1.1 | 0.5 | |||||||
(B) | |||||||||
Typical Amount and RDI of Honey | Mineral Composition in Honey | ||||||||
Ca | Cl | Cu | Fe | Mg | P | K | Na | Zn | |
Amount (mg/100 g) | 4–30 | 2–20 | 0.01–0.1 | 1–3.4 | 0.7–13 | 2–60 | 10–470 | 0.6–40 | 0.2–0.5 |
RDI (mg) | 1000 | - | 2 | 18 | 400 | 1000 | - | - | 15 |
Honey-Derived Peptide Defensin-1 Produced by Bees
3. Characterization of Peptides
3.1. Molecular Weight
3.2. Amino Acid Analysis
4. Separation and Purification of Peptides
4.1. Ultrafiltration
4.2. Reversed-Phase HPLC
(A) | |||||||||
Sample Type | Conditions Employed in the Separation and Purification Method | Concentration of Compound | References | ||||||
Separation Condition | Purification Condition | ||||||||
Needful Chemical and Solvent | Time (min) | Temperature (°C) | Column Type | Column/Plate Dimension | |||||
Litchi chinensis honey | tris-HCl buffer at a concentration of 0.01 M (pH 7.4) | 25 | 25–30 | a Q Sepharose (anion exchange) column | 16 × 20 mm | 5.12 mg/mL | [37] | ||
Honey bee pupae (Apis mellifera) | Linear gradient of acetonitrile with concentrations ranging from 5 to 45% and containing 0.1% TFA | 25 | 25–30 | 5-C18 semi-preparation column | 4.6 × 250 mm | 135 µg/mL | [47] | ||
Apis mellifera Carnica colonies in Slovakia were used to collect honey. | TBST buffer comprising 50 mM tris-HCl, 7.5 pH, 200 mM sodium chloride (NaCl), and 0.05% Tween 20 | 50 | 20–25 | Sephadex G-100 column (GE Healthcare, UK) | 16 × 20 mm | 125 µg/mL | [48] | ||
Netherlands honey | Loading buffer consisting 3 M urea dissolved in 5% acetic acid, and methyl green added for reference purposes | 45 | 25–30 | Cylindrical gel | 3.7 × 6 cm | 5.0 mg/mL | [49] | ||
Royal jelly protein | tris-HCl buffer at a concentration of 20 mM (pH 8.0) | 50 | 20–25 | TSKgel DEAE-5PW column | 7.5 × 75 mm | 229 µg/mL | [50] | ||
(B) | |||||||||
Sample Type | Conditions Employed in the Separation and Purification Method | Concentration of Compound | References | ||||||
Separation Condition | Purification Condition | ||||||||
Needful Chemical and Solvent | Time (min) | Temperature (°C) | Column Type | Column/Plate Dimension | Particle Size (µm) | Injected Volume (µL) | |||
Honey produced by Apis mellifera in Japan | Mixture of 0.1% formic acid (A) and methanol that already contains 0.1% formic acid (B). A gradient program was established in the following manner: beginning, 5% B; from 0 to 1 min, 5% B; from 1 to 15 min, 50% B; from 15 to 25 min, 95% B; and from 25 to 30 min, 5% B | 45 | 25–30 | YMC Triart C18 analytical column(YMC Co., Ltd., Kyoto, Japan) | 100 × 2.1 mm | 3 | 2 | 50 µg mL | [40] |
Honey bee pupae (Apis mellifera) | Linear gradient of acetonitrile with concentrations ranging from 5% to 45% that includes 0.1% TFA | 25 | 25–30 | 5-C18 semi-preparation column | 4.6 × 250 mm | 5 | 5 | 135 µg/mL | [47] |
Honey derived from Ziziphus species made by Apis mellifera at bee farms located in the Himalayan area. | It took 5 min at 0%, 40 min at 70%, and 45 min at 0% for the acetonitrile to be used in the gradient elutions | 25 | 25–30 | C-18 (Purospher STAR, RP-18 end-capped: Merck, Darmstadt, Germany | 150 × 4.6 mm | 5 | 5 | 120 nM | [51] |
Manuka honey | Elution using a linear gradient of deionized water and acetonitrile (0–100%) containing 0.05% trifluoroacetic acid | 20 | 20–25 | C18 reverse phase (RP) column | 250 × 4.6 mm | 5 | 5 | 135 µg/mL | [52] |
Royal jelly (RJ) A. mellifera | Isocratic elution carried out using 55% (v/v) acetonitrile that contains 0.04% (v/v) trifluoracetic acid | 45 | 30 | C-18 TOSOH-ODS column | 150 × 4.6 mm | 5 | 5 | 145 µg/mL | [53] |
(C) | |||||||||
Sample Type | Separation Method | Conditions Employed in the Separation and Purification Method | Concentration of Compound | References | |||||
Separation Condition | Purification Condition | ||||||||
Needful Chemical and Solvent | Time (min) | Temperature (°C) | Column Type | Column/Plate Dimension | |||||
Honey major protein | Gel Filtration Chromatography | 12.5 Mm Pyridine-acetate buffer | 20 | 37 | Sephacryl S-100 column | 2.5 × 85 mm | 155 µg/mL | [38] | |
Litchi chinensis honey | Gel Filtration Chromatography | tris-HCl buffer used at a concentration of 0.01 M (pH 7.4) | 25 | 25–30 | Q Sepharose (anion exchange) column | 16 × 20 mm | 5.12 mg/mL | [37] | |
Bee honey | Gel Filtration Chromatography | 0.05 M phosphate buffer with a pH of 6.6 in buffer A, then the sample was eluted with 0.5 M sodium chloride in buffer A | 45 | 25–30 | Sepharose FF column (GE Healthcare, UK) | 10 × 300 mm | 135 µg/mL | [54] | |
Netherlands honey | Gel Filtration Chromatography | Loading buffer consisting of 3 M urea dissolved in 5% acetic acid, and methyl green added for reference purposes | 45 | 25–30 | Cylindrical gel | 3.7 × 6 cm | 5.0 mg/mL | [49] | |
Honey of A. cerena colony | Gel Filtration Chromatography | tris-HCl bufferused with a linear gradient of NaCl concentrations ranging from 0.0 to 0.3 M | 45 | 25–30 | Sephadex G-200 | 2.5 × 85 mm | 165 µg/mL | [39] |
4.2.1. Chromatographic Column
4.2.2. Mechanism of Protein/Peptide Retention
4.2.3. Column Characteristics
Particles Support
Pore Diameter
4.3. Gel Filtration Chromatography
5. Factors Influencing the Separation and Purification of Honey Bee Peptides
6. Honey-Derived Peptide Defensin-1 Produced by Bees as an Antioxidant and Antimicrobial
6.1. Antioxidant Properties of the Peptide Defensin-1: Final Remarks
6.2. Antimicrobial Properties of the Peptide Defensin-1: Final Remarks
7. Emerging, Promising, and Cutting-Edge Omic Methods for Studying Honey Bee Peptides
8. Artificial Intelligence: A Promising Approach for Investigating Honey Bee Peptides
9. Challenges and Research Opportunities in Honey Bee Peptides
10. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CXS 12-19811; Codex Standard 12. Revised Codex Standard for Honey, Standards and Standard Methods. World Health Organization: Geneva, Switzerland, 2001; p. 11.
