Simultaneous Determination of Multiresidues of Pesticides and Veterinary Drugs in Agricultural Soil Using QuEChERS and UHPLC–MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Soil Samples
2.3. Instrumentation
2.4. UHPLC–MS/MS Analysis
2.5. Sample Preparation Evaluation
2.6. Established Sample Preparation Procedure
2.7. Method Validation
2.8. Application of the Proposed Method to Agricultural Soil Samples
3. Results and Discussion
3.1. Sample Preparation Method
3.2. Validation of the Method
3.3. Application of the Validated Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, V.; Mol, H.; Zomer, P.; Tienstra, M.; Ritsema, C.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Bobkov, M.; Zbinden, P. Occurrence of veterinary drug residues in poultry and products thereof. A review. Chimia 2018, 72, 707–712. [Google Scholar] [CrossRef]
- Bao, Y.; Zhou, Q.; Guan, L.; Wang, Y. Depletion of chlortetracycline during composting of aged and spiked manures. Waste Manag. 2009, 29, 1416–1423. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- Quaik, S.; Embrandiri, A.; Ravindran, B.; Hossain, K.; Al-Dhabi, N.A.; Arasu, M.V.; Ignacimuthu, S.; Ismail, N. Veterinary antibiotics in animal manure and manure laden soil: Scenario and challenges in Asian countries. J. King Saud Univ. Sci. 2020, 32, 1300–1305. [Google Scholar] [CrossRef]
- Menz, J.; Olsson, O.; Kümmerer, K. Antibiotic residues in livestock manure: Does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment? J. Hazard. Mater. 2019, 379, 120807. [Google Scholar] [CrossRef]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of Pesticides on Environment. In Plant, Soil and Microbes; Hakeem, K., Akhtar, M., Abdullah, S., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Hamscher, G.; Sczesny, S.; Höper, H.; Nau, H. Determination of Persistent Tetracycline Residues in Soil Fertilized with Liquid Manure by High-Performance Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2002, 74, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Natural Resource and Environment. QCVN15 (2008)/BTNMT: National Technical Regulation on the Pesticide Residues in the Soils. Available online: https://aigavn.com.vn/wp-content/uploads/2021/06/16_2008_QD-BTNMT_PROMULGATION-OF-NATIONAL-TECHNICAL-REGULATION-ON-ENVIRONMENT-E.pdf (accessed on 15 December 2023).
- Li, Z.; Niu, S. Improving screening model of pesticide risk assessment in surface soils: Addressing regional specific human exposure risks and regulatory management. Ecotoxicol. Environ. Saf. 2021, 227, 112894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Z. Generalizable consistency of soil quality standards for pesticides: Modeling perspectives. Soil Environ. Health 2023, 1, 100031. [Google Scholar] [CrossRef]
- Chaudhari, Y.S.; Kumar, P.; Soni, S.; Gacem, A.; Kumar, V.; Singh, S.; Yadav, V.K.; Dawane, V.; Piplode, S.; Jeon, B.-H.; et al. An inclusive outlook on the fate and persistence of pesticides in the environment and integrated eco-technologies for their degradation. Toxicol. Appl. Pharmacol. 2023, 466, 116449. [Google Scholar] [CrossRef]
- Ghimpeteanu, O.; Pogurschi, E.; Popa, D.; Dragomir, N.; Dragotoiu, T.; Mihai, O.; Pectu, C. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Litskas, V.D.; Paraskevas, C.G.; Karamanlis, X.N.; Batzias, G.C. Assessing the mobility of veterinary drugs with column experiments using different soils and under controlled flow conditions. Chemosphere 2021, 277, 130329. [Google Scholar] [CrossRef] [PubMed]
- Rösch, A.; Wettstein, F.E.; Wächter, D.; Reininger, V.; Meuli, R.G.; Bucheli, T.D. A multi-residue method for trace analysis of pesticides in soils with special emphasis on rigorous quality control. Anal. Bioanal. Chem. 2023, 415, 6009–6025. [Google Scholar] [CrossRef]
- Golovko, O.; Koba, O.; Kodesova, R.; Fedorova, G.; Kummar, V.; Grabic, R. Development of fast and robust multiresidual LC-MS/MS method for determination of pharmaceuticals in soils. Environ. Sci. Pollut. Res. 2016, 23, 14068–14077. [Google Scholar] [CrossRef] [PubMed]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Riaño-Herrera, D.A. Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review. Molecules 2022, 27, 4323. [Google Scholar] [CrossRef]
- Jagirani, M.S.; Ozalp, O.; Soylak, M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1343–1369. [Google Scholar] [CrossRef]
