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Abstract: In the present review, we discuss the occurrence of ellagitannins (ETs) and ellagic acid (EA)
and methods for their isolation from plant materials. We summarize analytical methods, including
high-performance liquid chromatography–ultraviolet (HPLC–UV) and liquid chromatography–mass
spectrometry (LC–MS), for the determination of ETs, EA and their bioactive metabolites urolithins
(Uros) in samples of plant and food origin, as well as in biological samples, such as plasma, urine and
feces. In addition, the current interest in the bioactivities of Uros is discussed in brief.
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1. Introduction

Ellagitannins (ETs) are a group of tannins widely spread in plants, in particular in
fruits, including pomegranate, cloudberries and strawberries [1–3]. They are complex
molecules characterized by structural diversity. When foods rich in ETs are consumed, ETs
are first hydrolyzed into ellagic acid (EA) in the stomach and small intestine [4]. Then,
EA may be converted into urolithins (Uros) by the action of the intestinal flora [4,5]. The
consumption of foods rich in ETs and EA has been associated with beneficial effects on
human health. As a consequence, a plethora of studies have been performed to shed light
on the bioactivities of ETs, EA and Uros [6–10]. Recently, an increasing interest has been
focused on the bioactivities of Uros and clinical trials have led Uro supplements to enter
into the market [11].

Due to the diverse biological effects of ETs, EA and Uros, there is a high interest in the
isolation of such components from various natural sources, their bio-transformations in the
human organism, the study of their bioactivities and analytical methods for their detection
and determination. The aim of the present review is to summarize the natural sources
of ETs and EA, discussing methods for the extraction and isolation of ETs and EA from
various sources. Furthermore, a detailed summary of the analytical methods developed for
the determination of ETs, EA and Uros in plants, foods and biological samples is presented.

2. Ellagitannins and Ellagic Acid
2.1. Natural Sources and Occurrence of ETs and EA

ETs are naturally occurring compounds of medicinal and biological interest found in
dicotyledonous and angiosperms plants [12]. They belong to the hydrolyzable tannins and
possess a complex chemical structure, which renders them susceptible to various chemical
reactions, including transformation, isomerization, and oligomerization [2]. ETs are esters
of gallic acid and are typically constructed by hexahydroxydiphenic acid units (HHDP),
connected usually to a D-glucose moiety. However, fructose, xylose, galactose and quinic
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acid have also been reported to connect to HHDP [1,13,14]. The HHDP units may be linked
to more than one sugar moiety; therefore, monomeric, dimeric, oligomeric and polymeric
ETs are formed [15]. The exposure of ETs to an acidic or basic environment result in the
formation of EA via hydrolysis/lactonization reactions. Representative ETs are punicalin
and punicalagin, which are abundant in pomegranate, and their structures are depicted
in Figure 1. Upon their hydrolysis, followed by dehydration/lactonization, EA is formed
(Figure 1).
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to EA.

EA, first described two centuries ago [16], is a chromene-dione derivative, which can be
considered as a dimeric derivative of gallic acid. It is named 2,3,7,8-tetrahydroxy-chromeno
[5,4,3-cde]chromene-5,10-dione according to IUPAC nomenclature, However, it is also
known as 4,4′,5,5′,6,6′-hexahydroxydiphenic acid 2,6,2′,6′-dilactone (Figure 1). It consists
of a pair of lactone rings as a part of a tetracyclic core, carrying four free-hydroxyl phenolic
groups, therefore exhibiting an amphiphilic character. Due to the lactone functionalities
and the phenolic groups, it may act as a hydrogen bond acceptor or donor, respectively.

More than 1000 ETs have been detected to occur in many plants; nevertheless, few of
them are fit for human consumption. Fruits including strawberries, berries, pomegranate,
and nuts and seeds are rich in edible ETs, within which raspberries and cloudberries are
the most abundant sources, as are processed foods, including fruit-derived beverages, jams
and cakes (Table 1) [1,3,17]. In general, fruits of the genus Rubus are the most studied
for their content in ETs and EA. Among them, raspberries of different species, such as
R. idaeus [18–21], R. occidentalis, and R. ursinusxidaeus [21], have been investigated showing
an ETs/EA content ranging from 16 to 17.92 mg/g. Similarly, strawberries from different
varieties, for example, Honeoye, Jonsok, Polka [22], and Senga saengana [23], showed a
diversity in their content of ETs/EA that ranges from 0.12 to 5.64 mg/g. Impressive is the
content in ETs/EA of Artic bramble, a perennial plant whose fruits can also been used for the
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preparation of jam, liqueur, and tea. According to Määttä-Riihinen et al., the concentration
of ETs/EA reaches 24.91 mg/g [22]. In addition, other kinds of fruits native to tropical
countries have been found to contain significant amounts of ETs and EA. Myrciaria jaboticaba
(Myrtaceae) and Myrciaria dubia (Myrtaceae), commonly known as camu-camu, have been
reported as rich sources of EA and ETs [24,25]. Another source of ETs and EA is wine.
Oak wood releases tannins which are transferred to wine during its storage for maturation
purposes in oak barrels [26,27].

The use of herbs containing ETs dates back to traditional medicine. Some examples
are Geranium thunbergia (Geraniaceae) and Mallotus japonicus (Euphorbiaceae). Both plants
produce geranin and have been widely used in Japan for treatment against diarrhea and
to treat stomach ulcers, respectively [28]. Furthermore, the fruits of Terminalia chebula
(Combretaceae) that contain chebulinic acid, chebulagic acid and terchebin, have been
traditionally used in Indian and Iranian folk medicine to combat chronic diseases, such as
dementia, diabetes, etc. [29].

Given the importance of ETs for their health beneficial properties, as has been docu-
mented by traditional medicine, some authors examined their presence in the non-edible
parts of fruits. In a recent study, Torgbo et al. found that the peel of Nephelium lappaceum L.,
(Sapindaceae), a tropical fruit of Southeast Asia, contains in major quantities, with respect
to other compounds, ETs such as geraniin and corilagin and their metabolites, including
gallic acid and EA [30]. Similarly, de Vasconcelos et al. showed that ETs and EA are
abundant in the pericarp and the integument of chestnut fruit [31]. In addition, Kaneshima
et al. reported the presence of ETs, such as grandinin, vescalagin, castalagin and others, in
camu-camu seeds and peels [32]. Therefore, obviously, the rational use of these by-products
may lead the pharmaceutical, nutraceutical and cosmetic industries to the development of
valuable products for human health. Furthermore, many scientific papers discuss various
plant species for their significant amount in ETs and EA [1–3,17]. Plant families, such as
Myrtaceae, Rosaceae, Asteraceae and Fagaceae, are reported to include several plant genera,
which produce ETs and EA [33,34].

Apparently, a diversity between the concentration of these secondary metabolites is
evident between the various fruits, foods, and the plant species, as presented in Table 1. The
presence of many raspberries and other fruit varieties as well as the species diversity and
the genetic diversity within the species contribute to these differences. However, there are
also other factors to consider, including the handling of the sample for specific experimental
purposes, climate variations and the developmental stage of the material under study.

2.2. Bioavailability of ETs and EA

Generally, data on the recommended daily intake of ETs and EA are not yet avail-
able. Though toxicity studies evaluate ETs and EA as safe, their pharmacokinetic be-
havior is still obscure. Therefore, caution should be taken by consumers, although the
no-observed-effect level (NOEL) of EA in in vivo studies involving rats has been established
at 3.254 mg/kg/day [35].

Although ETs are found in many natural products, their low bioavailability limits their
use. ETs are generally large molecules, among which the molecular weight of Lambertianin
D reaches 3740 Da [36]. The presence of the HHDP moiety(ies) in their structure, formed
by C-C bond connection between adjacent galloyl residues, in addition to their polar
nature, renders them components with low bioavailability. As mentioned above, most
ETs are subjected to acidic or basic hydrolysis at the gastrointestinal tract to form EA
through the hydrolysis of the ester bonds of ETs, enhanced by the enzyme ellagitannin acyl
hydrolase [37]. However, ETs resistant to hydrolysis end intact to the large intestine [38].
Similarly to ETs, EA has also a low bioavailability both because of its poor water solubility
and its capacity to bind irreversibly to cellular DNA and serum proteins, which results
in complexes of large molecular weight that do not penetrate cell membranes [39,40].
However, in vivo under physiological conditions, EA is metabolized in the gut microbiota
to Uros.
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Table 1. Ellagitannins and ellagic acid content.

Source Family/Genus Content Solvent System Extraction Method Reference

Fruits

Cloudberries Rosaceae/Rubus
3.15 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]
18.25 mg/g a Ethyl acetate/Methanol Vortex [22]
10.90–16.30 mg/g a 70% aqueous acetone Solid–liquid extraction [41]

Raspberries Rosaceae/Rubus

2.63–3.30 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]
1.55 mg/g a 70% aqueous acetone Solid–liquid extraction [42]
0.16–3.26 mg/g a - - [13]
16.92 mg/g a 60% acetone (acidified) Sonication (5 min) [19]
1.5 mg/g b Methanol Soxhlet [43]
10.65–13.84 mg/g a Ethyl acetate/Methanol Vortex [22]
7.67–9.31 mg/g a Methanol (acidified) - [44]
1.35–5.47 mg/g a Methanol (acidified) Magnetic stirring (1 h) [20]
16.92–17.54 mg/g a 70% aqueous acetone Solid–liquid extraction [41]
47–90 mg/g b Methanol Solid–liquid extraction (24 h) [21]
1.6 mg/g b Reflux (20 h)
0.71 mg/g b Aqueous methanol (1:2) (acidified) Reflux (2 h) [45]
8.58–17.92 mg/g a Aqueous methanol(acidified) Vortex + sonication (5 min) [23]

70% aqueous acetone (acidified) [46]
Rose Hip Rosaceae/Rosa 1.09 a Aqueous methanol (acidified) Reflux (20 h) [18]

Strawberries Rosaceae/Fragaria

0.68–0.85 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]
0.71–0.83 mg/g a - - [13]
0.63 mg/g b Methanol Soxhlet [43]
0.64 mg/g a Methanol Sonication (10 min) [47]
4.51–5.64 mg/g a Ethyl acetate Vigorous mixing [22]
0.13–0.32 mg/g a Methanol Agitation (30 min) [48]
0.12–1.29 mg/g a 70% aqueous acetone Solid–liquid extraction [49]
0.31 mg/g a Aqueous methanol (1:2) (acidified) Reflux (20 h) [45]
0.40 mg/g a Aqueous methanol (acidified) Reflux (2 h) [23]
0.81–1.84 mg/g a 70% aqueous acetone Solid–liquid extraction [41]
0.29 mg/g a 70% aqueous acetone Sonication (10 min) [50]
0.77 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]
0.75–0.79 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]

Blackberry Rosaceae/Rubus
3.43 mg/g a 70% aqueous acetone Solid–liquid extraction [42]
1.5–2.7 mg/g a - - [13]
0.63 mg/g a 80% aqueous methanol (acidified) Sonication (10 min) [51]

Arctic Bramble Rosaceae/Rubus 24.91 mg/g a Ethyl acetate Vigorous mixing [22]
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Table 1. Cont.