- Israili, Z.H. Antimicrobial properties of honey. Am. J. Ther. 2014, 21, 304–323. [Google Scholar] [CrossRef] [PubMed]
- Coppock, R.W. Bee products as nutraceuticals to nutraceuticals for bees. In Nutraceuticals; Academic Press: Cambridge, MA, USA, 2021; pp. 813–833. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Battesti, M.J.; Djabou, N.; Muselli, A.; Paolini, J.; Tomi, P.; Costa, J. Melissopalynological origin determination and volatile composition analysis of Corsican “chestnut grove” honeys. Food Chem. 2012, 132, 2144–2154. [Google Scholar] [CrossRef]
- Valachová, I.; Bučeková, M.; Majtán, J. Quantification of bee-derived peptide defensin-1 in honey by competitive enzyme-linked immunosorbent assay, a new approach in honey quality control. Czech J. Food Sci. 2016, 34, 233–243. [Google Scholar] [CrossRef]
- Furusawa, T.; Arai, Y.; Kato, K.; Ichihara, K. Quantitative analysis of Apisin, a major protein unique to royal jelly. Evidence-Based Complementary and Alternative. Medicine 2016, 2016, 5040528. [Google Scholar] [CrossRef] [PubMed]
- Buttstedt, A.; Moritz, R.F.; Erler, S. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biol. Rev. 2014, 89, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Szweda, P. Antimicrobial Activity of Honey. In Honey Analysis; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Borawska, M.H.; Socha, K. Modern methods for assessing the quality of bee honey and botanical origin identification. Foods 2020, 9, 1028. [Google Scholar] [CrossRef] [PubMed]
- Gündoğdu, E.; Çakmakçı, S.; Şat, İ.G. An overview of honey: Its composition, nutritional and functional properties. J. Food Sci. Eng. 2019, 9, 10–14. [Google Scholar] [CrossRef]
- Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M. Diversity of peptide toxins from stinging ant venoms. Toxicon 2014, 92, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S.; Ruoff, K.; Oddo, L.P. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 2004, 35 (Suppl. S1), S4–S17. [Google Scholar] [CrossRef]
- Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res. 2002, 22, 1041–1047. [Google Scholar] [CrossRef]
- Kenjerić, D.; Mandić, M.L.; Primorac, L.; Bubalo, D.; Perl, A. Flavonoid profile of Robinia honeys produced in Croatia. Food Chem. 2007, 102, 683–690. [Google Scholar] [CrossRef]
- Bobiş, O.; Bonta, V.; Cornea-Cipcigan, M.; Nayik, G.A.; Dezmirean, D.S. Bioactive molecules for discriminating Robinia and helianthus honey: High-performance liquid chromatography–electron spray ionization–mass spectrometry polyphenolic profile and physicochemical determinations. Molecules 2021, 26, 4433. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sindhu, R.K.; Narayan, S.; Singh, I. Honey collected from different floras of Chandigarh Tricity: A comparative study involving physicochemical parameters and biochemical activities. J. Diet. Suppl. 2010, 7, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Nam, M.S. Classification of honeydew and blossom honeys by principal component analysis of physicochemical parameters. Korean J. Agric. Sci. 2020, 47, 67–81. [Google Scholar]
- Bergamo, G.; Seraglio, S.K.; Gonzaga, L.V.; Fett, R.; Costa, A.C. Physicochemical characteristics of bracatinga honeydew honey and blossom honey produced in the state of Santa Catarina: An approach to honey differentiation. Food Res. Int. 2019, 116, 745–754. [Google Scholar] [CrossRef]
- Pita-Calvo, C.; Vázquez, M. Differences between honeydew and blossom honeys: A review. Trends Food Sci. Technol. 2017, 59, 79–87. [Google Scholar] [CrossRef]
- Solayman, M. Minerals and Trace Elements. In Honey: Composition and Health Benefits; Wiley: Hoboken, NJ, USA, 2023; Volume 24, pp. 80–101. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Channa, F.A. Minerals content in different types of local and branded honey in Sindh, Pakistan. Heliyon 2019, 5, e02042. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A global review on short peptides: Frontiers and perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Borutinskaite, V.; Treigyte, G.; Čeksteryte, V.; Kurtinaitiene, B.; Navakauskiene, R. Proteomic identification and enzymatic activity of buckwheat (Fagopyrum esculentum) honey based on different assays. J. Food Nutr. Res. 2018, 57, 57–69. [Google Scholar]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Mediterr. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee products in dermatology and skin care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, C.D.; Neacsu, I.A.; Grumezescu, A.M.; Andronescu, E. Bee-derived products: Chemical composition and applications in skin tissue engineering. Pharmaceutics 2022, 14, 750. [Google Scholar] [CrossRef] [PubMed]
- Memariani, H.; Memariani, M. Anti-fungal properties and mechanisms of melittin. Appl. Microbiol. Biotechnol. 2020, 104, 6513–6526. [Google Scholar] [CrossRef] [PubMed]
- Maželienė, Ž.; Aleksandravičienė, A.; Pašvenskaitė, M.; Viliušienė, I.; Šakienė, D.; Dailidaitė, E. Antimicrobial activity of royal jelly, honey, and their mixture. Biologija 2022, 68, 159–164. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.S.; Ok, M.; Kim, B.Y.; Jin, B.R. Antimicrobial activity of major royal jelly protein 8 and 9 of honeybee (Apis mellifera) venom. J. Asia-Pac. Entomol. 2022, 25, 101964. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Bucekova, M.; Godocikova, J.; Kohutova, L.; Danchenko, M.; Barath, P.; Majtan, J. Antibacterial activity and bee-derived protein content of honey as important and suitable complementary tools for the assessment of honey quality. J. Food Compos. Anal. 2023, 123, 105610. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Hong, H.; Luo, Y. Purification and identification of dipeptidyl peptidase IV and angiotensin-converting enzyme inhibitory peptides from silver carp (Hypophthalmichthys molitrix) muscle hydrolysate. Eur. Food Res. Technol. 2019, 245, 243–255. [Google Scholar] [CrossRef]