- Brinco, J.; Guedes, P.; da Silva, M.G.; Mateus, E.P.; Ribeiro, A.B. Analysis of pesticide residues in soil: A review and comparison of methodologies. Microchem. J. 2023, 195, 109465. [Google Scholar] [CrossRef]
- Wong, F.; Bidleman, T.F. Hydroxypropyl-β-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil. Environ. Pollut. 2010, 158, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Yu, B.; Zhang, Y.; Lin, X. Residual Analysis of Organochlorine Pesticides in Soil by Gas Chromatograph–Electron Capture Detector (GC-ECD) and Gas Chromatograph–Negative Chemical Ionization Mass Spectrometry (GC-NCI-MS). Environ. Forensics 2009, 10, 331–335. [Google Scholar]
- Nishina, T.; Kien, C.N.; Noi, N.V.; Ngoc, H.M.; Kim, C.S.; Tanaka, S.; Iwasaki, K. Pesticide residues in soils, sediments, and vegetables in the Red River Delta, northern Vietnam. Environ. Monit. Assess. 2010, 169, 285–297. [Google Scholar] [CrossRef]
- Diez, C.; Barrado, E.; Marinero, P.; Sanz, M. Orthogonal array optimization of a multiresidue method for cereal herbicides in soils. J. Chromatogr. A 2008, 1180, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Pareja, L.; Niell, S.; Asteggiante, L.G.; Roehrs, R.; Pizzutti, I.R.; Garcia, C.; Heinzen, H.; Cesio, V. Development of methods for multiresidue analysis of rice post-emergence herbicides in loam soil and their possible applications to soils of different composition. J. AOAC Int. 2010, 93, 425–431. [Google Scholar]
- Colazzo, M.; Pareja, L.; Cesio, M.V.; Heinzen, H. Multi-residue method for trace pesticide analysis in soils by LC-QQQ-MS/MS and its application to real samples. Int. J. Environ. Anal. Chem. 2018, 98, 1292–1308. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, S.; Zhang, Y.; Geng, Y.; Wang, L.; Peng, Y.; He, Z. Novel and simple analytical method for simultaneous determination of sulfonamide, quinolone, tetracycline, macrolide, and chloramphenicol antibiotics in soil. Anal. Bioanal. Chem. 2022, 414, 6497–6506. [Google Scholar] [CrossRef] [PubMed]
- Hang, L.; Zhao, Y.; Liu, C.; Yu, Y.; He, Y.; Xu, J.; Lu, Z. Determine Multiple Classes of Veterinary Antibiotics in Soil: Comparing Dispersive and Solid-Phase Extraction for Sample Cleanup. Chromatographia 2021, 84, 833–844. [Google Scholar] [CrossRef]
- Sanchez-Brunete, C.; Albero, B.; Tadeo, J.L. Multiresidue determination of pesticides in soil by gas chromatography-mass spectrometry detection. J. Agric. Food Chem. 2004, 526, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Parreño, M.; Llorca-Pórcel, J.; Valor, I. Analysis of 51 persistent organic pollutants in soil by means of ultrasonic solvent extraction and stir bar sorptive extraction GC-MS. J. Sep. Sci. 2008, 31, 3620–3629. [Google Scholar] [CrossRef]
- Fenoll, J.; Hellin, P.; Martinez, C.M.; Flores, P. Multiresidue analysis of pesticides in soil by high-performance liquid chromatography with tandem mass spectrometry. J. AOAC Int. 2009, 92, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1262, 160–168. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Li, Y.; Dong, F.; Li, J.; Song, W.; Zheng, Y. Rapid residue analysis of four triazolopyrimidine herbicides in soil, water, and wheat by ultra performance liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2011, 399, 2539–2547. [Google Scholar] [CrossRef]
- Tor, A.; Aydin, M.E.; Ozcan, S. Ultrasonic solvent extraction of organochlorine pesticides in soil. Anal. Chim. Acta 2006, 559, 173–180. [Google Scholar] [CrossRef]
- Bian, K.; Liu, Y.; Wang, Z.; Zhou, T.; Song, X.; Zhang, F.; He, L. Determination of multi-class antimicrobial residues in soil by liquid chromatography-tandem mass spectrometry. RSC Adv. 2015, 5, 27584–27593. [Google Scholar] [CrossRef]
- Castiñeira-Landeira, A.; Vazquez, L.; Gonzalez-Leirado, H.; Llompart, M.; Dagnac, T. Ultrasound-assisted extraction followed by liquid chromatography coupled to tandem mass spectrometry for the simultaneous determination of multiclass herbicides in soil. Anal. Bioanal. Chem. 2023, 415, 7197–7209. [Google Scholar] [CrossRef]