Source Family/Genus Content Solvent System Extraction Method Reference

Caneberries Rosaceae/Rubus 8.7–32.2 mg/g b Methanol Solid–liquid extraction (24 h) [52]
Rose Hip Rosaceae/Rosa 1.09 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]
Boysenberry Rubeae/Rubus 1.68 mg/g a Methanol Sonication (10 min) [47]
Cranberries Ericaceae/Vaccinium 0.12 mg/g b Methanol Soxhlet [43]

Pomegranate Lythraceae/Punica

0.58–1.77 mg/g a - - [13]
40.59 mg/g (mesocarp) a 80% aqueous methanol (acidified) Stirring [53]
43.98 mg/g (peel) a

1.25 mg/g a Deionized water Pressurized water extraction [54]
46.63 mg/g (fruit) a Ethyl acetate - [55]
81.23 mg/g (peel) a Solid–liquid extraction
5.21–26.25 mmol/L a Water [56]

Guava Myrtaceae/Psidium 0.20–0.25 mg/g a - - [13]
Sea Buckthorn Elaeagnaceae/Hippophae 0.01 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]

Kakadu Plum Fruit Combretaceae/Terminalia
8.80 mg/g a Methanol Sonication (10 min) [47]
10.69 mg/g b Methanol Sonication (10 min) [57]

Grapes Vitaceae/Vitis
0.43 mg/g (seeds) b Methanol: water (4:1) acidified Sonication (1 h)

[58]0.46–0.49 mg/g (skin) a

0.16–0.22 mg/g a

Longan Seed Sapindaceae/Dimocarpus 1.56 mg/g b 50% aqueous ethanol Water bath (1 h) [59]

Mango Kernel Anacardiaceae/Mangifera 0.031–1.18 mg/g b 50% aqueous ethanol Water bath (1 h)
[59]

0.34–0.74 mg/g b 50% aqueous methanol Water bath (1 h)

Pecan Kernels Juglandaceae/Carya 20.96–86.21 mg/g b 80% aqueous methanol Solid–liquid extraction [60]
0.33 mg/g b Methanol Soxhlet [43]

Nuts Fagaceae/Castanea

1.61–24.9 mg/kg (raw) b 70% aqueous methanol Vortex mixer (30 min) [61]
4.30–22.1 mg/kg (boiled) b

4.31–21.1 mg/kg (roasted) b

1.49 mg/g a

8.23 mg/g a 70% aqueous acetone Ice bath [62]
0.36–0.59 mg/g a - - [13]
0.59 mg/g b Methanol Soxhlet [43]
0.40 mg/g a Aqueous acetone (acidified) Soxhlet [63]

Pecan Juglandaceae/Carya

3.01 mg/g a 70% aqueous acetone Ice bath [62]
0.11–0.33 mg/g a - - [13]
0.70 mg/g a Water Reflux [64]
0.22 mg/g a Aqueous acetone (acidified) Soxhlet [63]
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Table 1. Cont.

Source Family/Genus Content Solvent System Extraction Method Reference

Medicinal and aromatic plants

Psidium
friedrichsthalianum-Nied

Myrtaceae/Psidium 2.43 mg/g (peel) a Methanol: water (9:1) acidified Sonication
[65]3.06 mg/g (flesh) a

(Psidium guajava L.) Myrtaceae/Psidium 5.72–30.6 mg/100 g b Methanol Shaking (30 min) [66]
Myrciaria jaboticaba (Vell.)
Berg Myrtaceae/Plinia 9.1 mg/g a 70% aqueous methanol Extraction (2 h) [67]

Myrciaria cauliflora Myrtaceae/Plinia

45.5–124.4 mg/g a 50% aqueous acetone Overhead stirrer [68]
7.6 mg/g (peel) a 50% aqueous acetone Overhead stirrer [69]
161.9 mg/g (seed) a

8.78 mg/g (pulp) a

Myrciaria dubia Myrtaceae/Plinia
7.14 mg/100 g (peel) a 50% aqueous methanol (acidified) Vortex + sonication (15 min) [70]
6.73 mg/100 g (pulp) a 50% aqueous methanol (acidified)
381.98 mg/100 g (seeds) a

Eucalyptus grandis Myrtaceae/Eucalyptus 47.75 mg/g (extract) b Dichloromethane/50% aqueous methanol Soxhlet/Stirring (24 h) [33]
2.22 mg/g (drywood) b

Eucalyptus globulus Myrtaceae/Eucalyptus 4.95–5.08 mg/g (extract) b Dichloromethane/50% aqueous methanol Soxhlet/Stirring (24 h) [71]
0.42–0.71 mg/g (bark) b

Myrtus communis L. Myrtaceae/Myrtus 1.028–2.584 mmol/L (leaves) a Water Solid–liquid extraction [56]

Feijoa sellowiana Myrtaceae/Feijoa

12.04 µg/g (leaves) b 70% aqueous acetone/ethyl
acetate/n-butanol Solid–liquid extraction [72]

7.64 µg/g (flowerbuds) b

4.77 µg/g (branches) b

4,53 µg/g (fruits) b

Plinia peruviana Myrtaceae/Plinia 152.3 µg/mL b 50% aqueous ethanol Ultra pressure [73]

Fragaria × ananassa
Duch

Rosaceae/Fragaria
33.18–151.78 mg/g (leaves) a Acetone:water (3:1) acidified Vortex + sonication (15 min) [74]
1.79–19.3 mg/g (roots) a

2.96–18.56 mg/g (fruits) a

Prunus avium Rosaceae/Prunus 0.059 mg/g a Methanol Sonication (30 min) [34]
Potentilla tormentilla Rosaceae/Potentilla 6.8–49.33 mg/g (rhizomes) a 50% aqueous methanol Sonication (15 min) [75]
Agrimonia asiatica Rosaceae/Agrimonia 63.61 mg/g a Water Stirring + sonication (60 min) [76]

Mangifera indica L. Anacardiaceae/Mangifera
0.018–0.13 mg/g b 80% aqueous methanol Sonication (15 min) [77]
0.14 mg/g (peel) b Ethanol: Water (1:1) - [78]
0.41 mg/g (seed) b Acetone: Water (1:1) -
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Table 1. Cont.

Source Family/Genus Content Solvent System Extraction Method Reference

Syzygium cumini
Lam Myrtaceae/Syzygium 0.00–0.26 mg/g a Methanol:Water (60:37) (acidified) Homogenization [79]

Myrciaria floribunda Myrtaceae/Myrciaria 2.21 mg/g b 80% aqueous methanol Liquid-solid extraction [80]
Myrtus communis L. Myrtaceae/Myrtus 8.54 mg/g a 71% aqueous ethanol Pressurized-liquid extraction [81]

Syzygium cumini L. Myrtaceae/Syzygium

0.13–0.36 µg/g (pulp) b Petroleum ether/ethyl
acetate/methanol/water Soxhlet [82]

18.65–32.70 µg/g (seed) b

7.14–15.30 µg/g (seed coat) b

34.60–48.37 µg/g (kernel) b

Juglans regia L. Juglandaceae/Juglans 412.9–552.9 mg/g a Methanol Vortex + sonication ice water
(60 min) [83]

Terminalia ferdinandiana Combretaceae/Terminalia 30.51–140.25 mg/g a 80% aqueous methanol (acidified) Vortex + sonication (15 min) [84]

Quercus alba Fagaceae/Quercus 1.06 mg/g a 80% aqueous methanol Sonication (30 min) [34]
3.95 mg/g a Ethanol:Water (62.5: 37.5) Stirring [85]

Quercus petraea Fagaceae/Quercus 2.51 mg/g a 80% aqueous methanol Sonication (30 min) [34]
Quercus pyrenaica Fagaceae/Quercus 2.94 mg/g a 80% aqueous methanol Sonication (30 min) [34]

Quercus robur Fagaceae/Quercus 4.07 mg/g a 80% aqueous methanol Sonication (30 min) [34]
8.36 mg/g a Ethanol:Water (62.5: 37.5) Stirring [85]

Castanea sativa Fagaceae/Castanea 8.91 mg/g a 80% aqueous methanol Sonication (30 min) [34]
Castanea crenata Fagaceae/Castanea 2.26 mg/g b 80% aqueous methanol Maceration (48 h) [86]
Terminalia chebula Retz Combretaceae/Terminalia 174.43 mg/g a Water Boil [87]
Phyllanthus amarus Phyllanthaceae/Phyllanthus 444.21 µg/mL a 80% aqueous ethanol Soak (9 days) [88]
Quassia undulata Simaroubacea/Quassia 2.49 mg/g b Cold water Soak (24 h) [89]
Acalypha hispida Euphorbiaceae/Acalypha 1.19–5.41 mg/g b Ethanol Soak (72 h) [90]
Baccharis trinervis Asteraceae/Baccharis 1.35–9.74 mg/g b Hot water Infusion (15 min) [91]

Carpobrotus edulis Aizoaceae/Carpobrotus 0.45 µg/g b Water Stirring (30 min) [92]
0.55 µg/g b Aqueous ethanol (1:1)

Clematis orientalis Ranunculaceae/Clematis 0.46 mg/g b 80% aqueous methanol.Hexane Shaking [93]
Clematis ispahanica Ranunculaceae/Clematis 0.81 mg/g b Chloroform Shaking [93]

Hippophae rhamnoides L. Elaeagnaceae/Hippophae 4.94–6.72 mg/g b 80% aqueous methanol Homogenization + sonication
(20 min) [94]

Euterpe edulis Arecaceae/Euterpe 1.40 mg/g a 70% aqueous ethanol (acidified) Shaking [95]
Juglans nigra L. Juglandaceae/Juglans 9.05–98.41 µg/g b methanol Sonication in cool water (60 min) [96]
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Table 1. Cont.

Source Family/Genus Content Solvent System Extraction Method Reference

Sterculia striata Malvaceae/Sterculia
0.049 mg/g (nut) b water Sonication (60 min) [97]
0.046 mg/g (shell) b Sonication (45 min)
0.032 mg/g (pelliche) b Sonication (45 min)

Juices/Wines/Liquors

Pomegranate Juice Lythraceae/Punica

26.5–33.2 mg/L b - - [98]
5.58 g/L a - - [99]
90.4–2071.0 mg/L a - - [53]
0.035–2.03 mmol/L a Methanol Shaking (3 min) [100]
1242.95 mg/L a - - [101]

Jabuticaba juice Myrtaceae/Plinia 24.37–143 mg/L b Water Steam extraction (30 min) [102]
Eugenia brasiliensis Lam Myrtaceae/Eugenia 146.1 mg/L a Water Homogenization [103]
Muscadine juice Vitaceae/Vitis 9.08–107.31 mg/L a Ethyl acetate - [104]
guava juice Myrtaceae/Psidium 1.41–1.48 mg/g a - Pasteurization [65]
Raspberry juice Rosaceae/Rubus 2.17–3.24 mg/g a - - [46]

Wine Vitaceae/Vitis

2.27–77.76 mg/L a [104]
20–50 mg/L a - - [13]
0.53–23.8 mg/L a - - [105]
7.88–11.61 mg/L b Diethyl ether/ethyl acetate - [106]
4.54–4.55 mg/L a Diethyl ether/ethyl acetate -

Pomegranate wine lees Lythraceae/Punica 4.36 mg/g a 70% aqueous methanol Vortex/sonication (10 min) [107]
Eucalyptus globulus Myrtaceae/Eucalyptus 1165.5 mg/L b Ethyl acetate Liquid–liquid extraction (30 min) [108]

Others

Fruit pureé 8.8–43 mg/100 g a 80% ethanol - [109]
8.5–44.1 mg/100 g a -

Strawberry Pureé 0.14–0.35 mg/g a 70% aqueous acetone Sonication (10 min) [50]
Kakadu Plum Fruit Pureé 11.65–14.96 mg/g a Acetone Sonication (10 min) [57]
Strawberry Cake 25.21 mg/g a 70% aqueous acetone Vortex/sonication (15 min) [110]

Vortex/sonication (5 min), Kept in
dark (15 min)

Strawberry Cake 17.70–81.01 mg/g a 70% aqueous acetone (acidified) [46]

Strawberry Jam 0.17–0.29 mg/g b Methanol:water (70:30) (acidified) Homogenization in ice bath [111]
0.24 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]

Raspberry jam 0.76 mg/g a Aqueous methanol (acidified) Reflux (20 h) [18]
a Sum of ETs, EA and EA derivates; b EA.
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2.3. Extraction ETs and EA from Natural Sources

Various solvents and methods have been used to extract ETs and EA from diverse
sources. For example, Aaby et al. [50] extracted ETs and EA from strawberries through
ultrasound-assisted extraction, using aqueous acetone as the extraction solvent. On the
other hand, Abe et al. [24] observed that a treatment in an ice bath containing nuts and
pecans with 80% aqueous acetone yielded higher amounts of total EA, compared to
80% aqueous ethanol. Similarly, Alagan et al. [88] successfully extracted a significant
quantity of EA from the plant Phyllanthus amarus through soaking using 80% ethanol. Fur-
thermore, Alañón et al. [34] extracted EA from three species of oak wood using methanol,
while in another study by the same author, EA was extracted from mango seed kernel
using an aqueous solution of methanol [77]. Both extractions were performed using a
sonication process.