- Sato, K.; Miyasaka, S.; Tsuji, A.; Tachi, H. Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chem. 2018, 261, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S.; Lee, J.Y.; Chan, G.F. Characterization of the proteins in honey. Anal. Lett. 2015, 48, 697–709. [Google Scholar] [CrossRef]
- Bose, D.; Padmavati, M.; Banerjee, R. Isolation, purification and characterization of protein from Litchi chinensis honey and generation of peptides. J. Addict. Recovery 2020, 3, 1–6. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Nanbu, F.; Miyata, T. Potent antioxidant peptides derived from honey major protein enhance tolerance of eukaryotic cells toward oxidative stress. In Food Production, Processing and Nutrition; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Srisuparbh, D.; Klinbunga, S.; Wongsiri, S.; Sittipraneed, S. Isolation and characterization of major royal jelly cDNAs and proteins of the honey bee (Apis cerana). BMB Rep. 2003, 36, 572–579. [Google Scholar] [CrossRef]
- Koike, H.; Kanda, M.; Hayashi, H.; Matsushima, Y.; Yoshikawa, S.; Ohba, Y.; Hashimoto, T. Development of an alternative approach for detecting botulinum neurotoxin type A in honey: Analysis of non-toxic peptides with a reference labelled protein via liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2020, 37, 1359–1373. [Google Scholar] [CrossRef]
- Lee, C.H. A simple outline of methods for protein isolation and purification. Endocrinol. Metab. 2017, 32, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Pal, G.K.; Suresh, P.V. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innov. Food Sci. Emerg. Technol. 2016, 37, 201–215. [Google Scholar] [CrossRef]
- Cermeño, M.; Kleekayai, T.; Amigo-Benavent, M.; Harnedy-Rothwell, P.; FitzGerald, R.J. Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 2020, 41, 1694–1717. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.A.; Abd El-Aty, A.M.; Ma, A.; Jia, Y. An overview on antioxidant peptides from rice bran proteins: Extraction, identification, and applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 1350–1362. [Google Scholar] [CrossRef]
- De Luca, C.; Lievore, G.; Bozza, D.; Buratti, A.; Cavazzini, A.; Ricci, A.; Catani, M. Downstream processing of therapeutic peptides by means of preparative liquid chromatography. Molecules 2021, 26, 4688. [Google Scholar] [CrossRef]
- Herraiz, T. Sample preparation and reversed phase-high performance liquid chromatography analysis of food-derived peptides. Anal. Chim. Acta 1997, 352, 119–139. [Google Scholar] [CrossRef]
- Yang, X.; Chen, K.; Liu, H.; Zhang, Y.; Luo, Y. Purification and identification of peptides with high angiotensin-I converting enzyme (ACE) inhibitory activity from honeybee pupae (Apis mellifera) hydrolysates with in silico gastrointestinal digestion. Eur. Food Res. Technol. 2019, 245, 535–544. [Google Scholar] [CrossRef]
- Majtan, J.; Klaudiny, J.; Bohova, J.; Kohutova, L.; Dzurova, M.; Sediva, M.; Majtan, V. Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: Possible therapeutic implications. Fitoterapia 2012, 83, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Kwakman, P.H.; Velde, A.A.T.; de Boer, L.; Speijer, D.; Christina Vandenbroucke-Grauls, M.J.; Zaat, S.A. How honey kills bacteria. FASEB J. 2010, 24, 2576–2582. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Kouzuma, Y.; Yonekura, M. Isolation and Properties of Antioxidative Peptides from Water-Soluble Royal Jelly Protein Hydrolysate. Food Sci. Technol. Res. 2005, 11, 222–230. [Google Scholar] [CrossRef]
- Mesaik, M.A.; Dastagir, N.; Uddin, N.; Rehman, K.; Azim, M.K. Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides. J. Agric. Food Chem. 2015, 63, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Churey, J.J.; Worobo, R.W. Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25. J. Appl. Microbiol. 2008, 105, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Fontana, R.; Mendes, M.A.; De Souza, B.M.; Konno, K.; César, L.M.M.; Malaspina, O.; Palma, M.S. Jelleines: A family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides 2004, 25, 919–928. [Google Scholar] [CrossRef]
- Bucekova, M.; Sojka, M.; Valachova, I.; Martinotti, S.; Ranzato, E.; Szep, Z.; Majtan, J. Bee-derived antibacterial peptide, defensin-1, promotes wound reepithelialisation in vitro and in vivo. Wound Health S. Afr. 2017, 10, 25–35. [Google Scholar]
- Ali, A.H. High-performance liquid chromatography (HPLC): A review. Ann. Adv. Chem. 2022, 6, 10–20. [Google Scholar] [CrossRef]
- Kanu, A.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J. Chromatogr. A 2021, 1654, 462444. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, J.; Zheng, L.; Liu, W.; Fan, L.; Sun, B.; Zhao, M. A fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry and its application in food-derived protein hydrolysates. Food Chem. 2023, 406, 135000. [Google Scholar] [CrossRef] [PubMed]