- Wang, W.; Meng, B.; Lu, X.; Liu, Y.; Tao, S. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: A comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal. Chim. Acta 2007, 602, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Baez, M.; Labrea, R.J. Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil. J. Chromatogr. A 2007, 1169, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Łukaszewicz, P.; Białk-Bielińska, A.; Dołżonek, J.; Kumirska, J.; Caban, M.; Stepnowski, P. A new approach for the extraction of tetracyclines from soil matrices: Application of the microwave-extraction technique. Anal. Bioanal. Chem. 2018, 410, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, A.; Lacorte, S.; Barceló, D. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin. Anal. Bioanal. Chem. 2007, 387, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vidal, J.L.; Padilla-Sanchez, J.A.; Plaza-Bolanos, P.; Garrido-Frenich, A.; Romero-Gonzalez, R. Use of pressurized liquid extraction for the simultaneous analysis of 28 polar and 94 non-polar pesticides in agricultural soils by GC/QqQ-MS/MS and UPLC/QqQ-MS/MS. J. Assoc. Off. Anal. Chem. Int. 2010, 93, 1715–1731. [Google Scholar]
- Lesueur, C.; Gartner, M.; Mentler, A.; Fuerhacker, M. Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography-mass spectrometry and liquid chromatography-ion trap-mass spectrometry. Talanta 2008, 75, 284–293. [Google Scholar] [CrossRef]
- Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2013, 1292, 173–188. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, X.; Fu, S.; Yuan, J.; Jiang, T.; Xu, X. A Novel Headspace Solid-Phase Microextraction Method for the Exact Determination of Organochlorine Pesticides in Environmental Soil Samples. Anal. Bioanal. Chem. 2006, 384, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- Đurović-Pejčev, R.D.; Umiljendić, J.; Svjetlana, R.; Ljubiša, I. Solid Phase Microextraction as an Efficient Method for Characterization of the Interaction of Pesticides with Different Soil Types. J. Braz. Chem. Soc. 2010, 21, 985–994. [Google Scholar]
- Fernández-Álvarez, M.; Llompart, M.; Lamas, J.P.; Lores, M.; García-Jares, C.; Cela, R.; Dagnac, T. Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction-gas chromatography. J. Chromatogr. A 2008, 1188, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Forero-Mendieta, J.R.; Castro-Vargas, H.I.; Parada-Alfonso, F.; Guerrero-Dallos, J.A. Extraction of pesticides from soil using supercritical carbon dioxide added with methanol as co-solvent. J. Supercrit. Fluids 2012, 68, 64–70. [Google Scholar] [CrossRef]
- Koeber, R.; Niessner, R. Screening of pesticide-contaminated soil by supercritical fluid extraction (SFE) and high-performance thin-layer chromatography with automated multiple development (HPTLC/AMD). Fresenius J. Anal. Chem. 1996, 354, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Santalad, A.; Zhou, L.; Shang, F.; Fitzpatrick, D.; Burakham, R.; Srijaranai, S.; Glennon, J.D.; Luong, J.H.T. Micellar electrokinetic chromatography with amperometric detection and off-line solid-phase extraction for analysis of carbamate insecticides. J. Chromatogr. A 2010, 1217, 5288–5297. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Liu, X.; Chen, W.; Li, J.; Qin, D.; Zheng, Y. Determination of metaflumizone residues in cabbage and soil using ultra-performance liquid chromatography/ESI-MS/MS. J. Sep. Sci. 2009, 32, 3692–3697. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.S.; Wang, Z.Q.; Pan, C.P.; Jin, R.C. Residue dynamics of procymidone in leek sand soil in greenhouses by smoke generator application. Ecotoxicol. Environ. Saf. 2010, 73, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Gui, W.; Chen, J.; Zhu, G. Determination of Oxadiargyl Residues in Environmental Samples and Rice Samples. Bull. Environ. Contam. Toxicol. 2010, 84, 236–239. [Google Scholar] [CrossRef]
- Ramasubramanian, T.; Paramasivam, M.; Jayanthi, R. Rapid and Sensitive Analytical Method for Simultaneous Determination of Imidacloprid and Thiamethoxam Residues in Soils of Sugarcane Ecosystem by Reversed-Phase HPLC. Water Air Soil Pollut. 2012, 223, 6045–6050. [Google Scholar] [CrossRef]
- Feng, X.; He, Z.; Wang, L.; Peng, Y.; Luo, M.; Liu, X. Multiresidue analysis of 36 pesticides in soil using a modified quick, easy, cheap, effective, rugged, and safe method by liquid chromatography with tandem quadrupole linear ion trap mass spectrometry. J. Sep. Sci. 2015, 38, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Nawaz, S.; Barker, H.; Ahmad, I.; Ashra, M. Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 2933–2939. [Google Scholar] [CrossRef]
- Mahdavi, V.; Heris, M.E.S.; Dastranj, M.; Farimani, M.M.; Eslami, Z.; Aboul-Enein, H.Y. Assessment of Pesticide Residues in Soils Using a QuEChERS Extraction Procedure and LC-MS/MS. Water Air Soil Pollut. 2021, 232, 159. [Google Scholar] [CrossRef]