As shown in Table 1, the most useable extraction techniques are solid–liquid extraction,
followed in some cases by sonication, or sonication alone. Solid–liquid extraction is a simple
extraction technique, allowing the direct contact of the solid plant material with the solvent.
Thus, it separates the soluble compounds found in a plant material and does not require
further mechanical treatment of the samples. A Soxhlet apparatus is often used to achieve
the isolation of the compounds; however, other procedures including maceration, stirring,
and circular shaking have also been reported (Table 1). Pressurized water extraction has
also been used to extract tannins. The main advantage of this method lies in its “green
chemistry” characteristics. However, an important disadvantage to consider is that the
high temperature used may deteriorate the presence of the analytes of interest. Indeed,
Çam et al. [54] observed in their study that the optimal temperature to extract tannins is
40 ◦C. When the temperature was increased to 65 ◦C or 90 ◦C, the number of compounds
decreased. Finally, ultrasound-assisted extraction is a common technique used to isolate
plant secondary metabolites. In this case, time and sonication power are two variables of
high importance, since they affect the yield of extractable compounds. Also critical is the
selection of the extraction solvent, as well as the temperature of the water bath.

Most of the studies summarized in the present review use aqueous methanol as the
extraction solvent in various % proportions. Both solvents’ polarity is high, and their use can
be explained by the fact % yield is increased when a polar solvent is used [112,113]. For this
reason, some researchers use multiple solvents during the extraction process to facilitate the
extraction of ETs and EA. For example, in the study of Määttä-Riihinen et al. [22], samples
were first extracted with ethyl acetate, followed by methanol, which was applied to the
solid residue. The same applies for the study of Häkkinen et al. [23] who used acidified
aqueous methanol and then the solid residue was diluted to methanol. Nonetheless, data
gathered in Table 1 also indicate that another solvent with intermediate polarity such as
acetone, in combination with water, results in a high yield of ETs and EA content [41,46].

2.4. Analytical Techniques for the Determination of ETs and EA

The analytical identification, separation and quantification of ETs poses difficulties
due to their structural complexity (high molecular weight), their high polarity, and in
some cases the lack of commercial standards. Acidic hydrolysis has often been applied for
the analysis of ETs with their quantification as equivalents of EA [114]. Theocharis et al.
indicated that a maximum yield of EA can be obtained from strawberry samples with
the use of a mixture of formic acid/water (80:20, v/v) and heating at 200 ◦C for 30 min,
followed by microwave-assisted extraction (MAE) [115].

On some occasions, adsorption on macroporous resin columns can be used as an initial
fractionation step. Usually, the column is washed with water for the removal of water-
soluble impurities (i.e., sugar, proteins, etc.) and then gradually eluted with mixtures of
ethanol and water [116,117]. This method has been applied to different samples, such as
pomegranate husk extract, and for the phenolic profiling of Duchesnea indica, also known as
the Indian strawberry [116,117].
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High-performance liquid chromatography (HPLC) appears as the most utilized method
for the separation and isolation of ETs and EA. Commonly, reverse phase RP-C18 chro-
matography is employed with polar mobile phases consisting of acidified acetonitrile
or methanol and water containing formic or acetic acid [114,118]. Less frequently used
columns include C6 phenyl columns [100] and diol columns [119]. Alternatively, fused-core
columns have also been employed for the analysis of pomegranate polyphenols, where an
improvement in the separation of constituents in a short time was reported, compared to
conventional stationary phases [120,121]. Furthermore, a fused-core C18 column was used
for the quantification of ETs in oak-aged red wine, achieving the simultaneous analysis
of free EA [122]. Solely in the case of EA, high-performance thin layer chromatography
(HPTLC) has been employed for quantitative analysis in different extracts and formulations
with the use of mobile phases, usually consisting of toluene, ethyl acetate and formic
acid [118,123].

In terms of detection, UV detectors such as diode array (DAD) detectors have been
widely utilized for the routine identification and quantification of ETs and EA [114,118]. ETs
and EA display characteristic UV spectra with maximum absorbance below 270 nm [124].
They have been frequently determined in pomegranate [124,125], strawberries [126,127],
Rubus berries and their leaves [128,129], chestnuts [130], as well as waste products of wal-
nuts, chestnuts, pomegranates [131], and pomegranate peels [132]. Mass spectrometry de-
tectors also proved to be valuable tools mainly for the identification of ETs and EA, usually
in combination with HPLC/DAD systems. Generally, the negative ion mode of electrospray
ionization (ESI) has been employed. Some typical losses during the fragmentation of ETs
include galloyl (152 Da), HHDP (302 Da), galloylglucose (332 Da), HHDP-glucose (482 Da),
and galloyl-HHDP-glucose (634 Da) [133,134], while fragment ions of EA are frequently ob-
served at m/z 284, 257, 229 and 201 [134]. Importantly, while ET commercial standards are
scarce, several scientific groups focusing on the characterization and quantification of ETs
often possess isolated compounds that can be used as standards for accurate quantitative
determination [53,128,135–137]. Collectively, the tandem use of HPLC/DAD and ESI-MS
is a technique that has been widely applied to the identification and quantification of ETs
and EA found in different matrices, including raspberries [138], pomegranates [53,120],
walnuts [139], wine [140], Madagascar’s almonds [141], chestnut trunk samples [142], blue-
berries [143], Jabuticaba fruits [144], northern red oak (Quercus rubra L.) seeds [145], small
burnet (Sanguisorba minor L.) [146] and Kakadu plum (Terminalia ferdinandiana) [137].

Finally, EA was previously determined through Capillary Electrophoresis (CE) in
pomegranate rinds [147], industrial pulp samples and their filtrates [148], and Argentinian
wines [149]. Fused-silica capillaries of 50 to 60 cm length were the most commonly used and
the pH ranged between 8.4 and 9.1. All systems were equipped with a simple UV or DAD
detector and the buffers used mostly consisted of boric acid or sodium tetraborate [147–149].

3. Urolithins
3.1. Production of Uros from ETs and EA Metabolism

Uros are bioactive metabolites containing a benzo-coumarin scaffold with differences
in hydroxylation patterns. They are primarily produced by the gut microbiota in humans
and some animals that receive ETs and EA through their diet [5]. Specifically, urolithin A
(Uro-A) is one of the major metabolites of EA and it has exhibited a wide range of bioactivi-
ties, such as anti-inflammatory, antioxidant, anticancer, anti-diabetic and neuroprotective,
among others [9,10,150–152].

The identification of the Uros formation pathway in humans has been studied and
described by Tomas-Barberan et al. in human fecal fermentation studies, as well as in a
gastrointestinal simulator model (TWIN-SHIME) [153,154]. The first step in this pathway
is a lactone ring cleavage and a subsequent decarboxylation of EA, which is then converted
into a pentahydroxy urolithin (Uro-M5) (Figure 2). Consecutive dehydroxylations, cat-
alyzed by different dehydroxylase enzymes, lead to the formation of tetrahydroxy Uros
(Uro-E, Uro-M6, Uro-M6R and Uro-D), trihydroxy Uros (Uro-M7, Uro-M7R, Uro-C and
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Uro-CR) and dihydroxy Uros (Uro-A, isoUro-A and Uro-AR). Finally, the dehydroxylation
of Uro-A or isoUro-A may lead to the monohydroxy Uro (Uro-B) [154].
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The production of Uros, following ellagitannin-rich food intake, exhibits large variabil-
ity throughout the population, because it is a process that depends on the gut microbiota
composition of each individual. To date, three urolithin-producing metabotypes have
been assigned to humans regarding their ability to produce Uros [155]. “Metabotype A”
is assigned to individuals who only produce Uro-A conjugates, “metabotype B” to those
who produce isoUro-A and/or Uro-B as well as Uro-A, and in individuals categorized
as “metabotype 0”, none of these urolithins are detected. As mentioned, the different
metabotypes are associated with differences in the gut microbiome composition in healthy
humans [156], which reportedly depends on aging [157]. In their study, Cortés-Martín et al.
reported that individuals assigned with metabotype A represent approximately 70% and
metabotype B 20% of the population at the ages between 5 and 30 years. In individuals
older than 30 years, these two metabotypes tend to equate with a decline in metabotype A
and an increase in metabotype B, while the percentage of metabotype 0 remained close to
10% [157].

The known gut bacteria that characterize different metabotypes by transforming EA
to Uros mainly belong to the genera Gordonibacter and Ellagibacter, which belong to the
Eggerthellaceae family. In a recent study, it was confirmed that the genus Gordonibacter
metabolizes EA into Uro-M5, Uro-M6, and Uro-C, while Ellagibacter can convert EA into
Uro-M5, Uro-M6, Uro-C and isoUro-A. Both genera could also convert Uro-D and Uro-M6
into Uro-C [158]. Importantly, a novel bacterium Enterocloster bolteae from the family Lach-
nospiraceae was isolated from human feces that could convert Uro-C and isoUro-A into
Uro-A and Uro-B [158]. Then, co-cultures of these bacteria, which have complementary
activities, were capable of cooperatively reproducing the Uro formation profiles associated
with metabotype A and B individuals upon in vitro fermentation. The patented bacterial
combinations could pave the way for future probiotic supplements for metabotype 0 indi-
viduals [158]. Finally, a new Uro, namely Uro-G, was discovered by the same team, and
its occurrence was validated in human fecal samples following the intake of pomegranate
ETs. Furthermore, it was indicated that Uro-G is produced from Uro-D in vivo by human
Enterocloster species and it is the first urolithin bearing a catechol group in the A ring as
well as solely one hydroxyl in the B ring, a feature that has not been found in human and
animal samples until now [159]. In summary, the genera Gordonibacter and Ellagibacter
can transform EA into different Uros through lactone-ring cleavage, decarboxylation, and
further catechol dehydroxylations at 4- and 10-positions, as well as 8- only in the case
of Ellagibacter, which can also produce Uro-A from Uro-G. In contrast, the Enterocloster
genera is able to catalyze the dehydroxylation of hydroxyl groups at 9- and 10-positions in
both aromatic rings, while Uro-G can only be obtained after the dehydroxylation of Uro-D
catalyzed by the Enterocloster species that possesses 9-dehydroxylase activity [158].

3.2. Bioavailability of Uros and Their Metabolites

Uros are easily absorbed in the colon and undergo extensive phase II metabolism,
resulting in glucuronide and sulfate conjugates that can reach plasma and systemic tissues,
eventually being excreted in urine. In animals, the presence of a Uro conjugating in urine
and plasma samples has been widely studied. Animals included in such studies were
mainly rodents (rats and mice) [160–163], ruminants [164,165], pigs [166], and other mam-
mals [164]. In humans, the levels of Uro-A and Uro-B conjugates have been determined
in plasma and urine samples after the intake of ellagitannin-rich foods, such as rasp-
berries [167–172], strawberries [167,173,174], walnuts [167,175–179], oak-aged wine [167],
black tea [180], pomegranate products [175,178,181–187] and blackberry juice [188]. In
studies regarding human plasma, the main Uro conjugates are detected at micromolar
concentrations (Uro-A glucuronide up to 35 µM, Uro-B glucuronide 7.3 µM, and isoUro-A
0.745 µM, respectively) [153]. Moreover, in human urine samples, these metabolites reached
concentrations up to 100 µM. Importantly, other conjugates of intermediate metabolites,
such as Uro-C and Uro-D glucuronides, have been detected, but are generally less studied
due to lack of commercial standards [188]. In some studies, the enzymatic hydrolysis
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of Uro glucuronides and sulfates was employed, with the samples being treated with a
β-glucuronidase/sulfatase solution and the Uros determined in total (conjugated and non-
conjugated) [188–193]. The most common Uros, Uro-A, Uro-B and isoUro-A, have been
identified and quantified in their non-conjugated form or as aglycones in the fecal samples
or cecal digesta of rats and mice [189–191,194,195], ruminants [165], and other mammals,
such as squirrels, beavers [164], and pigs [166]. In humans, the same non-conjugated
metabolites have been determined in feces after the consumption of pomegranate extracts
or walnuts [5,196,197]. In other human tissues, relatively high levels of Uro-A, -B, -C,
-D and isoUro-A, and their glucuronide and sulfate conjugates (42 to 1671 ng/g tissue),
were identified in normal and malignant colon tissues following pomegranate extract
intake [183]. Furthermore, in human prostate samples, Uro-A glucuronide and Uro-B
glucuronide were identified in trace amounts, the following consumption of walnuts or
pomegranate juice [175].