- Al-Sulaimi, S.; Kushwah, R.; Abdullah Alsibani, M.; El Jery, A.; Aldrdery, M.; Ashraf, G.A. Emerging developments in separation techniques and analysis of chiral pharmaceuticals. Molecules 2023, 28, 6175. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; DeStefano, J.J.; Langlois, T.J.; Boyes, B.E.; Schuster, S.A.; Godinho, J.M. Fundamental to achieving fast separations with high efficiency: A review of chromatography with superficially porous particles. Biomed. Chromatogr. 2021, 35, e5087. [Google Scholar] [CrossRef] [PubMed]
- Reuhs, B.L. High-Performance Liquid Chromatography. In Food Analysis. Food Science Text Series; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 213–226. [Google Scholar] [CrossRef]
- Da Silva, B.S.; Díaz-Roa, A.; Yamane, E.S.; Hayashi, M.A.; Junior, P.I.S. Doderlin: Isolation and characterization of a broad-spectrum antimicrobial peptide from Lactobacillus acidophilus. Res. Microbiol. 2023, 174, 103995. [Google Scholar] [CrossRef]
- Al-sahlany, S.T.G.; Altemimi, A.B.; Al-Manhel, A.J.A.; Niamah, A.K.; Lakhssassi, N.; Ibrahim, S.A. Purification of bioactive peptide with antimicrobial properties produced by Saccharomyces cerevisiae. Foods 2020, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Naimah, A.K.; Al-Manhel, A.J.A.; Al-Shawi, M.J. Isolation, purification and characterization of antimicrobial peptides produced from Saccharomyces boulardii. Int. J. Pept. Res. Ther. 2018, 24, 455–461. [Google Scholar] [CrossRef]
- Steinhorn, G.; Sims, I.M.; Carnachan, S.M.; Carr, A.J.; Schlothauer, R. Isolation and characterisation of arabinogalactan-proteins from New Zealand kanuka honey. Food Chem. 2011, 128, 949–956. [Google Scholar] [CrossRef]
- Chua, L.S.; Lee, J.Y.; Chan, G.F. Honey protein extraction and determination by mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 3063–3074. [Google Scholar] [CrossRef]
- Luo, X.; Dong, Y.; Gu, C.; Zhang, X.; Ma, H. Processing technologies for bee products: An overview of recent developments and perspectives. Front. Nutr. 2021, 8, 727181. [Google Scholar] [CrossRef]
- Jose, A.; Binu, A.M.; Syrus, E.C.; Baiju, J.E.; Jose, S.; Abraham, A.M.; Jacob, J. Purification and characterization of proteins from Manuka honey. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Issaq, H.J.; Conrads, T.P.; Janini, G.M.; Veenstra, T.D. Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 2002, 23, 3048–3061. [Google Scholar] [CrossRef] [PubMed]
- Bíliková, K.; Wu, G.; Šimúth, J. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 2001, 32, 275–283. [Google Scholar] [CrossRef]
- Fekete, S.; Veuthey, J.L.; Guillarme, D. New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: Theory and applications. J. Pharm. Biomed. Anal. 2012, 69, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Ongkudon, C.M.; Wei, C.Y.; Chan, A.S.; Danquah, M.K. Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod. Process. 2016, 98, 244–256. [Google Scholar] [CrossRef]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Extraction and determination of bioactive compounds from bee pollen. J. Pharm. Biomed. Anal. 2018, 147, 110–124. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, Y.; Zhang, J.; Jin, Y.; Zhao, W.; Zhou, J. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography–tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly. J. Chromatogr. A 2018, 1542, 28–36. [Google Scholar] [CrossRef]
- Sahlan, M.; Mahira, K.F.; Wiratama, I.; Mahadewi, A.G.; Yohda, M.; Hermansyah, H.; Noguchi, K. Purification and characterization of proteins in multifloral honey from kelulut bee (stingless bee). Heliyon 2019, 5, e02835. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, S.; Wang, L.; Huang, D.; Chen, S. Identification and characterization of an angiotensin-I converting enzyme inhibitory peptide from enzymatic hydrolysate of rape (Brassica napus L.) bee pollen. LWT 2021, 147, 111502. [Google Scholar] [CrossRef]
- Al-Rubaie, W.K.; Al-Fekaiki, D.F. Isolation and Characterization of Bee-Derived Peptide in Iraqi Honey by Size-exclusion Chromatograph. J. Glob. Sci. Res. 2022, 7, 2789–2798. [Google Scholar] [CrossRef]
- Ferrazzano, L.; Catani, M.; Cavazzini, A.; Martelli, G.; Corbisiero, D.; Cantelmi, P.; Tolomelli, A. Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges. Green Chem. 2022, 24, 975–1020. [Google Scholar] [CrossRef]
- Akhtari, N.; Banan, K.; Fatahian, F.; Vatanpour, H.; Rezadoost, H.; Ghorbani-Bidkorpeh, F. A validated extraction technique followed by high-performance liquid chromatography-ultraviolet analysis for the assay of melittin as an indicator component of honey bee venom in cosmeceutical products. Sep. Sci. Plus 2024, 2300231. [Google Scholar] [CrossRef]
- Nagmoti, D.M.; Khatri, D.K.; Juvekar, P.R.; Juvekar, A.R. Antioxidant activity free radical-scavenging potential of Pithecellobium dulce Benth seed extracts. Free Radic. Antioxid. 2012, 2, 37–43. [Google Scholar] [CrossRef]
- Balkrishna, A.; Rohela, A.; Kumar, A.; Kumar, A.; Arya, V.; Thakur, P.; Kuca, K. Mechanistic insight into antimicrobial and antioxidant potential of Jasminum species: A herbal approach for disease management. Plants 2021, 10, 1089. [Google Scholar] [CrossRef]
- Stefanis, C.; Stavropoulou, E.; Giorgi, E.; Voidarou, C.; Constantinidis, T.C.; Vrioni, G.; Tsakris, A. Honey’s antioxidant and antimicrobial properties: A bibliometric study. Antioxidants 2023, 12, 414. [Google Scholar] [CrossRef]