- Yang, X.B.; Ying, G.G.; Kookana, R.S. Rapid multiresidue determination for currently used pesticides in agricultural drainage waters and soils using gas chromatography-mass spectrometry. J. Environ. Sci. Health Part B 2010, 45, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.A.; Borges, J.H.; Pérez, L.M.R.; Delgado, M.A.R. Evaluation of a modified QuEChERS method for the extraction of pesticides from agricultural, ornamental and forestal soils. Anal. Bioanal. Chem. 2010, 396, 2307–2319. [Google Scholar] [CrossRef] [PubMed]
- Correia-Sá, L.; Fernandes, V.C.; Carvalho, M.; Calhau, C.; Domingues, V.; Delerue-Matos, C. Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J. Sep. Sci. 2012, 35, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Drozdzynski, D.; Kowalska, J. Rapid analysis of organic farming insecticides in soil and produce using ultra-performance liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2009, 394, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Łozowicka, B.; Rutkowska, E.; Jankowska, M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ. Sci. Pollut. Res. 2017, 24, 7124–7138. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.; Friggi, C.; Prestes, O.; Vicari, M.; Friggi, D.; Adaime, M.; Zanella, R. Simultaneous LC-MS/MS Determination of Imidazolinone Herbicides Together with Other Multiclass Pesticide Residues in Soil. CLEAN Soil Air Water 2014, 42, 1441–1449. [Google Scholar] [CrossRef]
- Arias, J.; Rombaldi, C.; Caldas, S.; Primel, E. Alternative sorbents for the dispersive solid-phase extraction step in quick, easy, cheap, effective, rugged and safe method for extraction of pesticides from rice paddy soils with determination by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1360, 66–75. [Google Scholar] [CrossRef]
- Kaczynski, P.; Lozowicka, B.; Jankowska, M.; Hrynko, I. Rapid determination of acid herbicides in soil by liquid chromatography with tandem mass spectrometric detection based on dispersive solid phase extraction. Talanta 2016, 152, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Zaidon, S.Z.; Ho, Y.B.; Hamsan, H.; Hashim, Z.; Saari, N.; Praveena, S.M. Improved QuEChERS and solid phase extraction for multi-residue analysis of pesticides in paddy soil and water using ultra-high performance liquid chromatography tandem mass spectrometry. Microchem. J. 2019, 145, 614–621. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, J.; El-Aty, A.; Chung, H.; Lee, H.; Kim, S.; Rahman, M.; Park, B.; Kim, J.; Shin, H.; et al. Development of a single-run analytical method for the detection of ten multiclass emerging contaminants in agricultural soil using an acetate-buffered QuEChERS method coupled with LC-MS/MS. J. Sep. Sci. 2016, 40, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, X.; He, Z.; Wang, L.; Luo, M.; Peng, Y.; Zhou, Q. Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal. Methods 2016, 11, 2463–2470. [Google Scholar] [CrossRef]
- Đurović-Pejčev, R.D.; Bursíc, V.P.; Zeremski, T.M. Comparison of QuEChERS with Traditional Sample Preparation Methods in the Determination of Multiclass Pesticides in Soil. J. Assoc. Off. Anal. Chem. 2019, 102, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Ninga, E.; Sapozhnikova, Y.; Lehotay, S.J.; Lightfield, A.R.; Monteiro, S.H. High-Throughput Mega-Method for the Analysis of Pesticides, Veterinary Drugs, and Environmental Contaminants by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Robotic Mini-Solid-Phase Extraction Cleanup + Low-Pressure Gas Chromatography-Tandem Mass Spectrometry, Part 2: Catfish. J. Agric. Food Chem. 2021, 69, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenk, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. Assoc. Off. Anal. Chem. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Hiemstra, M.; Bodegraven, P.; Kok, A. Validation of a Fast and Easy Method for the Determination of Residues from 229 Pesticides in Fruits and Vegetables Using Gas and Liquid Chromatography and Mass Spectrometric Detection. J. Assoc. Off. Anal. Chem. 2005, 88, 595. [Google Scholar] [CrossRef]
- Anastassiades, M.; Scherbaum, E.; Tasdelen, B.; Stajnbaher, D. Crop Protection, Public Health, Environmental Safety; Wiley-VCH: Weinheim, Germany, 2007; p. 439. [Google Scholar]
- Sante (European Commission). Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed; Document SANTE/11312/2021. Available online: https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 9 August 2022).