Due to the inter-individual differences in Uro pharmacokinetics, bioavailable concen-
trations vary greatly between individuals. In recent years, physiologically based pharma-
cokinetic (PBPK) modeling has become an interesting alternative to animal testing, making
use of existing physicochemical data and in vitro metabolism data in order to determine
the tissue concentrations of chosen compounds. As an example, in a recent study of a PBPK
model regarding the post-biotic supplementation of Uro-A, it was suggested that peak
concentrations in most tissues were low (nanomolar range), supporting the safety of Uro-A
to be used as a post-biotic supplement [198].

3.3. Extraction of Uros from Biological Samples

The importance of Uros and their health benefits as a result of ET and EA metabolism led
to the development of appropriate analytical methods regarding their determination, mainly in
biological samples. To serve this purpose, the first step was the selection of suitable extraction
protocols considering the occurrence of conjugated and non-conjugated forms of Uros in combi-
nation with the distinct properties of different matrices. As a result, urine samples were often di-
rectly injected after dilution and/or filtration [164,170,172,175,176,178–180,182–185,187,190,197],
while plasma, breast milk and tissue samples were extracted with solvents, such as MeOH
and ACN (acidified with formic or hydrochloric acid in some cases), to facilitate protein precip-
itation [162,165,168–170,172,175–179,182,183,186,187,189,191,192,199–202]. Fecal samples were
extracted with mixtures of MeOH/H2O/HCl or formic acid [5,162,164,165,176,178,179,196], and
in vitro fecal fermentation cultures were extracted with organic solvents, such as acetone,
ethyl acetate or diethyl ether acidified with formic acid in some cases [203–207]. Solid-phase
extraction (SPE) was also used as a cleanup technique in more complex matrices. Different
cartridges (C18 Sep-pack, Supelclean LC-C18, Bond Elut C18, Oasis HLB, MCX) were
chosen for the different samples, and in all cases, water was used as the washing solvent
and MeOH as the elution solvent. In some cases, ninety-six well micro-elution SPE was
employed, as it is useful for low volumes of samples and it can facilitate high-throughput
sample processing [103,165–168,180,181,184,185,188,208–210].

3.4. Analytical Techniques for the Determination of Uros

The methodologies that have been employed throughout the years for the identifi-
cation and quantification of Uros in biological fluids are summarized in Tables 2 and 3.
Methods reported for the determination of Uros in samples originated from animals or
in vitro cultures are shown in Table 2, while Table 3 summarizes studies on human bi-
ological samples. HPLC and UHPLC were the most common methods employed for
the separation of Uros, using reverse phase columns with octadecyl-bonded stationary
phases and isocratic or gradient mobile phases consisting of water mixed with acetoni-
trile or methanol with the addition of formic or acetic acid. In rare cases, a pentafluo-
rophenylpropyl (F5) phase column and an ether-linked phenyl phase column were also
successfully utilized for the separation of Uro conjugates [170,208]. The detection and
quantification of analytes was usually achieved with the use of UV-diode array detec-
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tors (DAD) or photodiode array detectors (PDA) coupled in series with mass spectrome-
ters, such as ion traps (IT) [5,162,165–167,173,175,180,204,205,208,211], triple quadrupoles
(QqQ) [168,171,172,174,189,190,192,193,196,199,200,209,212,213], and quadrupole-time of flight
(QTOF) systems with electrospray ionization (ESI) sources [169,177–179,182,183,191,203,207].
In detail, the quantification of common Uros was primarily carried out in UV at specific
wavelengths (305, 280, 330, 360 nm), and MS was employed for the identification of similar
compounds based on differences in their fragmentation patterns. Intermediate Uros (Uro-D,
Uro-M6 and Uro-M7), which have not been widely studied, were successfully characterized
by Tomás-Barberán et al. with the use of three systems consisting of an LC coupled to a
DAD and a QqQ or a QTOF detector. Following the validation of their methodology, it was
applied in different biological samples, namely, urine, feces and plasma, after the consump-
tion of ellagitannin-rich sources [178]. These metabolites have since been included in other
studies; for example, Uro-M6, Uro-M7, Uro-C, and Uro-D were determined as increasing
products of the catabolism of ETs from jaboticaba (Myrciaria trunciflora) fruit peel during
in vitro colonic fermentation [203]. In a recent study investigating the supplementation of
Gordonibacter urolithinfaciens in combination with EA in C57BL/6J mice, the predominant
metabolites found in cecal content included Uro-C, Uro-M6/Uro-D, and Uro-A [190]. In
fact, the co-administration of Gordonibacter with EA dramatically promoted EA catabolism
and enhanced the production and systemic circulation of Uro-C and Uro-A in particular,
especially when compared to the sole administration of EA, overcoming its known low
bioavailability and poor absorption [190].

Finally, the presence of different isomers of Uro gluconorides has been previously
described [178]. Their determination has not been achieved due to the limitations of the ex-
isting methods, mainly their resolution by reversed-phase HPLC. Recently, a novel method
for the separation of such isomers using supercritical fluid chromatography (SFC) coupled
to a UV detector was reported by Ares et al. utilizing a (S,S) Whelk-O 1 (150 × 4.6 mm,
3.5 µm) column with a mobile phase consisting of a mixture of carbon dioxide and 0.1%
(v/v) trifluoroacetic acid in isopropanol (70:30; v/v) [214]. They were able to separate Uro-A
3- and 8-glucuronide, isoUro-A 3- and 9- glucuronide, and Uro-B 3-glucuronide in less than
15 min. This method was successfully applied in the analysis of these metabolites in urine
samples from volunteers with different metabotypes and for the first time it was indicated
that in metabotype B volunteers, the most common isomer of isoUro-A glucoronide was 3-,
while both Uro-A glucuronide isomers were found to exist in similar quantities.
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Table 2. Summary of reported analytical methods for the determination of urolithins in biological samples derived from animals or in vitro cultures.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uro-A, Uro-B

Liver, kidney, heart,
brain tissue and

biofluids (blood and
urine) of adult

male rats.

UHPLC–MS/MS

Waters Acquity UPLC (Milford, MA, USA)
equipped with a binary pump, autosampler,
column compartment and an Acquity PDA
eλ detector, coupled to a Waters Xevo TQ
(Milford, MA, USA) triple quadrupole MS

with an electrospray interface.

Waters Acquity UPLC column HSS T3
(100 mm × 2.1 mm, 1.8 mm, Milford, MA,

USA). The mobile phase consisted of
(A) water/formic acid (99.9:0.1, v/v) and

(B) ACN/formic acid (99.9:0.1, v/v; flow rate
0.4 mL/min.

Extraction with 95%
MeOH. [212]

Uro-A
Uro-A, Uro-B

Uro-A-
glucuronide

Cecal digesta (Wistar
rats): intake of

strawberry.
Urine, plasma, cecal
digesta (Wistar rats):
intake of strawberry.

HPLC-PDA HPLC Knauer Smartline system with
photoDAD, (Knauer, Berlin, Germany).

Gemini C18 column (250 × 4.60 mm, 5 µm,
Phenomenex, Torrance, CA USA). The

mobile phase consisted of (A) 0.05%
phosphoric acid in H2O and (B) 0.05%

phosphoric acid in 80% ACN; flow rate
1.25 mL/min.

Extraction with acetone. [160,161,194]

Uro-A
Cecal digesta
(Wistar rats):

intake of blackberry.
HPLC-ESI-MS

Dionex UltiMate 3000 UHPLC coupled to a
Thermo Scientific Q Exactive quadrupole ion
trap MS (Thermo Fisher Scientific, Waltham,

MA, USA).

Kinetex 110A C18 column (150 × 2.1 mm,
2.6 µm, Phenomenex, Torrance, CA USA).

The mobile phase consisted of (A)
0.1% formic acid in H2O and (B) 0.1% formic

acid in ACN; flow rate 0.5 mL/min.

Extraction with acetone. [195]

Uros (A, B, C, D,
M5, M6 and M7)

Colonic fermentation
samples.

HPLC-DAD-
QTOFMS/MS

HPLC (CBM-20A Prominence, Shimadzu,
Kyoto, Japan) equipped with a degasser

(DGU20A5 prominence, Shimadzu, Japan)
and column oven (CTO-20A Prominence,

Shimadzu, Japan), coupled to DAD
(SPDM-20A Prominence, Shimadzu, Japan)
and connected to a QTOF MS analyzer and

ESI (micrOTOF-QIII, Bruker Daltonics,
Bremen, Germany).

C-18 Hypersil Gold column
(150 mm × 4.6 mm; 5 µm, Thermo Fisher

Scientific, Waltham, MA, USA). The mobile
phase consisted of (A) 5% (v/v) methanol in

acidified water (0.1% (v/v) of formic acid)
and (B) 0.1% (v/v) of formic acid in ACN;

flow rate 1.0 mL/min.

Extraction using an
acidified acetone

solution (0.35% formic
acid, v/v).

[203]

Uro-A, -B, -C, -D

Plasma, liver, prostate,
colon tissue and
luminal content
(C57BL/6 mice):

intake of raspberries.

UPLC-MS/MS

UPLC system (ACQUITY, Waters, Milford,
MA, USA) coupled to a triple quadrupole

MS (Quattro Ultima, Waters, Milford,
MA, USA).

BEH C18 Reverse Phase column
(2.1 × 50 mm, 1.7 µm, ACQUITY UPLC,
Waters). The mobile phase consisted of
(A) 1% aqueous formic acid (v/v) and
(B) 1% formic acid in ACN; flow rate

0.3 mL/min.

Samples were treated
with β-glucuronidase/

sulfatase (S9296,
Sigma-Aldrich,

St. Louis, MO, USA).
Extraction with
diethyl ether.

[189]

Uro-A and uro-B

Plasma (CD1
Harlan-Nossan

male mice):
intake of

E. angustifolium extract.

UHPLC-MS/MS

Shimadzu Nexera UHPLC system with two
LC 30 CE pumps, a SIL 30AC autosampler, a

CTO 20AC column oven, and a CBM 20A
controller. Coupled to a triple quadrupole
LCMS 8050 (Shimadzu, Kyoto, Japan) with

an ESI source.

ACQUITY UPLC® BEH C18 column
(50 mm × 2.1 mm, 1.7 µm, Waters, Milford,
MA, USA). The mobile phase consisted of
(A) 0.1% aqueous acetic acid and (B) ACN

plus 0.1% acetic acid; flow rate 0.5 mL/min.

Extraction with ice-cold
acetonitrile acidified
with 98% HCN and

2% HCOOH.

[199]
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Table 2. Cont.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uro-B, Uro-C
In vitro gastrointestinal
digestion of raspberry

extract.
HPLC-MS Exactive™ Plus Orbitrap MS with an ESI

Interface (Thermo Fisher Scientific Inc, USA).

Thermo Hypersil GOLD C18 column
(100 mm × 2.1 mm, 3 µm, Thermo Fisher

Scientific Inc., USA). The mobile phase
consisted of (A) 1% formic acid in water and

(B) 1% formic acid in ACN; flow rate
0.35 mL/min.

Filtration by 0.22 µm
membrane and direct

injection.
[211]

Uro-A
Samples of in vitro un-
fermented/fermented

pomegranate juice.

HPLC
LC-MS/MS

HPLC Waters 1525
Q-Exactive LC-MS/MS (Thermo Fisher

Scientific, Shanghai, China).

Hypersil GOLD C18 column
(2.1 mm × 100 mm, 1.9 µm, Thermo Fisher

Scientific, Shanghai, China). The mobile
phase consisted of (A) 0.1% formic acid in

water, and (B) ACN; flow rate 0.3 mL/min.

Extraction with diethyl
ether and ethyl acetate. [206]

Uro-A, -B, -C,
-M5, -M6,
isoUro-A

Samples of in vitro
unfermented/fermented

pomegranate peels.
HPLC-MS

LC-MS system (G2-XS QTof,
Waters Corporation, Milford, MA,

United States).