- Bouali, N.; Ahmad, I.; Patel, H.; Alhejaili, E.B.; Hamadou, W.S.; Badraoui, R.; Noumi, E. GC–MS screening of the phytochemical composition of Ziziphus honey: ADME properties and in vitro/in silico study of its antimicrobial activity. J. Biomol. Struct. Dyn. 2024, 42, 1368–1380. [Google Scholar] [CrossRef]
- Tsavea, E.; Vardaka, F.P.; Savvidaki, E.; Kellil, A.; Kanelis, D.; Bucekova, M.; Mossialos, D. Physicochemical characterization and biological properties of pine honey produced across Greece. Foods 2022, 11, 943. [Google Scholar] [CrossRef]
- Amerikova, M.; Pencheva El-Tibi, I.; Maslarska, V.; Bozhanov, S.; Tachkov, K. Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents. Biotechnol. Biotechnol. Equip. 2019, 33, 671–682. [Google Scholar] [CrossRef]
- Jarczak, J.; Kościuczuk, E.M.; Lisowski, P.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Bagnicka, E. Defensins: Natural component of human innate immunity. Hum. Immunol. 2013, 74, 1069–1079. [Google Scholar] [CrossRef]
- Hora, Z.A.; Altaye, S.Z.; Wubie, A.J.; Li, J. Proteomics improves the new understanding of honeybee biology. J. Agric. Food Chem. 2018, 66, 3605–3615. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. 2017, 8, 261216. [Google Scholar] [CrossRef]
- Guo, L.; Tang, J.; Tang, M.; Luo, S.; Zhou, X. Reactive oxygen species are regulated by immune deficiency and Toll pathways in determining the host specificity of honeybee gut bacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2219634120. [Google Scholar] [CrossRef]
- Bagameri, L.; Botezan, S.; Bobis, O.; Bonta, V.; Dezmirean, D.S. Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases. Life 2023, 13, 1573. [Google Scholar] [CrossRef]
- Roy, D.; Arati, C.; Manikandan, B.; Abinash, G.; Nisa, N.; Bhanushree, B.; Gurusubramanian, G. Pharmacological and therapeutic potential of honey bee antimicrobial peptides. Indian J. Biochem. Biophys. 2023, 60, 365–384. [Google Scholar] [CrossRef]
- Lehrer, R.I.; Bevins, C.L.; Ganz, T. Defensins and other antimicrobial peptides and proteins. In Mucosal Immunology; Elsevier: Amsterdam, The Netherlands, 2005; p. 95. [Google Scholar] [CrossRef]
- Sahl, H.G.; Pag, U.; Bonness, S.; Wagner, S.; Antcheva, N.; Tossi, A. Mammalian defensins: Structures and mechanism of antibiotic activity. J. Leukoc. Biol. 2005, 77, 466–475. [Google Scholar] [CrossRef]
- Khurshid, Z.; Zafar, M.S.; Naseem, M.; Khan, R.S.; Najeeb, S. Human oral defensins antimicrobial peptides: A future promising antimicrobial drug. Curr. Pharm. Des. 2018, 24, 1130–1137. [Google Scholar] [CrossRef]
- Gao, X.; Ding, J.; Liao, C.; Xu, J.; Liu, X.; Lu, W. Defensins: The natural peptide antibiotic. Adv. Drug Deliv. Rev. 2021, 179, 114008. [Google Scholar] [CrossRef]
- Erban, T.; Shcherbachenko, E.; Talacko, P.; Harant, K. The unique protein composition of honey revealed by comprehensive proteomic analysis: Allergens, venom-like proteins, antibacterial properties, royal jelly proteins, serine proteases, and their inhibitors. J. Nat. Prod. 2019, 82, 1217–1226. [Google Scholar] [CrossRef]
- Bo, W.; Chen, L.; Qin, D.; Geng, S.; Li, J.; Mei, H.; Liang, G. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects. Trends Food Sci. Technol. 2021, 114, 176–188. [Google Scholar] [CrossRef]
- Ji, T.; Liu, Z.; Shen, J.; Shen, F.; Liang, Q.; Wu, L.; Corona, M. Proteomics analysis reveals protein expression differences for hypopharyngeal gland activity in the honeybee, Apis mellifera carnica Pollmann. BMC Genom. 2014, 15, 665. [Google Scholar] [CrossRef]
- Buchberger, A.; Yu, Q.; Li, L. Advances in mass spectrometric tools for probing neuropeptides. Annu. Rev. Anal. Chem. 2015, 8, 485–509. [Google Scholar] [CrossRef]
- Boonen, K.; De Haes, W.; Van Houtven, J.; Verdonck, R.; Baggerman, G.; Valkenborg, D.; Schoofs, L. Quantitative peptidomics with isotopic and isobaric tags. In Peptidomics: Methods and Strategies; Schrader, M., Fricker, L., Eds.; Humana Press: New York, NY, USA, 2018; pp. 141–159. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Yang, S.; Niu, Q.; Wu, L.; Li, Y.; Zhou, J. Simultaneous quantification of five biogenic amines based on LC–MS/MS and its application in honeybee venom from different subspecies. Biomed. Chromatogr. 2020, 34, e4740. [Google Scholar] [CrossRef]
- Bong, J.; Middleditch, M.; Loomes, K.M.; Stephens, J.M. Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey. Food Chem. 2021, 350, 128442. [Google Scholar] [CrossRef]
- Chen, Y.P.; Pettis, J.S.; Zhao, Y.; Liu, X.; Tallon, L.J.; Sadzewicz, L.D.; Evans, J.D. Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions. BMC Genom. 2013, 14, 451. [Google Scholar] [CrossRef]
- Moran, N.A. Genomics of the honey bee microbiome. Curr. Opin. Insect Sci. 2015, 10, 22–28. [Google Scholar] [CrossRef]
- McAfee, A.; Harpur, B.A.; Michaud, S.; Beavis, R.C.; Kent, C.F.; Zayed, A.; Foster, L.J. Toward an upgraded honey bee (Apis mellifera L.) genome annotation using proteogenomics. J. Proteome Res. 2016, 15, 411–421. [Google Scholar] [CrossRef]
- Trapp, J.; McAfee, A.; Foster, L.J. Genomics, transcriptomics and proteomics: Enabling insights into social evolution and disease challenges for managed and wild bees. Mol. Ecol. 2017, 26, 718–739. [Google Scholar] [CrossRef]
- Diao, Q.; Sun, L.; Zheng, H.; Zeng, Z.; Wang, S.; Xu, S.; Wu, J. Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides novel insights into honeybee biology. Sci. Rep. 2018, 8, 822. [Google Scholar] [CrossRef]