- Nieto-Garcia, A.J.; Romero-Gonzalez, R.; Frenich, A.G. Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry. Food Control 2015, 47, 369–380. [Google Scholar] [CrossRef]
- Prestes, O.D.; Padilla-Sánchez, J.A.; Romero-González, R.; Grio, S.L.; Garrido-Frenich, A.; Martínez-Vidal, J.L. Comparison of several extraction procedures for the determination of biopesticides in soil samples by ultrahigh pressure LC-MS/MS. J. Sep. Sci. 2012, 35, 861–868. [Google Scholar] [CrossRef]
- Koesukwiwat, U.; Sanguankaew, K.; Leepipatpiboon, N. Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2008, 626, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Bragança, I.; Plácido, A.; Paíga, P.; Domingues, V.F.; Delerue-Matos, C. QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci. Total Environ. 2012, 433, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Kruve, A.; Künnapas, A.; Leito, I. Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry. J. Chromatogr. A 2008, 1187, 58–66. [Google Scholar] [CrossRef] [PubMed]
Extraction (Time) | Analyte (no.) | Extraction Solvent (mL) | Ref. |
---|---|---|---|
Soxhlet (24 h) | Organochlorines (13) | DCM (100) | [20] |
Soxhlet (16 h) | Organochlorines (20) | Acetone:hexane (1:1, v/v) (250) | [21] |
Shaker (1 h) | Pesticides multiclass (6) | MeCN (50) | [22] |
Shaker (30 min) | Pesticides multiclass (37) | Acetone with 1% HAc (30) | [23] |
Shaker (4 h) | Pesticides multiclass (9) | MeOH or MeOH/EtAc (70:30, v/v) (20) | [24] |
Shaker (16 h) | Pesticides multiclass (30) | MeCN (50) + H2O (200) | [25] |
Shaker (6 min) | Veterinary antibiotics (58) | Na2EDTA·2H2O (0.4 g)/MeCN:phosphate buffer (1:1, v/v) (40) | [26] |
Shaker (10 min) | Veterinary antibiotics (34) | MeCN:MeOH (1:1, v/v) with 0.2% formic acid + Na2EDTA–McIlvaine buffer (20) | [27] |
UAE | Organochlorines (17) | MeOH (15) | [28] |
Pesticides multiclass (51) | EtAc (10) | [29] | |
Pesticides multiclass (54) | MeCN:H2O (1:1, v/v) (20) | [30] | |
Veterinary antibiotics (9) | MeOH:MeCN:EDTA:McIlvaine buffer (30:20:25:25) (5) | [31] | |
Sulfonamides (4) | MeOH (18) + HCl 0.1 mol L−1 (2) | [32] | |
Organochlorines (12) | Petroleum ether:acetone (1:1, v/v) (50) | [33] | |
Veterinary antibiotics (24) | ACN:McIlvaine buffer (pH 4.0)(1:1, v/v) (15) | [34] | |
Herbicides (9) | H2O:MeOH (10) | [35] | |
MAE | Organochlorines (10) | Acetone:hexane (1:1, v/v) (25) | [36] |
Organophosphates (6) | H2O:MeOH (1:1) (1–2 mL) and 0.02 M KH2PO4; hexane (5) | [37] | |
Tetracyclines (3) | ACN:McIlvaine buffer:0.1 M EDTA (2:1:1, v/v/v) | [38] | |
PLE | Pesticides multiclass (30) | Acetone:DCM (1:1, v/v) | [39] |
Pesticides multiclass (122) | EtAc:MeOH (3:1, v/v) | [40] | |
Pesticides multiclass (24) | H2O:MeCN (1:2, v/v) | [41] | |
Antibiotics (23) | Citrate–phosphate buffer pH 7.0 and MeOH (1:1, v/v) | [42] | |
SPME | Organochlorines (8) | H2O (5) | [43] |
Pesticides multiclass (20) | MeOH, evaporation, dissolution in acetone, and dilution 1:50 in H2O | [44] | |
Pesticides multiclass (36) | H2O | [45] | |
SFE | Pesticides multiclass (31) | CO2 added with MeOH | [46] |
Pesticides multiclass (107) | CO2 added with MeOH | [47] | |
QuEChERS original | Carbamates | H2O (3) + MeCN (5) | [48] |
Metaflumizone | H2O (5) + MeCN (10) | [49] | |
Procymidone | H2O (3) + MeCN (10) | [50] | |
Oxadiargil | MeCN (15) | [51] | |