ACQUITY UPLC® BEH C18 column
(100 mm × 2.1 mm, 1.7 µm, Waters, Milford,

MA, USA). The mobile phase consisted of
(A) 0.1% aqueous formic acid and (B) ACN

plus 0.1% formic acid; flow rate
0.35 mL/min.

Extraction with ethyl
acetate acidified with

1.5% formic acid.
[207]

Uro-M7, Uro-M6,
Uro-D, -C, -A

Plasma, liver, cecal
content, urine, brain,

adipose tissue
(C57BL/6J mice):

supplementation of
Gordonibacter

urolithinfaciens.

UPLC-MS

Agilent 1290 Infinity II UHPLC system
coupled to an Agilent 6460 Triple

Quadrupole MS with an ESI source (Agilent
Technologies Inc., Santa Clara, CA, USA).

ACQUITY UPLC® BEH C18 column
(50 mm × 2.1 mm, 1.7 µm, Waters, Milford,
MA, USA). The mobile phase consisted of

(A) 0.05% aqueous formic acid and (B) ACN
plus 0.05%; flow rate 0.45 mL/min.

Plasma, liver, cecal
content, urine samples

were treated with
β-glucuronidase/
sulfatase (S9296,

Sigma-Aldrich, St.
Louis, MO, USA).

Extraction with ethyl
acetate.

Brain and adipose
tissue were treated with

β-glucuronidase/
sulfatase. Extraction
using an EMR-lipid

96-well plate.

[190]

Uro-A and
conjugates

Plasma, liver, and feces
(C57BL/6 mice). HPLC-UV

HPLC system (SPD-M20A DAD, Shimadzu,
Kyoto, Japan).

UPLCESIMS (Thermo Scientific Orbitrap
Elite Mass Spectrometer).

C18 HQ column (4.6 mm × 250 mm, 5 µm,
Interchim, Montluçon, France). The mobile

phase consisted of 50% MeOH and 50%
ddH2O (0.05% phosphoric acid); flow rate

1.0 mL/min.

Plasma: extraction
with MeOH.

Liver and feces:
ultrasonication and

extraction with
MeOH:12N HCl:water
(79.9: 0.1: 20, v/v/v).

[162]
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Table 2. Cont.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uros and their
conjugates

Plasma, urine, feces,
ruminal content from
animals and beaver

castoreum.

HPLC-DAD-MS/MS
and

HPLC-TOF-MS/MS

HPLC system with a binary pump (G1312A),
an autosampler (G1313 A), a degasser

(G1322A) and an Agilent 1100 series diode
array and a mass detector in series (Agilent

Technologies, Waldbronn, Germany).
HPLC-TOF-MS Agilent 6220 system with an

HPLC system Agilent 1200 series DAD
(Agilent Technologies, Waldbronn,

Germany).

LiChroCART (C18) column (25 cm × 0.4 cm,
5 µm, Merck, Darmstadt, Germany). The

mobile phase consisted of (A) 5% aqueous
formic acid and (B) ACN; flow rate

1.0 mL/min.

Feces: extraction with
MeOH/HCl/water
(79.9:0.1:20, v/v/v).

[164]

Uro-A
Plasma, hippocampus

and cortex
(C57BL/6J mice).

HPLC-ESI-MS/MS
LC-MS/MS-18, TQ6500+ Triple quad
(AB Sciex Pte. Ltd., USA) with an ESI
interface (Waters, Milford, MA, USA).

Waters CORTECS T3 column
(2.1 mm × 100 mm, 2.7 µm, Waters, Milford,

MA, USA). The mobile phase consisted of
(A) 0.1% formic acid in Milli-Q water and
(B) 0.1% formic acid in MeOH; flow rate

0.50 mL/min.

Extraction with MeOH. [201]

Uro-C Rat plasma. LC-ESI–MS/MS

Agilent 1100 LC system (Agilent
Technologies, Les Ulis, France) coupled to an

API 3000 tandem triple quadrupole MS
(ABSciex, Courtaboeuf, France).

C18 Kinetex EVO column (2.1 × 150 mm,
2.6 µm, Phenomenex, Le Pecq, France). The
mobile phase consisted of (A) 1% formic acid

in water and (B) ACN; flow rate
0.20 mL/min.

Extraction with ethyl
acetate. [213]

Uro-A, -B, -C, -D
and their

conjugates

Plasma, urine, bile,
intestinal lumen, feces,

organs and tissues
(iberian pigs).

HPLC-DAD-MS/MS

HPLC system (Agilent Technologies,
Waldbronn, Germany) equipped with a

DAD and an ion-trap mass detector in series
with a binary pump and autosampler and an

ESI system (Agilent Technologies,
Waldbronn, Germany).

LiChroCART (C18) column (25 cm × 0.4 cm,
5 µm, Merck, Darmstadt, Germany) The

mobile phase consisted of (A) 1% aqueous
formic acid and (B) ACN; flow rate

1.0 mL/min.

Filtration through a
reverse phase C18
Sep-Pak cartridge
(Millipore Corp.,

Burlington, MA, USA).
Wash with distilled

water (10 mL), elution
with MeOH.

[166]

Uro-A and
conjugates

Plasma and tissues
(C57BL/6 wild-type

mice).
intake of pomegranate

juice and extract.

HPLC-ESI/MS

LCQ Classic Finnigan system
(ThermoFinnigan, San Jose, CA, USA),

equipped with an Agilent HP 1100 series
HPLC (Santa Clara, CA, USA) system
consisting of an autosampler/injector,

quaternary pump, column heater, and DAD.

Symmetry C18 column (100 mm × 2.1 mm,
3.5 µm, Waters, Milford, MA, USA). The

mobile phase consisted of (A) 2% formic acid
in water and (B) 2% formic acid in MeOH;

flow rate 0.15 mL/min.

Homogenization in
MeOH with 0.1%

acetic acid.
[163]
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Table 2. Cont.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uro-A, -B, -C,
-M6, isoUro-A

and their
conjugates

Rumen, feces, plasma
and urine (brown

swiss bulls).
HPLC-DAD-MS-MS

A HPLC system equipped with a
photo-DAD (1100 series, Agilent

Technologies, Waldbronn, Germany) in
series with an ion-trap MS detector

(Bruker Daltonics, Bremen, Germany).

LiChroCART (C18) column (25 cm × 0.4 cm,
5 µm, Merck, Darmstadt, Germany). The

mobile phase consisted of (A) 1% aqueous
formic acid and (B) ACN; flow rate

1.0 mL/min.

Rumen: Sep-Pak C18
cartridge (Waters,

Milford, MA, USA).
Wash with distilled

water, elution
with MeOH.

Feces: homogenization
with MeOH:HCl:water

(79.9/0.1/20, v/v/v).
Plasma: extraction with

ACN:formic acid
(99:1, v/v).

[165]

Uro-A
Plasma and brain tissue

(albino Wistar rats
with PD)

UPLC-ESI-QTOF-MS

Agilent 1290 Infinity (Agilent, Les Ulis,
France) equipped with an ESI-QTOF-MS

(Agilent 6530 Accurate Mass, Agilent,
Les Ulis, France).

Eclipse Plus C18 column (2.1 × 100 mm,
1.8 µm, Agilent, Les Ulis, France). The

mobile phase consisted of (A) water with
0.1% formic acid and (B) methanol with
0.1% formic acid; flow rate 0.3 mL/min.

Plasma: extraction with
ACN: formic acid

(98:2, v/v)
Brain: extraction with

methanol:HCl
(99.9:0.1 v/v).

Samples were treated
with β-glucuronidase/

sulfatase (S9296,
Sigma-Aldrich, Poznań,

Poland).

[191]

Uro-M5, -M6, -A,
-C, isoUro-A

In vitro cultures of
G. urolithinfaciens and
E. isourolithinifaciens.

HPLC-DAD-ESI-IT

Agilent 1100 HPLC system coupled to DAD
(Agilent Technologies, Waldbronn, Germany)

and an ion trap MS (Esquire 1100 with an
ESI source, Brüker Daltoniks).

Poroshell 120 EC-C18 column (3 × 100 mm,
2.7 µm, Agilent Technologies, Waldbronn,
Germany). The mobile phase consisted of

(A) 1% aqueous formic acid (v/v) and
(B) ACN; flow rate 0.5 mL/min.

Extraction with ethyl
acetate. [205]
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Table 3. Summary of reported analytical methods for the determination of urolithins in human biological samples.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uro-B-
glucuronide and

aglycone

Uro-A

Urine (healthy
volunteers):

intake of strawberries,
raspberries, walnuts,
and oak-aged wine.

Feces (healthy
volunteers):

intake of walnuts.
Fecal suspensions.

LC-MS/MS

HPLC binary pump, autosampler, and
degasser (Agilent Technologies, Waldbronn,

Germany) coupled to an ion-trap MS
equipped with an ESI system (Agilent
Technologies, Waldbronn, Germany).

LiChroCART (C18) column (25 cm × 0.4 cm,
5 µm, Merck, Darmstadt, Germany). The

mobile phase consisted of (A) 5% aqueous
formic acid and (B) MeOH; flow rate

1.0 mL/min.

Urine: Sep-Pak C-18 solid
phase extraction cartridge
(Waters Millipore, United
States). Wash with water

elution with MeOH.
Feces: extraction with
MeOH:H2O:HCOOH

(80:19.9:0.1, v/v).
Fecal suspensions: extraction

with diethyl ether.

[5,167]

Uro-A-
glucuronide,

Uro-B-
glucuronide

Prostate, urine and
plasma samples
(prostate cancer

patients):
intake of pomegranate

or walnuts.

HPLC-DAD-MS/MS

HPLC-DAD system (1200 series, Agilent)
coupled to an HTC Ultra ion-trap mass

detector (Bruker Daltonics, Bremen,
Germany).

SB C18 Zorbax column (150 mm × 0.5 mm,
5 mm, Agilent Technologies, Waldbronn,
Germany). The mobile phase consisted of

(A) water/formic acid (99:1, v/v) and
(B) ACN; flow rate 10.0 mL/min.

Prostate samples: extraction
with cold MeOH:HCl:H2O

(79.9:0.1:20, v/v/v).
Plasma: extraction with ACN.

[175]

Uro-A-
glucuronide,

Uro-B-
glucuronide

Urine (human subjects):
black tea intake HPLC-PDA-FTMSn

Accela HPLC tower connected to an
LTQ/Orbitrap hybrid MS (Thermo Fisher

Scientific).

Luna C18 column (2.0 × 150 mm, 3 mm,
Phenomenex, Torrance, CA, USA). The

mobile phase consisted of (A) water/formic
acid (99.9:0.1, v/v) and (B) ACN/formic acid

(99.9:0.1, v/v); flow rate 0.19 mL/min.

HLB SPE cartridge (OASIS,
Waters, Milford, MA, USA).

Wash with water, elution with
MeOH.

[180]

Uro-A, B, C, D
and their

glucuronides

Urine, plasma, fecal
samples (healthy

volunteers):
intake of walnuts.

HPLC-ESI-MS

Agilent 1100 HPLC, coupled to a HP1101
single-quadrupole, mass-selective detector

(Agilent Technologies, Waldbronn,
Germany).

RP-18 (250 mm × 4.5 mm, 5 µm, Latek,
Eppelheim, Germany). The mobile phase

consisted of (A) 2% acetic acid in water and
(B) ACN.

Plasma: extraction with 0.2 M
hydrochloric acid and EtOH.

Feces: extraction with MeOH.
[176]

Uro-A, B, C, D,
isoUro-A

Feces (healthy
volunteers):

intake of pomegranate
juice.

UPLC–MS/MS

Waters Acquity Ultra-PerformanceTM LC
system (Waters, Milford, MA, USA),

equipped with a binary pump system,
coupled to a triple quadrupole detector

(TQD) MS (Waters, Milford, MA, USA) with
a Z-spray electrospray interface.

Acquity BEH C18 (100 mm × 2.1 mm,
1.7 µm, Waters, Milford, MA, USA). The

mobile phase consisted of (A) Milli-Q
water:acetic acid (99.8:0.2, v/v) and (B) ACN;

flow rate 0.3 mL/min.