- Lariviere, P.J.; Leonard, S.P.; Horak, R.D.; Powell, J.E.; Barrick, J.E. Honey bee functional genomics using symbiont-mediated RNAi. Nat. Protoc. 2023, 18, 902–928. [Google Scholar] [CrossRef]
- Mahato, D.K.; Verma, D.K.; Billoria, S.; Kopari, M.; Prabhakar, P.K.; Kumar, A.; Srivastav, P.P. Applications of nuclear magnetic resonance in food processing and packaging management. In Developing Technologies in Food Science; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 109–142. [Google Scholar]
- Klupczynska, A.; Plewa, S.; Dereziński, P.; Garrett, T.J.; Rubio, V.Y.; Kokot, Z.J.; Matysiak, J. Identification and quantification of honeybee venom constituents by multiplatform metabolomics. Sci. Rep. 2020, 10, 21645. [Google Scholar] [CrossRef]
- Díaz-Galiano, F.J.; Murcia-Morales, M.; Fernández-Alba, A.R. From sound check to encore: A journey through high-resolution mass spectrometry-based food analyses and metabolomics. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13325. [Google Scholar] [CrossRef]
- Wiltgen, M. Algorithms for structure comparison and analysis: Homology modelling of proteins. Encycl. Bioinform. Comput. Biol. ABC Bioinform. 2018, 1, 3. [Google Scholar]
- Pattabhiramaiah, M.; Ramesh, K.; Kv, V.; Muniswamy Reddy, S. Computational analysis of PhospholipaseA2 in the honey bee venom. J. Apic. Res. 2020, 59, 706–721. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Lorenzo, J.M.; Alché, J.D.D.; Moreira, R.; Franco, D. Advanced proteomic and bioinformatic tools for predictive analysis of allergens in novel foods. Biology 2023, 12, 714. [Google Scholar] [CrossRef]
- Hasan, M.E.; Samir, A.; Khalil, M.M.; Shafaa, M.W. Bioinformatics approach for prediction and analysis of the Non-Structural Protein 4B (NSP4B) of the Zika virus. J. Genet. Eng. Biotechnol. 2024, 22, 100336. [Google Scholar] [CrossRef]
- Jónsdóttir, S.Ó.; Jørgensen, F.S.; Brunak, S. Prediction methods and databases within chemoinformatics: Emphasis on drugs and drug candidates. Bioinformatics 2005, 21, 2145–2160. [Google Scholar] [CrossRef]
- Saikia, S.; Bordoloi, M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr. Drug Targets 2019, 20, 501–521. [Google Scholar] [CrossRef]
- Nisa, N.; Rasmita, B.; Arati, C.; Uditraj, C.; Siddhartha, R.; Dinata, R.; Gurusubramanian, G. Repurposing of phyto-ligand molecules from the honey bee products for Alzheimer’s disease as novel inhibitors of BACE-1: Small molecule bioinformatics strategies as amyloid-based therapy. Environ. Sci. Pollut. Res. 2023, 30, 51143–51169. [Google Scholar] [CrossRef]
- Park, D.; Jung, J.W.; Lee, M.O.; Lee, S.Y.; Kim, B.; Jin, H.J.; Kwon, H.W. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana. Peptides 2014, 53, 185–193. [Google Scholar] [CrossRef]
- Aronica, P.G.; Reid, L.M.; Desai, N.; Li, J.; Fox, S.J.; Yadahalli, S.; Verma, C.S. Computational methods and tools in antimicrobial peptide research. J. Chem. Inf. Model. 2021, 61, 3172–3196. [Google Scholar] [CrossRef]
- Lefin, N.; Herrera-Belén, L.; Farias, J.G.; Beltrán, J.F. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Mol. Divers. 2023; ahead of print. [Google Scholar] [CrossRef]
- Sanyal, A.; Ghosh, A.; Roy, C.; Mazumder, I.; Marrazzo, P. Revolutionizing the use of honeybee products in healthcare: A focused review on using bee pollen as a potential adjunct material for biomaterial functionalization. J. Funct. Biomater. 2023, 14, 352. [Google Scholar] [CrossRef]
- Robles-Loaiza, A.A.; Pinos-Tamayo, E.A.; Mendes, B.; Ortega-Pila, J.A.; Proaño-Bolaños, C.; Plisson, F.; Almeida, J.R. Traditional and computational screening of non-toxic peptides and approaches to improving selectivity. Pharmaceuticals 2022, 15, 323. [Google Scholar] [CrossRef]
- Yan, J.; Cai, J.; Zhang, B.; Wang, Y.; Wong, D.F.; Siu, S.W. Recent progress in the discovery and design of antimicrobial peptides using traditional machine learning and deep learning. Antibiotics 2022, 11, 1451. [Google Scholar] [CrossRef]
- Simone-Finstrom, M. Proceedings of the 2018 American Bee Research Conference. Bee World 2018, 95, 47–72. [Google Scholar] [CrossRef]
- Hu, F.L.; Bíliková, K.; Casabianca, H.; Daniele, G.; Salmen Espindola, F.; Feng, M.; Zhou, J.H. Standard methods for Apis mellifera royal jelly research. J. Apic. Res. 2019, 58, 1–68. [Google Scholar] [CrossRef]
- Zeng, J.; Jia, X. Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine. Engineering, 2024; in press. [Google Scholar] [CrossRef]
- Azari, S. Evolutionary Algorithms for Improving De Novo Peptide Sequencing. Doctoral Dissertation, Open Access Te Herenga Waka-Victoria University of Wellington, Wellington, New Zealand, 2020. [Google Scholar]
- Yoshida, M.; Hinkley, T.; Tsuda, S.; Abul-Haija, Y.M.; McBurney, R.T.; Kulikov, V.; Cronin, L. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 2018, 4, 533–543. [Google Scholar] [CrossRef]
- Perpetuo, L.; Klein, J.; Ferreira, R.; Guedes, S.; Amado, F.; Leite-Moreira, A.; Vitorino, R. How can artificial intelligence be used for peptidomics? Expert Rev. Proteom. 2021, 18, 527–556. [Google Scholar] [CrossRef]
- McDonnell, K.; Howley, E.; Abram, F. Critical evaluation of the use of artificial data for machine learning based de novo peptide identification. Comput. Struct. Biotechnol. J. 2023, 21, 2732–2743. [Google Scholar] [CrossRef]
- Fontaine, F.; Overman, J.; François, M. Pharmacological manipulation of transcription factor protein-protein interactions: Opportunities and obstacles. Cell Regen. 2015, 4, 2. [Google Scholar] [CrossRef]