Imidacloprid and thiamethoxam | MeCN (20) | [52] | |
Pesticides (36) | H2O (5) + MeCN (10) | [53] | |
QuEChERS acetate | Organochlorines (19) | H2O (10) + MeCN with 1% HAc (10) | [54] |
Pesticides (12) | H2O (10) + MeCN with 1% HAc (10) | [55] | |
QuEChERS citrate | Pesticides multiclass (38) | H2O (4) + MeCN (20) | [56] |
Pesticides multiclass (24) | MeCN (20) | [41] | |
Organophosphates (10) | MeCN (20) | [57] | |
Organochlorines (14) | H2O (3) + MeCN (7) | [58] | |
Insecticides (3) | H2O (5) + MeCN with 1% HAc (5) | [59] | |
Pesticides multiclass (216) | MeCN with 1% formic acid (v/v) (10) | [60] | |
QuEChERS modified | Herbicides, insecticides, and fungicides (7) | Aqueous saturated calcium hydroxide (20) + MeCN (10) | [61] |
Test | Extraction Using Ultrasound (10 g Sample) | ||||
---|---|---|---|---|---|
1A | 10 mL MeCN | Ultrasound 5, 10, 15, 20, and 30 min | 4.0 g MgSO4 | Vortex 1 min | Extract diluted in water (1:4, v/v) without clean-up |
1B | 10 mL water [41] 10 mL MeCN | ||||
Test | Extraction Using Shaker (10 g sample) | ||||
2A | 10 mL MeCN | Shaker 5, 10, 15, 20, and 30 min | 4.0 g MgSO4 | Vortex 1 min | Extract diluted in water (1:4, v/v) without clean-up |
2B | 10 mL water [41] 10 mL MeCN | ||||
Test | Original QuEChERS Method (10 g sample) | ||||
3A | 10 mL MeCN | Vortex 1 min | 4.0 g MgSO4 + 1.0 g NaCl | Vortex 1 min | 1 mL extract + 150 mg MgSO4 + 25 mg PSA |
3B | Without clean-up | ||||
3C | 10 mL H2O → rest for 10 min → 10 mL MeCN | Vortex 1 min | 4.0 g MgSO4 + 1.0 g NaCl | Vortex 1 min | Without clean-up |
3D | Ultrasound 15 min | ||||
3E | Shaker 15 min | Vortex 1 min | |||
Test | Citrate QuEChERS Method (10 g sample) | ||||
4A | 10 mL MeCN | Vortex 1 min | 4.0 g MgSO4 + 1.0 g NaCl + 1.0 g C6H5Na3O7·2H2O + 0.5 g C6H6Na2O7·1.5H2O | Vortex 1 min | 1 mL extract + 150 mg MgSO4 + 25 mg PSA |
4B | Without clean-up | ||||
4C | 10 mL H2O → rest for 10 min → 10 mL MeCN | Vortex 1 min | 4.0 g MgSO4 + 1.0 g NaCl + 1.0 g C6H5Na3O7·2H2O + 0.5 g C6H6Na2O7·1.5H2O | Vortex 1 min | Without clean-up |
4D | Ultrasound 15 min | ||||
4E | Shaker 15 min | Vortex 1 min | |||
Test | Acetate QuEChERS Method (15 g sample) | ||||
5A | 15 mL MeCN with 1% HAc | Vortex 1 min | 6.0 g MgSO4 + 1.5 g CH3COONa | Vortex 1 min | 1 mL extract + 150 mg MgSO4 + 50 mg PSA |
5B | Without clean-up | ||||
5C | 15 mL H2O → rest for 10 min → 15 mL MeCN with 1% HAc | Vortex 1 min | 6.0 g MgSO4 + 1.5 g CH3COONa | Vortex 1 min | Without clean-up |
5D | Ultrasound 15 min | ||||
5E | Shaker 15 min | Vortex 1 min | |||
Test | Proposed QuEChERS Method (10 g sample) | ||||
6A | 10 mL MeCN with 1% HAc | Vortex 1 min | 4.0 g MgSO4 + 1.7 g CH3COONa | Vortex 1 min | 1 mL extract + 600 mg MgSO4 + 500 mg C18 |
6B | Without clean-up | ||||
6C | 10 mL H2O → rest for 10 min → 10 mL MeCN with 1% HAc | Vortex 1 min | 4.0 g MgSO4 + 1.7 g CH3COONa | Vortex 1 min | Without clean-up |
6D | Ultrasound 15 min | ||||
6E | Shaker 15 min | Vortex 1 min |
Compounds | Method LOD (μg kg−1) | Method LOQ (μg kg−1) | Repeatability: Recovery (RSD), % | Interm. Prec.: R (RSD), % | Matrix Effect (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Spike Levels (μg kg−1), n = 7 | (μg kg−1), n = 7 | ||||||||
10 | 25 | 50 | 100 | 50 | |||||
1 | 2,4-D | 7.5 | 25 | 92 (11) | 71 (15) | 79 (12) | 77 (11) | 86 | |
2 | Atrazine | 3.0 | 10 | 91 (7) | 88 (10) | 90 (8) | 85 (9) | 2 | |