Extraction with
MeOH/HCl/H2O (79.9:0.1:20,

v/v/v).
[196]

Uro-A

Stool and urine
(healthy volunteers):

intake of pomegranate
juice.

HPLC-DAD
Surveyor HPLC system equipped with DAD,

and an autosampler (Thermo Finnigan,
San Jose, USA).

Agilent Zorbax SB C-18 column
(250 × 4.6 mm, 5 µm, Agilent Technologies,
Waldbronn, Germany). The mobile phase
consisted of (A) 0.1% phosphoric acid in

H2O and (B) ACN; flow rate 0.75 mL/min.

Stool: extraction with DMSO.
Samples were treated with
β-glucuronidase/sulfatase.

[197]
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Table 3. Cont.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uro-A, -B, -C, -D

Urine and plasma
(healthy men)

Urine and plasma
(prostate cancer

patients)

UPLC-ESI-MS/MS

UPLC system (Acquity UPLC, Waters Corp.,
Milford, MA, USA) coupled to a triple

quadrupole MS (Quattro Ultima, Waters
Corp., Beverley, MA, USA).

BEH C18 (50 × 2.1 mm, 1.7 µm). The mobile
phase consisted of (A) 1% formic acid in

H2O and (B) 1% formic acid in ACN; flow
rate 0.75 mL/min.

Samples were treated with
β-glucuronidase/sulfatase
(S9626, Sigma Chem. Co.,

St Louis, MO, USA).
Urine: extraction with

diethyl ether.
Plasma: extraction with 2:1

ACN:water.

[192]

Uro-A, -B, -C, -D
and their

conjugates

Urine and plasma
(healthy subjects):

intake of grumixama.
HPLC-MS

Prominence LC (Shimadzu, Japan) coupled
to microTOF-Q II (Bruker Daltonics,

Billerica, MA, USA).

Prodigy ODS3 column (250 × 4.60 mm,
5 µm, Phenomenex Ltd., Cheshire, UK). The
mobile phase consisted of (A) 0.5% formic

acid in H2O and (B) 0.5% formic acid in
ACN; flow rate 1.0 mL/min.

SPE in a C18 column (0.3 g,
Supelclean LC-C18alkyl,

Supelco, Bellefonte, PA, USA)
and a CC6 polyamide column
(Macherey-Nagel GmbH and
Co., Duren, Germany). Wash
with oxalic acid, elution with

MeOH (5% TFA).

[103]

Uro-A, -B,
isoUro-A

glucuronides

Plasma (healthy older
volunteers): intake of

strawberry.
HPLC-MS

Agilent 1290 Infinity UHPLC system
coupled to an Agilent 6460 Triple

Quadrupole MS (Agilent Technologies,
Santa Clara, CA, USA).

Poroshell 120 stablebond C18 column
(2.1 mm × 150 mm, 2.7 µm). The mobile
phase consisted of (A) 1% formic acid in

H2O and (B) ACN; flow rate 0.3 mL/min.

C18 SPE cartridges (Agilent
Technologies, Santa Clara, CA,

USA). Wash with water (1%
formic acid). Elution with
methanol (1% formic acid)

and acetone (1% formic acid).

[174]

Uro-A, -B,
isoUro-A and

their
conjugates

Plasma and urine
(adults with prediabetes
and insulin resistance):

intake of
fructo-oligosaccharide

supplemepnts.
Intake of red
raspberries

UHPLC-QQQ

UHPLC system coupled with a triple
quadrupole tandem MS model 6460

(UHPLC-QQQ, Agilent Technologies,
Santa Clara, CA, USA)

Poroshell 120 SB-C18 Stable Bond column
(2.1 × 150 mm, 2.7 µm). The mobile phase
consisted of (A) 1% aqueous formic acid

(v/v) and (B) ACN; flow rate 0.3 mL/min.

SPE C18 cartridges (Agilent
Technologies, Waldbronn,

Germany).
[168,209]

UA and
conjugates

Fecal samples and
plasma (healthy

subjects):
intake of pomegranate

juice.

HPLC MS/MS

Agilent 1200 HPLC system (Agilent
Technologies, Waldbronn, Germany)

coupled to a TSQ Vantage triple-stage
quadropole MS/MS (ThermoFisher

Scientific, San Jose, CA, USA)

C18 reverse phase column (YMC Co., Ltd.,
Kyoto, Japan).

Plasma: SPE with a Bond-Elut
focus plate (Agilent

Technologies, Waldbronn,
Germany). Wash with water,

elution with MeOH.

[181]
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Table 3. Cont.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Urolithin A, B, C,
D, M6, M7,

isoUroA and
conjugates

Human breast milk:
walnut Intake. UPLC-ESI-QTOF

Agilent 1290 Infinity UPLC system coupled
to a 6550 Accurate-Mass QTOF (Agilent

Technologies, Waldbronn, Germany)

Poroshell 120 EC-C18 column (3 × 100 mm,
2.7 µm). The mobile phase consisted of (A)

0.1% aqueous formic acid (v/v) and (B) ACN
plus 0.1% formic acid; flow rate 0.5 mL/min.

Extraction with ACN/formic
acid (99:1, v/v). [177]

Uro-A, -B,
isoUro-A and

conjugates

Plasma (subjects
with T2DM):

intake of red raspberry.
Urine (subjects with

metabolic syndrome):
intake of pomegranate

extract.

UPLC-ESI-QTOF-
MS/MS

Agilent 1290 Infinity UPLC system coupled
to a 6550 Accurate-Mass QTOF (Agilent

Technologies, Waldbronn, Germany)

Poroshell 120 EC-C18 column (3 × 100 mm,
2.7 µm). The mobile phase consisted of
(A) 0.1% aqueous formic acid (v/v) and

(B) ACN plus 0.1% formic acid; flow rate
0.4 mL/min.

Extraction with ACN/formic
acid (98:2, v/v). [169,182]

Uro-A, -B

Plasma (healthy
subjects):

intake of pomegranate
extract.

UHPLC-MS/MS

Agilent 1290 Infinity II LC (Agilent
Technologies, Santa Clara, CA, USA),

equipped with a binary solvent manager,
sample manager, and heated column
compartment coupled to a 6470 triple

quadrupole MS detector.

Agilent ZORBAX Eclipse Plus C18 column
(50 mm × 2.1 mm, 1.8 µm, Agilent

Technologies, Santa Clara, CA, USA). The
mobile phase consisted of (A) 0.1% aqueous
formic acid and (B) ACN plus 0.1% formic

acid; flow rate 0.4 mL/min.

Extraction with ACN
(2% formic acid). [200]

Uro-A and Uro-B
aglycone,

glucuronide and
sulfate conjugates

Urine (adolescents with
metabolic syndrome)

HPLC
-LTQ-Orbitrap-HRMS

Accela chromatograph (Thermo Scientific,
Hemel Hempstead, UK) equipped with a

quaternary pump and a thermostated
autosampler.

Kinetex F5 100 Å (50 × 4.6 mm, 2.6 µm,
Phenomenex, Torrance, CA, USA). The

mobile phase consisted of (A) 0.05% aqueous
formic acid and (B) ACN plus 0.05% formic

acid; flow rate 0.5 mL/min.

Oasis 96-well reversed-phase
phase extraction plates

(Waters, MA, USA). Wash
with 1.5M formic acid and
0.5% MeOH, elution with

MeOH.

[208]

Uro-A, -B,
isoUro-A and

their conjugates

Plasma, urine and colon
tissue (colorectal cancer

patients):
intake of pomegranate

extract.

UPLC-ESI-QTOF-
MS/MS

Agilent 1290 Infinity UPLC system coupled
to the 6550 Accurate-Mass quadrupole TOF

MS (Agilent Technologies, Waldbronn,
Germany).

Poroshell 120 EC-C18 column (3 × 100 mm,
2.7 µm). The mobile phase consisted of

(A) 0.1% aqueous formic acid (v/v) and (B)
ACN plus 0.1% formic acid; flow rate

0.4 mL/min.

Colon tissue: extraction with
MeOH:HCl (99.9:0.1 v/v).

Plasma samples: extraction
with ACN:formic acid

(98:2, v/v).
Urine samples: dilution with

water containing 0.1%
formic acid.

[183]

Uro-A, -B, -C, -D
and their

conjugates

Urine (metabolic
syndrome subjects):

intake of nuts.
LC-PDA-QqQ-MS/MS

API 3000 triple-quadrupole MS (ABSciex,
Concord, ON, Canada) equipped with a

Turbo Ionspray source coupled to an Acquity
UPLC with a Waters binary pump system

(Waters, Milford, MA, USA).

Luna C18 analytical column (50 × 2.0 mm,
5 µm; Phenomenex, Torrance, CA, USA). The

mobile phase consisted of (A)
water/ACN/formic acid, 94.9:5:0.1 (v/v/v)

and (B) ACN/formic acid, 99.9:0.1 (v/v);
flow rate 0.4 mL/min.

Acidification with acetic acid,
incubation with

β-glucuronidase/sulfatase
and solid-phase extraction
(Oasis MCX 96-well plates,

Waters, Mildford, MA, USA)

[193]
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Table 3. Cont.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uro-A
glucuronide

Human plasma
and urine:

intake of strawberries.
HPLC-MS/MS

HPLC system equipped with a diode array
absorbance detector and an autosampler
(Thermo Finnigan, San Jose, CA, USA)

coupled to an LCQ Advantage ion trap MS
(Thermo Finnigan).

Agilent ZORBAX SB C18 column
(150 mm × 2.1 mm, 5 µm, Agilent

Technologies, Santa Clara, CA, USA). The
mobile phase consisted of (A) 1% aqueous

acetic acid and (B) ACN; flow rate
0.190 mL/min.

SPE cartridge (Sep-Pak C18
Plus, Waters) [173]

Uro-A, Uro-B
glucuronides

Plasma and urine
(healthy volunteers):

intake of
pomegranate juice.

Breast milk, plasma and
urine (mothers

and infants):
intake of

pomegranate juice.

LC-MS/MS

LCQ Classic Finnigan system
(ThermoFinnigan, San Jose, CA, USA),

equipped with an Agilent HP 1100 series
HPLC (Santa Clara, CA, USA) system
consisting of an autosampler/injector,

quaternary pump, column heater, and DAD.

Symmetry C18 column (100 mm × 2.1 mm,
3.5 µm, Waters, Milford, MA, USA). The

mobile phase consisted of (A) 2% formic acid
in water and (B) 2% formic acid in MeOH;

flow rate 0.15 mL/min.

Extraction with ACN and SPE
on C18 cartridges

(Waters WAT 036945). Wash
with water and elution with

MeOH.

[184,185]

Uro-A Breast milk (healthy
volunteers)

HPLC and
HPLC-MS/MS

HPLC (1260 Series, Agilent Technologies,
Waldbronn, Germany).

HPLC-MS/MS (Thermo Fisher, Waltham,
MA, USA).

ZORBAX SB-C18 column (250 × 4.6 mm,
5.0 µm, Agilent Technologies, Santa Clara,
CA, USA). The mobile phase consisted of

(A) 1% MeOH and (B) ACN; flow rate
1.0 mL/min.

Extraction with
ACN:H2O:HCOOH

(80:19.9:0.1).
[202]

Uro-A, -B, -C, -D,
-M7, isoUro-A

and their
conjugates

Urine, feces and plasma
(healthy volunteers):

intake of walnuts and
pomegranate extract.

UPLC-ESI-QTOF-MS
Agilent 1290 Infinity UPLC system coupled

to a 6550 Accurate-Mass QTOF (Agilent
Technologies, Waldbronn, Germany).

Poroshell 120 EC-C18 column (3 × 100 mm,
2.7 µm, Agilent Technologies, Waldbronn,
Germany). The mobile phase consisted of
(A) 0.5% aqueous formic acid (v/v) and

(B) ACN; flow rate 0.5 mL/min.

Urine: dilution with water
containing 0.1% formic acid.
Feces: homogenization with

MeOH/H2O (80:20) and
0.1% HCl.

Plasma: extraction with
ACN:formic acid (98:2, v/v).

[178,179]

Uro-A, -B and
conjugates

Plasma (healthy
volunteers):

intake of pomegranate
extract.