- Lee, E.Y.; Lee, M.W.; Fulan, B.M.; Ferguson, A.L.; Wong, G.C. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017, 7, 20160153. [Google Scholar] [CrossRef]
- Pasrija, P.; Jha, P.; Upadhyaya, P.; Khan, M.; Chopra, M. Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery. Curr. Top. Med. Chem. 2022, 22, 1692–1727. [Google Scholar] [CrossRef]
- Will, I.; Beckerson, W.C.; de Bekker, C. Using machine learning to predict protein–protein interactions between a zombie ant fungus and its carpenter ant host. Sci. Rep. 2023, 13, 13821. [Google Scholar] [CrossRef]
- Swan, A.L.; Mobasheri, A.; Allaway, D.; Liddell, S.; Bacardit, J. Application of machine learning to proteomics data: Classification and biomarker identification in postgenomics biology. Omics A J. Integr. Biol. 2013, 17, 595–610. [Google Scholar] [CrossRef]
- Ramazi, S.; Mohammadi, N.; Allahverdi, A.; Khalili, E.; Abdolmaleki, P. A review on antimicrobial peptides databases and the computational tools. Database 2022, 2022, baac011. [Google Scholar] [CrossRef]
- Le, T.D.; Suttikhana, I.; Ashaolu, T.J. Unconventional production strategies, action mechanisms, and structure-functional attributes of food-derived peptides. Food Hydrocoll. 2023, 144, 109054. [Google Scholar] [CrossRef]
- Satpathy, R. Bioinspired Algorithms in Solving Three-Dimensional Protein Structure Prediction Problems. In Bio-Inspired Computing for Information Retrieval Applications; IGI Global: Hershey, PA, USA, 2017; pp. 316–337. [Google Scholar]
- Correa, L.D.L.; Dorn, M. A knowledge-based artificial bee colony algorithm for the 3-D protein structure prediction problem. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 2019, 20, 2383. [Google Scholar] [CrossRef]
- Wu, Q.; Ke, H.; Li, D.; Wang, Q.; Fang, J.; Zhou, J. Recent progress in machine learning-based prediction of peptide activity for drug discovery. Curr. Top. Med. Chem. 2019, 19, 4–16. [Google Scholar] [CrossRef]
- Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med. Res. Rev. 2020, 40, 1276–1314. [Google Scholar] [CrossRef]
- Sepčić, S. Application of Machine Learning in Peptide Design. Doctoral Dissertation, Department of Biotechnology, University of Rijeka, Rijeka, Croatia, 2020. [Google Scholar]
- Aguilera-Puga, M.D.C.; Cancelarich, N.L.; Marani, M.M.; de la Fuente-Nunez, C.; Plisson, F. Accelerating the discovery and design of antimicrobial peptides with artificial intelligence. In Computational Drug Discovery and Design; Springer: New York, NY, USA, 2023; pp. 329–352. [Google Scholar]
- Hummon, A.B.; Richmond, T.A.; Verleyen, P.; Baggerman, G.; Huybrechts, J.; Ewing, M.A.; Sweedler, J.V. From the genome to the proteome: Uncovering peptides in the Apis brain. Science 2006, 314, 647–649. [Google Scholar] [CrossRef]
- Starr, A.E.; Deeke, S.A.; Li, L.; Zhang, X.; Daoud, R.; Ryan, J.; Figeys, D. Proteomic and metaproteomic approaches to understand host–microbe interactions. Anal. Chem. 2018, 90, 86–109. [Google Scholar] [CrossRef]
- Mann, M.; Kumar, C.; Zeng, W.F.; Strauss, M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021, 12, 759–770. [Google Scholar] [CrossRef]
- Miller, D.L. Functional Ecology and Genomics of a Honey Bee Defensive Symbiont, Bombella apis. Doctoral Dissertation, Indiana University, Terre Haute, IN, USA, 2023. [Google Scholar]
- Coelho, L.P.; Santos-Júnior, C.D.; de la Fuente-Nunez, C. Challenges in computational discovery of bioactive peptides in’omics data. Proteomics 2024, 2024, 2300105. [Google Scholar] [CrossRef]
- Schrader, M. Origins, Technological Advancement, and Applications of Peptidomics. In Peptidomics: Methods and Strategies; Schrader, M., Fricker, L.D., Eds.; Humana: New York, NY, USA, 2024; Volume 2758. [Google Scholar] [CrossRef]
- Segata, N.; Boernigen, D.; Tickle, T.L.; Morgan, X.C.; Garrett, W.S.; Huttenhower, C. Computational meta’omics for microbial community studies. Mol. Syst. Biol. 2013, 9, 666. [Google Scholar] [CrossRef]
- Sudhakar, P.; Machiels, K.; Verstockt, B.; Korcsmaros, T.; Vermeire, S. Computational biology and machine learning approaches to understand mechanistic microbiome-host interactions. Front. Microbiol. 2021, 12, 618856. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, J.; Huang, D.; Liu, Y.; Li, D.D. Machine learning advances in microbiology: A review of methods and applications. Front. Microbiol. 2022, 13, 925454. [Google Scholar] [CrossRef]
- Bjerge, K.; Frigaard, C.E.; Mikkelsen, P.H.; Nielsen, T.H.; Misbih, M.; Kryger, P. A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony. Comput. Electron. Agric. 2019, 164, 104898. [Google Scholar] [CrossRef]
- Marchal, P.; Buatois, A.; Kraus, S.; Klein, S.; Gomez-Moracho, T.; Lihoreau, M. Automated monitoring of bee behaviour using connected hives: Towards a computational apidology. Apidologie 2020, 51, 356–368. [Google Scholar] [CrossRef]
- Besson, M.; Alison, J.; Bjerge, K.; Gorochowski, T.E.; Høye, T.T.; Jucker, T.; Clements, C.F. Towards the fully automated monitoring of ecological communities. Ecol. Lett. 2022, 25, 2753–2775. [Google Scholar] [CrossRef]
- Bernardes, R.C.; Botina, L.L.; da Silva, F.P.; Fernandes, K.M.; Lima MA, P.; Martins, G.F. Toxicological assessment of agrochemicals on bees using machine learning tools. J. Hazard. Mater. 2022, 424, 127344. [Google Scholar] [CrossRef]