3 | Azoxystrobin | 3.0 | 10 | 83 (14) | 90 (15) | 99 (15) | 84 (14) | −4 | |
4 | Bentazone | 3.0 | 10 | 101 (13) | 96 (13) | 104 (9) | 78 (13) | −11 | |
5 | Bispyribac sodium | 3.0 | 10 | 84 (11) | 83 (14) | 101 (14) | 79 (12) | −19 | |
6 | Bitertanol | 7.5 | 25 | 96 (13) | 15 (14) | 104 (14) | 93 (14) | 28 | |
7 | Boscalid | 7.5 | 25 | 101 (15) | 106 (15) | 77 (13) | 75 (12) | −45 | |
8 | Bromuconazole | 7.5 | 25 | 74 (14) | 77 (13) | 83 (12) | 79 (10) | 4 | |
9 | Buprofezin | 3.0 | 10 | 90 (13) | 83 (9) | 85 (9) | 81 (11) | 60 | |
10 | Carbaryl | 3.0 | 10 | 82 (12) | 100 (8) | 88 (15) | 87 (11) | 21 | |
11 | Carbendazim | 7.5 | 25 | 71 (12) | 85 (14) | 79 (12) | 77 (9) | −17 | |
12 | Carbofuran | 7.5 | 25 | 79 (12) | 112 (12) | 75 (12) | 78 (13) | −40 | |
13 | Carbofuran-3OH | 7.5 | 25 | 79 (13) | 123 (5) | 89 (13) | 80 (13) | 19 | |
14 | Chloramphenicol | 3.0 | 10 | 116 (12) | 90 (14) | 104 (14) | 83 (11) | 8 | |
15 | Chlorpropham | 7.5 | 25 | 93 (12) | 82 (14) | 83 (13) | 95 (11) | 21 | |
16 | Chlorpyrifos-ethyl | 7.5 | 25 | 95 (11) | 113 (15) | 95 (12) | 82 (13) | −19 | |
17 | Chlorpyrifos-methyl | 3.0 | 10 | 77 (12) | 117 (14) | 111 (11) | 79 (12) | 267 | |
18 | Clomazone | 3.0 | 10 | 83 (11) | 88 (9) | 85 (9) | 85 (12) | −17 | |
19 | Clorimuron-ethyl | 7.5 | 25 | 75 (14) | 101 (9) | 71 (9) | 92 (9) | 12 | |
20 | Cyanazine | 3.0 | 10 | 88 (14) | 87 (7) | 88 (5) | 101 (13) | 0.3 | |
21 | Diazinon | 3.0 | 10 | 90 (14) | 90 (5) | 91 (6) | 91 (11) | 4 | |
22 | Difenoconazole | 7.5 | 25 | 101 (10) | 97 (12) | 97 (12) | 87 (14) | 1 | |
23 | Dimethoate | 7.5 | 25 | 74 (15) | 116 (13) | 118 (11) | 105 (13) | 132 | |
24 | Epoxiconazole | 3.0 | 10 | 91 (14) | 73 (10) | 95 (9) | 89 (12) | −8 | |
25 | Fenarimol | 7.5 | 25 | 87 (12) | 77 (12) | 98 (14) | 79 (11) | −16 | |
26 | Fenpropathrin | 3.0 | 10 | 103 (9) | 108 (12) | 105 (13) | 92 (4) | 287 | |
27 | Fenpropimorph | 3.0 | 10 | 79 (10) | 85 (9) | 86 (10) | 84 (13) | 88 | |
28 | Fenthion | 7.5 | 25 | 103 (13) | 73 (14) | 95 (13) | 87 (12) | 14 | |
29 | Fipronil | 3.0 | 10 | 90 (15) | 87 (9) | 83 (14) | 89 (11) | −18 | |
30 | Fluquiconazol | 3.0 | 10 | 81 (12) | 106 (12) | 93 (11) | 82 (13) | −14 | |
31 | Fluroxypyr | 7.5 | 25 | 75 (13) | 76 (14) | 72 (8) | 85 (12) | 1 | |
32 | Flutolanil | 7.5 | 25 | 71 (12) | 71 (4) | 85 (13) | 88 (13) | 21 | |
33 | Imazalil | 3.0 | 10 | 94 (14) | 76 (14) | 84 (13) | 71 (11) | −14 | |
34 | Imidacloprid | 7.5 | 25 | 75 (14) | 77 (14) | 89 (14) | 79 (12) | 16 | |
35 | Iprovalicarb | 3.0 | 10 | 107 (13) | 101 (15) | 112 (13) | 105 (10) | −11 | |
36 | Linuron | 7.5 | 25 | 89 (11) | 110 (14) | 83 (12) | 83 (9) | 10 | |
37 | Linuron d6 (SS) | 7.5 | 25 | 90 (13) | 101 (13) | 92 (13) | 78 (13) | −12 | |
38 | Malathion | 7.5 | 25 | 89 (7) | 95 (13) | 77 (13) | 79 (10) | −42 | |
39 | Mecarbam | 7.5 | 25 | 71 (8) | 91 (14) | 83 (18) | 89 (13) | 87 | |
40 | Mepronil | 3.0 | 10 | 85 (12) | 102 (8) | 90 (11) | 83 (11) | 4 | |
41 | Metalaxyl | 3.0 | 10 | 84 (10) | 98 (13) | 91 (7) | 86 (14) | −3 | |
42 | Metconazole | 3.0 | 10 | 76 (13) | 71 (12) | 89 (11) | 84 (10) | −14 | |
43 | Methiocarb sulfone | 3.0 | 10 | 96 (14) | 94 (9) | 92 (6) | 90 (10) | 48 | |
44 | Methiocarb sulfoxid | 7.5 | 25 | 70 (7) | 114 (11) | 82 (8) | 79 (11) | −13 | |
45 | Metsulfuron-methyl | 3.0 | 10 | 100 (14) | 71 (4) | 93 (12) | 77 (12) | 16 | |