HPLC-MS

HPLC system (Agilent Technologies,
Waldbronn, Germany) equipped with a
DAD and mass detector in series with a
binary pump and autosampler (Agilent
Technologies, Waldbronn, Germany).

LiChroCART (C18) column (25 cm × 0.4 cm,
5 µm, Merck, Darmstadt, Germany) The

mobile phase consisted of (A) 5% aqueous
formic acid and (B) MeOH; flow rate

1.0 mL/min.

Homogenization with
MeOH:0.2 M HCl (1:1, v/v). [186]

Uro-A and
conjugates

Plasma and urine
(healthy human

subjects):
intake of pomegranate

juice and extract.

HPLC-ESI/MS

LCQ Classic Finnigan system
(ThermoFinnigan, San Jose, CA, USA),

equipped with an Agilent HP 1100 series
HPLC (Santa Clara, CA, USA) system
consisting of an autosampler/injector,

quaternary pump, column heater, and DAD.

Symmetry C18 column (100 mm × 2.1 mm,
3.5 µm, Waters, Milford, MA, USA). The

mobile phase consisted of (A) 2% formic acid
in water and (B) 2% formic acid in MeOH;

flow rate 0.15 mL/min.

Human plasma: extraction
with ACN.

Human urine: dilution with
H2O (2% formic

acid)/methanol (9:1 v/v).

[187]
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Table 3. Cont.

Analyte Sample Type—
Origin Analytical Technique Instrumental Analysis Column/Mobile Phase Sample Preparation—

Solvent Extraction Ref.

Uro-A, -B and
conjugates

Plasma and urine
(healthy volunteers and

subjects with an
ileostomy):

intake of raspberries.

HPLC-PDA-MS2
Surveyor HPLC system with an HPLC

pump, PDA detector and an autosampler
(Thermo Finnigan, San Jose, CA, USA).

Synergi RP-Polar (250 × 4.6 mm, 4 µm,
Phenomenex, Macclesfield, UK). The mobile

phase consisted of (A) 1% formic acid in
water and (B) 1% formic acid in MeOH; flow

rate 1.0 mL/min.

Homogenization in
MeOH/water/formic acid

(95:4:1, v/v/v).
[170]

Uro-A, -B, -M5,
-M6, -M7, -C,
isoUro-A and

Uro-E and their
conjugates

Feces and urine
(healthy volunteers)

and in vitro
fermentation samples.

LC-UV/Vis and
LC-MS/MS

A HPLC system equipped with a
photo-DAD (1100 series, Agilent

Technologies, Waldbronn,
Germany) in series with an ion-trap MS

detector (Bruker Daltonics, Bremen,
Germany).

LiChroCART (C18) column (25 cm × 0.4 cm,
5 µm, Merck, Darmstadt, Germany). The

mobile phase consisted of (A) 1% aqueous
formic acid and (B) ACN; flow rate

1.0 mL/min.

Feces: homogenization with
MeOH/DMSO/H2O

(40:40:20) with 0.1% HCl.
Human faecal suspensions:

Extraction with ethyl acetate
acidified with 1.5%

formic acid.

[204]

Uro-A, -B, -C and
their conjugates

Plasma (healthy
volunteers):

intake of French oak
wood extract (Robuvit).

HPLC-ESI-MS/MS

Perkin-Elmer series 200 HPLC system
coupled to an Applied Biosystems (Foster

City, CA, USA) API 3200 instrument with a
Turbo ion-spray source.

Restek Ultra C18 column (100 × 2.1 mm,
3 µm). The mobile phase consisted of

(A) 1% aqueous formic acid and (B) ACN
with 1% formic acid; flow rate 0.3 mL/min.

HLB solid-phase extraction
cartridge (OASIS, Waters,

Milford, MA, USA) Wash with
water, elution with MeOH.

[210]

Uro-A, Uro-B,
Uro-C, Uro-D,
Uro-M5 and
conjugates

Urine (healthy
volunteers):

intake of blackberry
juice.

UPLC-DAD/ESI-Q-
TOF/MS

Waters Acquity UPLC-PDA coupled to a
Quadrupole Time-Of-Flight Mass

Spectrometer (ESI-Q-TOF/MS) (Waters
Synapt G1, Waters Corp., Milford,

MA, USA).

ACQUITY UPLC C18 CSH (100 × 2.1 mm,
1.7 µm, Waters, Milford, MA, USA). The

mobile phase consisted of (A) water/formic
acid (99.9:0.1, v/v) and (B) ACN/formic acid

(99.9/0.1 v/v); flow rate 0.4 mL/min.

SupelcleanTM LC-18
extraction cartridges (Supelco
Analytical, USA). Wash with

MilliQ water, elution
with MeOH.

[188]

Uro-A and
conjugates

Plasma and urine
(human subjects):

intake of raspberry
drink.

UHPLC-QQQ
UHPLC system coupled with a 6460 Series

Triple Quadrupole (QQQ) (Agilent
Technologies, Santa Clara, CA, USA).

Poroshell C18 Stable Bond column
(2.1 × 150 mm, 2.7 µm; Agilent

Technologies, Santa Clara, CA, USA). The
mobile phase consisted of (A) water with

1% formic acid and (B) ACN.

Plasma: SPE C18 cartridges
(Agilent Technologies, Santa

Clara, CA, USA)
Urine: filtration with a 0.2 µm
Polypropylene syringe filter
(Whatman, Maidston, UK).

[171]

Uro-A, -B, -C, -D
and conjugates

Urine and plasma (men
with prostate cancer):
consumption of black
raspberry products.

HPLC-MS/MS

UPLC system (Acquity UPLC, Waters Corp.,
Milford, MA, USA) coupled to a triple

quadrupole MS (Quattro Ultima,
Waters Corp., Beverley, MA, USA).

BEH C18 column (50 × 2.1 mm, 1.7 µm). The
mobile phase consisted of (A) water with 1%

formic acid and (B) ACN with 1% formic
acid; flow rate 0.75 mL/min.

Urine: samples were
treated with

β-glucuronidase/sulfatase
(S9626, Sigma Chem. Co.,

St Louis, MO, USA).
Extraction with diethyl ether.
Plasma: extraction with ACN.

[172]
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4. Current Research on the Bioactivities of Urolithins on Human Health

Recent studies have demonstrated the beneficial effects of Uro-A supplementation in
human health and highlighted Uro-A as a promising healthspan promoting and anti-aging
compound. Derived from ETs, Uro-A sustains cellular and tissue homeostasis primarily
by inducing mitochondrial selective autophagy, known as mitophagy, as demonstrated
in both in vitro and in vivo studies using mammalian cells, the nematode Caenorhabditis
elegans and mouse models [215]. Mitophagy efficiency declines with age and in several
age-associated pathologies, including myopathies, neurodegenerative diseases and autoim-
munities, among others [9]. Notably, mitophagy induction restores the age-dependent
mitochondrial damage and rejuvenates cellular fitness by promoting mitochondrial activ-
ity and energy metabolism, leading eventually to improved muscle function, neuronal
homeostasis, healthspan and lifespan extension [9,10,216,217].

Emerging findings from in vivo animal models highlight the potential therapeutic ef-
fects of Uro-A supplementation on both tissue-specific diseases, such as neurodegenerative
disorders, cardiovascular pathologies, and myopathies, and systemic diseases, including
metabolic syndrome and cancer. In preclinical models of cardiac ischemia, atherosclero-
sis, and diabetic cardiomyopathy, Uro-A treatment has been shown to improve animals’
physiology. Notably, in a mouse model of ischemia-reperfusion injury, pretreatment with
Uro-A reduced infarct size and partially preserved ejection fraction. This was accompanied
by decreased levels of circulating creatine kinase and lactate dehydrogenase, along with
a reduction in apoptotic cells in the heart [218]. Additionally, Uro-A has been found to
protect rats from atherosclerosis by lowering plasma lipid levels and reducing aortic le-
sions [219]. In models of diabetic cardiomyopathy, Uro-A enhanced myocardial contractility,
underscoring its protective role in heart health [220].

Several studies have demonstrated the neuroprotective impact of Uro-A on various
neurodegenerative conditions across species. Uro-A has been shown to enhance associative
learning and memory in transgenic nematodes overexpressing the human amyloid-beta
(Aβ1–42) and Tau proteins. It also improved learning, memory retention, neuronal survival,
and neurogenesis in the hippocampus of APP/PS1 mice, a model of Alzheimer’s disease
(AD). Additionally, Uro-A reduced levels of insoluble Aβ1–42 plaques and phosphorylated
Tau, which are significant biomarkers associated with the development and severity of
AD [221,222]. In models of ischemic stroke and multiple sclerosis, Uro-A decreased infarct
volume and neurological deficits, and diminished the incidence and severity of multiple
sclerosis, as well as inflammation and demyelination [223,224]. Furthermore, UA displayed
a robust anti-inflammatory effect, resulting in reduced levels of IL-1β, IL-6 and TNFα in
brain samples from AD mice [221,222]. Further supporting its anti-inflammatory function,
Uro-A enhanced microglial phagocytic activity and inhibited inflammasome activation,
thereby regulating neuroinflammation in AD mice [221,225]. Expanding its therapeutic
potential against inflammatory diseases, Uro-A administration showed protective effects
against inflammatory bowel diseases, such as ulcerative colitis and Crohn’s disease. These
pathologies, caused by a deregulated immune system leading to chronic inflammation and
microbial dysbiosis, displayed a reduction in colon inflammation markers and improved
mucosal integrity in different mouse models [226–229].

In 2017, the first safety assessment of Uro-A in Wistar rats was reported, where Uro-A
did not indicate any target organ toxicities, adverse effects or mortality after repeated
oral doses in 28- and 90-day studies. The no-observed-adverse-effect level (NOAEL) was
the highest dose tested, corresponding to 5% UA by weight in the diet, or 3451 mg/kg
bw/day in males and 3826 mg/kg bw/day in females [230]. When these values are
applied to humans, the estimated Uro-A value is approximately 600 mg Uro-A/kg bw,
applying a scaling factor of 6.2 for rat-to-human conversion [231]. Moreover, the safety
and efficacy of Uro-A were highlighted in its first-in-human clinical trial, establishing
favorable bioavailability and no adverse effects at doses ranging from 250 to 2000 mg,
which supports Uro-A use as a safe supplement ingredient [232]. In 2018, the U.S. Food
and Drug Administration (FDA) officially recognized Uro-A as safe for inclusion in food
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products and supplements at typical use levels of 250 mg/serving or 500 mg/serving up to
a maximum of 500 mg/serving or 1000 mg/serving [233]. Additionally, in a randomized
clinical trial in older adults where Uro-A was supplemented at doses of 1000 mg, it was
well tolerated and its long-term supplementation benefited muscle endurance and plasma
biomarkers [234]. Further supporting the beneficial effects of Uro-A on cellular and tissue
homeostasis, a randomized clinical trial showed that middle-aged adults administered
with Uro-A at doses of 500 and 1000 mg exhibited improvements in biomarkers related
to mitochondrial function, cellular health, and muscle performance, confirming Uro-A’s
effectiveness in critical aspects of human physiology [235]. Notably, these trials underscore
Uro-A potential for practical dietary interventions. Interestingly, in a study where the
levels of Uro-A obtained from dietary supplementation were compared to natural dietary
exposure in a healthy population, it was established that in order to achieve the equivalent
dosing of 500 mg supplemented Uro-A from dietary exposure via pomegranate juice, an
individual would need to drink approximately 1.5 L on average, as that would contain the
necessary dietary precursors [181].