- Alvarez-Suarez, M.J.; Giampieri, F.; Battino, M. Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem. 2013, 20, 621–638. [Google Scholar] [CrossRef]
- Silva, B.; Costa, A.C.O.; Tchewonpi, S.S.; Bönick, J.; Huschek, G.; Gonzaga, L.V.; Rawel, H.M. Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry. Food Res. Int. 2021, 141, 109991. [Google Scholar] [CrossRef]
- Eisenberg, D. Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem. 1984, 53, 595–623. [Google Scholar] [CrossRef]
- Leipart, V.; Montserrat-Canals, M.; Cunha, E.S.; Luecke, H.; Herrero-Galán, E.; Halskau, Ø.; Amdam, G.V. Structure prediction of honey bee vitellogenin: A multi-domain protein important for insect immunity. FEBS Open Bio 2022, 12, 51–70. [Google Scholar] [CrossRef]
- Lewis, A.L.; Richard, J. Challenges in the delivery of peptide drugs: An industry perspective. Ther. Deliv. 2015, 6, 149–163. [Google Scholar] [CrossRef]
- Dubey, S.K.; Parab, S.; Dabholkar, N.; Agrawal, M.; Singhvi, G.; Alexander, A.; Kesharwani, P. Oral peptide delivery: Challenges and the way ahead. Drug Discov. Today 2021, 26, 931–950. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Quiles, J.L.; Cianciosi, D.; Forbes-Hernández, T.Y.; Orantes-Bermejo, F.J.; Alvarez-Suarez, J.M.; Battino, M. Bee products: An emblematic example of underutilized sources of bioactive compounds. J. Agric. Food Chem. 2022, 70, 6833–6848. [Google Scholar] [CrossRef]
- Peng, H.; Wang, J.; Chen, J.; Peng, Y.; Wang, X.; Chen, Y.; Wang, Q. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin. Drug Deliv. 2023, 20, 1349–1369. [Google Scholar] [CrossRef]
- Boyacioglu, D.; Samanci, A.E.T.; Samanci, T. Future prospects of propolis, bee pollen, royal jelly, and bee venom. In Bee Products and Their Applications in the Food and Pharmaceutical Industries; Academic Press: Cambridge, MA, USA, 2022; pp. 411–440. [Google Scholar]
Key Factors | Observation and Remarks |
---|---|
Peptide Characteristics |
|
Sample Complexity |
|
Extraction Method |
|
Purification Strategy |
|
Chromatographic Conditions |
|
Detection and Analysis Methods |
|
Scale and Throughput |
|
Application Requirements |
|
Omic Approaches | Scientific Observation, Remarks, and Suggestions | References |
---|---|---|
Proteomics |
| [86,97,98,99,100,101] |
Genomics and Transcriptomics |
| [97,102,103,104,105,106,107] |
Metabolomics |
| [98,108,109,110] |
Microbial and Functional Genomics |
| [97,103,104,105,106,107] |
Bioinformatics and Computational Tools |
| [102,104,111,112,113,114] |
Chemoinformatics and Molecular Docking |
| [96,115,116,117] |
High-Throughput Screening Assays |
| [87,118] |
Emerging Analytical Techniques |
| [86,98,101] |
Approaches for Implementing AI Tools | Observation, Remarks, and Suggestions | References |
---|---|---|
Peptide Sequencing and Identification |
| [127,128,129,130] |
Predictive Modeling of Peptide–Bee Interactions |
| [123,131,132,133,134] |
Functional Annotation and Classification |
| [18,38,51,81,121,123,132,135,136,137] |
Prediction of Peptide Structures and Properties |
| [16,18,137,138,139] |
Design and Optimization of Peptide Therapeutics |
| [140,141,142,143,144] |
Mining of Omics Data for Peptide Discovery |
| [120,129,135,145,146,147,148,149,150] |
Prediction of Peptide-Microbiome Interactions |
| [146,148,151,152,153] |
Automated Image Analysis and Phenotyping |
| [124,154,155,156,157] |
Key Challenges | Important Remarks | References |
---|---|---|
Complexity of Peptide Mixtures |
| [38,125,159] |
Identification and Structural Characterization |
| [36,37,39,160,161] |
Functional Diversity and Biological Activity |
| [2,9,40,51,83,90,158] |
Stability and Bioavailability |
| [66,158,162,163,164,165] |
Regulatory and Safety Considerations |
| [12,25,26,166] |
Area for Innovative Study and Discovery | Remarks, Suggestions, and Recommendations |
---|---|
Discovery of Novel Peptides |
|
Structure–Activity Relationship Studies |
|
Functional Characterization and Mechanistic Studies |
|
Bioinformatics and Computational Approaches |
|
Biotechnological and Pharmaceutical Innovations |
|
Biomedical and Nutraceutical Applications |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rubaie, W.K.; Al-Fekaiki, D.F.; Niamah, A.K.; Verma, D.K.; Singh, S.; Patel, A.R. Current Trends and Technological Advancements in the Study of Honey Bee-Derived Peptides with an Emphasis on State-of-the-Art Approaches: A Review. Separations 2024, 11, 166. https://doi.org/10.3390/separations11060166
Al-Rubaie WK, Al-Fekaiki DF, Niamah AK, Verma DK, Singh S, Patel AR. Current Trends and Technological Advancements in the Study of Honey Bee-Derived Peptides with an Emphasis on State-of-the-Art Approaches: A Review. Separations. 2024; 11(6):166. https://doi.org/10.3390/separations11060166
Chicago/Turabian StyleAl-Rubaie, Wissam K., Dhia F. Al-Fekaiki, Alaa Kareem Niamah, Deepak Kumar Verma, Smita Singh, and Ami R. Patel. 2024. "Current Trends and Technological Advancements in the Study of Honey Bee-Derived Peptides with an Emphasis on State-of-the-Art Approaches: A Review" Separations 11, no. 6: 166. https://doi.org/10.3390/separations11060166
APA StyleAl-Rubaie, W. K., Al-Fekaiki, D. F., Niamah, A. K., Verma, D. K., Singh, S., & Patel, A. R. (2024). Current Trends and Technological Advancements in the Study of Honey Bee-Derived Peptides with an Emphasis on State-of-the-Art Approaches: A Review. Separations, 11(6), 166. https://doi.org/10.3390/separations11060166