In terms of safety for the supplementation of Uro-A’s precursors ETs and EA, limited
information is available. As previously mentioned, in an EA subchronic toxicity study
conducted on F344 rats, no treatment-related adverse effects or mortality were observed
with an estimated no-observed-effect level (NOEL) of 3011 mg/kg bw for male rats and
a NOAEL of 3254 mg/kg bw for female rats (5% in the diet) [35]. Importantly, in a study
conducted in type 2 diabetic patients supplemented with EA for 8 weeks at doses of
180 mg/day, reduced levels of blood sugar, blood lipids, and insulin resistance were re-
ported with no adverse effects being observed [236]. Regarding ETs, punacalagin was
evaluated for its possible toxic effect in Sprague Dawley rats upon the repeated administra-
tion of a diet containing 20% pomegranate husk extract with an average of 6% punicalagin
for 37 days. The mean oral consumption throughout the study was reported to be 4800 mg
punicalagin/kg bw/day and no significant adverse effects were reported apart from a
decrease in serum urea and triglyceride values, although these values remained within
the normal range [237]. In another study, the acute oral median lethal dose (LD50) of a
pomegranate fruit extract containing 30% punicalagins in mice and rats was found to be
greater than 5 g/kg body weight and the NOAEL for a subchronic 90-day study in Wistar
rats treated with this extract was 600 mg/kg bw/day, which was the highest dose tested,
presenting no toxicologically significant changes [238]. As an exception, in a study on
ellagitannin metabolism following the consumption of jabuticaba fruit in a non-European
population, 63% of subjects reported the occurrence of diarrhea, a side effect that was
attributed to the high amount of ellagitannins consumed (1493 mg of ETs, EA and gallic
acid in total) [239]. It is worth noting that numerous association studies involving diets and
supplements rich in ETs, such as pomegranate and raspberry extracts, or walnuts, have re-
ported health benefits linked to Uros production. For instance, the intake of a standardized
oral pomegranate extract containing 75 mg of punicalagins was recently associated with an
increase in short-chain fatty acid-producing bacteria in the gut, as well as improvements in
the skin microbiome and reduction in skin wrinkles [240,241]. In conclusion, the diverse
range of beneficial bioactivities attributed to Uros underscores their significant potential
for future research and their promising role in enhancing human health.

5. Conclusions

Food and plant components contributing to health protection and promotion are
currently of high interest. ETs, as well as EA, which is a product of ETs generated in the
stomach and the small intestine, have been documented to offer beneficial health effects to
humans. Accumulated data have revealed that these effects are exerted by Uros, which
are the metabolic products of EA upon the action of the gut microbiota. As a consequence,
analytical methods to study the presence of ETs and EA in plant and food sources are
needed, permitting a detailed mapping of these bioactive components in natural sources
and in processed foods. In parallel, understanding the generation of Uros within the
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organism and the ability of each individual to efficiently convert EA in Uros requires
reliable and sensitive methods for the determination of Uros in biological samples. Thus, a
variety of HPLC and LC-MS methods have been developed, allowing the detection of ETs,
EA and Uros in a variety of samples. Due to the pleiotropic activities of EA and Uros, this
field of research is expected to be highly active in the coming years.
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46. Sójka, M.; Macierzyński, J.; Zaweracz, W.; Buczek, M. Transfer and mass balance of ellagitannins, anthocyanins, flavan-3-ols, and
flavonols during the processing of red raspberries (Rubus idaeus L.) to juice. J. Agric. Food Chem. 2016, 64, 5549–5563. [CrossRef]

47. Williams, D.J.; Edwards, D.; Pun, S.; Chaliha, M.; Sultanbawa, Y. Profiling ellagic acid content: The importance of form and
ascorbic acid levels. Int. Food Res. J. 2014, 66, 100–106. [CrossRef]

48. Diamanti, J.; Mazzoni, L.; Balducci, F.; Cappelletti, R.; Capocasa, F.; Battino, M.; Dobson, G.; Stewart, D.; Mezzetti, B. Use of
wild genotypes in breeding program increases strawberry fruit sensorial and nutritional quality. J. Agric. Food Chem. 2014, 62,
3944–3953. [CrossRef]

49. Gasperotti, M.; Masuero, D.; Guella, G.; Palmieri, L.; Martinatti, P.; Pojer, E.; Mattivi, F.; Vrhovsek, U. Evolution of ellagitannin
content and profile during fruit ripening in Fragaria spp. J. Agric. Food Chem. 2013, 61, 8597–8607. [CrossRef]

50. Aaby, K.; Wrolstad, R.E.; Ekeberg, D.; Skrede, G. Polyphenol composition and antioxidant activity in strawberry purees; Impact
of achenelLevel and storage. J. Agric. Food Chem. 2007, 55, 5156–5166. [CrossRef]

51. Van de Velde, F.; Pirovani, M.E.; Drago, S.R. Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at
simulated gastrointestinal and colonic levels. J. Food Compos. Anal. 2018, 72, 22–31. [CrossRef]

52. Bushman, B.S.; Phillips, B.; Isbell, T.; Ou, B.; Crane, J.M.; Knapp, S.J. Chemical composition of caneberry (Rubus spp.) seeds and
oils and their antioxidant potential. J. Agric. Food Chem. 2004, 52, 7982–7987. [CrossRef]

53. Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica
granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821.
[CrossRef]
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110. Sójka, M.; Klimczak, E.; Macierzyński, J.; Kołodziejczyk, K. Nutrient and polyphenolic composition of industrial strawberry press
cake. Eur. Food Res. Technol. 2013, 237, 995–1007. [CrossRef]

111. Da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive compounds and antioxidant capacity of strawberry jams. Plant Foods
Hum. Nutr. 2007, 62, 127–131. [CrossRef] [PubMed]

112. Markom, M.; Hasan, M.; Daud, W.R.W.; Singh, H.; Jahim, J.M. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.:
Effects of solvents and extraction methods. Sep. Purif. Technol. 2007, 52, 487–496. [CrossRef]

113. Widyawati, P.S.; Dwi, T.; Budianta, W.; Kusuma, F.A.; Wijaya, E.L. Difference of Solvent Polarity to Phytochemical Content and
Antioxidant Activity of Pluchea indicia Less Leaves Extracts. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 850–855.

114. Arapitsas, P. Hydrolyzable tannin analysis in food. Food Chem. 2012, 135, 1708–1717. [CrossRef]
115. Theocharis, G.; Andlauer, W. Innovative microwave-assisted hydrolysis of ellagitannins and quantification as ellagic acid

equivalents. Food Chem. 2013, 138, 2430–2434. [CrossRef]

https://doi.org/10.1016/j.jep.2017.10.027
https://doi.org/10.1016/j.biopha.2016.11.046
https://doi.org/10.1080/14786419.2017.1359171
https://doi.org/10.4014/jmb.1704.04033
https://doi.org/10.1007/s13197-017-2653-1
https://doi.org/10.1021/acs.jafc.8b01181
https://doi.org/10.1016/j.foodres.2017.12.069
https://doi.org/10.1021/jf000404a
https://doi.org/10.1007/s00394-004-0461-7
https://www.ncbi.nlm.nih.gov/pubmed/15309440
https://doi.org/10.1039/c0fo00008f
https://www.ncbi.nlm.nih.gov/pubmed/21776457
https://doi.org/10.1016/j.foodchem.2013.09.122
https://www.ncbi.nlm.nih.gov/pubmed/24206706
https://doi.org/10.1007/s13197-017-2769-3
https://doi.org/10.1039/C7FO00076F
https://doi.org/10.1021/jf011587j
https://doi.org/10.1021/jf203836a
https://doi.org/10.1016/j.aca.2012.01.061
https://www.ncbi.nlm.nih.gov/pubmed/22688038
https://doi.org/10.1016/j.foodchem.2013.08.039
https://www.ncbi.nlm.nih.gov/pubmed/24128485
https://doi.org/10.1002/jctb.4880
https://doi.org/10.1016/j.lwt.2015.10.069
https://doi.org/10.1007/s00217-013-2070-2
https://doi.org/10.1007/s11130-007-0052-x
https://www.ncbi.nlm.nih.gov/pubmed/17701363
https://doi.org/10.1016/j.seppur.2006.06.003
https://doi.org/10.1016/j.foodchem.2012.05.096
https://doi.org/10.1016/j.foodchem.2012.12.015


Separations 2024, 11, 174 31 of 36

116. Abdulla, R.; Mansur, S.; Lai, H.; Ubul, A.; Sun, G.; Huang, G.; Aisa, H.A. Qualitative analysis of polyphenols in macroporous
resin pretreated pomegranate husk extract by HPLC-QTOF-MS. Phytochem. Anal. 2017, 28, 465–473. [CrossRef] [PubMed]

117. Zhu, M.; Dong, X.; Guo, M. Phenolic profiling of Duchesnea Indica combining macroporous resin chromatography (MRC) with
HPLC-ESI-MS/MS and ESI-IT-MS. Molecules 2015, 20, 22463–22475. [CrossRef] [PubMed]

118. Agrawal, O.D.; Kulkarni, Y.A. Mini-review of analytical methods used in quantification of ellagic acid. Rev. Anal. Chem. 2020, 39,
31–44. [CrossRef]

119. Furuuchi, R.; Yokoyama, T.; Watanabe, Y.; Hirayama, M. Identification and quantification of short oligomeric proanthocyanidins
and other polyphenols in boysenberry seeds and juice. J. Agric. Food Chem. 2011, 59, 3738–3746. [CrossRef] [PubMed]

120. Brighenti, V.; Groothuis, S.F.; Prencipe, F.P.; Amir, R.; Benvenuti, S.; Pellati, F. Metabolite fingerprinting of Punica granatum L.
(pomegranate) polyphenols by means of high-performance liquid chromatography with diode array and electrospray ionization-
mass spectrometry detection. J. Chromatogr. A 2017, 1480, 20–31. [CrossRef] [PubMed]

121. Gómez-Caravaca, A.M.; Verardo, V.; Toselli, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of the
major phenolic compounds in pomegranate juices by HPLC–DAD–ESI-MS. J. Agric. Food Chem. 2013, 61, 5328–5337. [CrossRef]
[PubMed]

122. Navarro, M.; Kontoudakis, N.; Canals, J.M.; García-Romero, E.; Gómez-Alonso, S.; Zamora, F.; Hermosín-Gutiérrez, I. Improved
method for the extraction and chromatographic analysis on a fused-core column of ellagitannins found in oak-aged wine. Food
Chem. 2017, 226, 23–31. [CrossRef] [PubMed]

123. Godiyal, S.; Laddha, K. Validated high-performance thin-layer chromatographic method for quantification of gallic acid and
ellagic acid in fruits of Terminalia chebula, Phyllanthus emblica, and Quercus infectoria. J. Sep. Sci. 2023, 46, 2200991. [CrossRef]
[PubMed]

124. García-Villalba, R.; Espín, J.C.; Aaby, K.; Alasalvar, C.; Heinonen, M.; Jacobs, G.; Voorspoels, S.; Koivumäki, T.; Kroon, P.A.;
Pelvan, E.; et al. Validated method for the characterization and quantification of extractable and nonextractable ellagitannins after
acid hydrolysis in pomegranate fruits, juices, and extracts. J. Agric. Food Chem. 2015, 63, 6555–6566. [CrossRef]
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145. Oracz, J.; Żyżelewicz, D.; Pacholczyk-Sienicka, B. UHPLC-DAD-ESI-HRMS/MS profile of phenolic compounds in northern red
oak (Quercus rubra L., Syn. Q. Borealis F. Michx) seeds and its transformation during thermal processing. Ind. Crops Prod. 2022,
189, 115860. [CrossRef]

146. Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.;
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Teissedre, P.-L.; et al. Neuroprotective effects of pomegranate juice against Parkinson’s disease and presence of ellagitannins-
derived metabolite—Urolithin A—In the brain. Int. J. Mol. Sci. 2019, 21, 202. [CrossRef] [PubMed]

192. Roberts, K.M.; Grainger, E.M.; Thomas-Ahner, J.M.; Hinton, A.; Gu, J.; Riedl, K.M.; Vodovotz, Y.; Abaza, R.; Schwartz, S.J.; Clinton,
S.K. Application of a low polyphenol or low ellagitannin dietary intervention and its impact on ellagitannin metabolism in men.
Mol. Nutr. Food Res. 2017, 61, 1600224. [CrossRef] [PubMed]

193. Tulipani, S.; Urpi-Sarda, M.; García-Villalba, R.; Rabassa, M.; López-Uriarte, P.; Bulló, M.; Jáuregui, O.; Tomás-Barberán, F.;
Salas-Salvadó, J.; Espín, J.C.; et al. Urolithins are the main urinary microbial-derived phenolic metabolites discriminating a
moderate consumption of nuts in free-living subjects with diagnosed metabolic syndrome. J. Agric. Food Chem. 2012, 60, 8930–8940.
[CrossRef] [PubMed]
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