46 | Mevinphos | 7.5 | 25 | 73 (10) | 110 (12) | 78 (13) | 79 (9) | 101 | |
47 | Miclobutanil | 3.0 | 10 | 83 (13) | 84 (12) | 84 (12) | 84 (8) | −7 | |
48 | Monensin | 3.0 | 10 | 88 (11) | 120 (8) | 90 (4) | 91 (11) | −22 | |
49 | Monocrotophos | 3.0 | 10 | 72 (9) | 102 (8) | 101 (13) | 94 (13) | −17 | |
50 | Monolinuron | 7.5 | 25 | 77 (7) | 90 (13) | 99 (10) | 89 (15) | −25 | |
51 | Paraoxon-ethyl | 3.0 | 10 | 89 (12) | 88 (15) | 77 (12) | 86 (14) | 39 | |
52 | Pirimicarb | 7.5 | 25 | 111 (10) | 107 (9) | 79 (10) | 78 (5) | 18 | |
53 | Pirimiphos-methyl | 3.0 | 10 | 85 (13) | 86 (11) | 85 (7) | 98 (14) | −10 | |
54 | Profenofos | 7.5 | 25 | 78 (11) | 103 (13) | 105 (13) | 83 (14) | −13 | |
55 | Propargito | 3.0 | 10 | 84 (13) | 117 (8) | 117 (6) | 73 (8) | 32 | |
56 | Propiconazole | 3.0 | 10 | 77 (12) | 86 (10) | 91 (11) | 85 (11) | −6 | |
57 | Propoxur | 3.0 | 10 | 78 (13) | 111 (12) | 79 (13) | 78 (7) | 10 | |
58 | Propyzamide | 3.0 | 10 | 91 (14) | 96 (13) | 95 (14) | 87 (9) | 15 | |
59 | Pyraclostrobin | 7.5 | 25 | 83 (14) | 105 (14) | 117 (13) | 85 (11) | −2 | |
60 | Pyrazophos | 3.0 | 10 | 106 (10) | 90 (14) | 90 (11) | 81 (13) | 2 | |
61 | Pyridaben | 7.5 | 25 | 79 (13) | 101 (15) | 89 (15) | 94 (12) | 12 | |
62 | Pyridaphenthion | 7.5 | 25 | 87 (12) | 102 (13) | 101 (13) | 108 (9) | −3 | |
63 | Pyridate | 7.5 | 25 | 92 (11) | 114 (11) | 72 (14) | 86 (8) | 88 | |
64 | Pyrimethanil | 3.0 | 10 | 84 (12) | 82 (4) | 79 (7) | 91 (9) | 0.4 | |
65 | Quinoxyfen | 7.5 | 25 | 109 (5) | 117 (10) | 72 (9) | 77 (8) | −13 | |
66 | Robenidin | 7.5 | 25 | 82 (14) | 107 (13) | 90 (6) | 85 (7) | 6 | |
67 | Salinomycin | 3.0 | 10 | 88 (13) | 116 (5) | 75 (9) | 75 (4) | −62 | |
68 | Simazine | 3.0 | 10 | 92 (15) | 107 (12) | 85 (11) | 87 (9) | −7 | |
69 | Sulfadimethoxin | 3.0 | 10 | 96 (7) | 88 (7) | 79 (6) | 84 (12) | 3 | |
70 | Sulfamethazin | 7.5 | 25 | 89 (13) | 97 (14) | 78 (14) | 76 (13) | 16 | |
71 | Sulfathiazol | 7.5 | 25 | 71 (14) | 71 (8) | 77 (12) | 77 (11) | −7 | |
72 | Tebuconazole | 3.0 | 10 | 83 (13) | 84 (11) | 88 (11) | 83 (7) | 22 | |
73 | Terbuthylazine | 3.0 | 10 | 94 (10) | 112 (14) | 79 (10) | 87 (14) | −16 | |
74 | Tetraconazole | 3.0 | 10 | 89 (14) | 89 (9) | 93 (13) | 89 (9) | −17 | |
75 | Thiacloprid | 3.0 | 10 | 94 (13) | 110 (9) | 97 (4) | 95 (10) | −12 | |
76 | Thiamethoxam | 7.5 | 25 | 99 (11) | 101 (14) | 105 (8) | 86 (8) | −18 | |
77 | Tolcofos-methyl | 3.0 | 10 | 76 (15) | 103 (13) | 91 (14) | 93 (12) | 7 | |
78 | Triadimefon | 3.0 | 10 | 95 (13) | 78 (6) | 96 (14) | 79 (11) | −35 | |
79 | Triazophos | 3.0 | 10 | 81 (12) | 83 (12) | 93 (8) | 89 (10) | −4 | |
80 | Trichlorfon | 7.5 | 25 | 74 (7) | 103 (7) | 93 (12) | 90 (13) | 10 | |
81 | Trifloxystrobin | 3.0 | 10 | 80 (14) | 104 (14) | 104 (14) | 95 (11) | −3 | |
82 | Triflumizole | 7.5 | 25 | 75 (14) | 86 (10) | 86 (8) | 79 (9) | −20 | |
83 | Vamidothion | 7.5 | 25 | 87 (9) | 99 (11) | 87 (11) | 78 (13) | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicari, M.C.; Facco, J.F.; Peixoto, S.C.; de Carvalho, G.S.; Floriano, L.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Simultaneous Determination of Multiresidues of Pesticides and Veterinary Drugs in Agricultural Soil Using QuEChERS and UHPLC–MS/MS. Separations 2024, 11, 188. https://doi.org/10.3390/separations11060188
Vicari MC, Facco JF, Peixoto SC, de Carvalho GS, Floriano L, Prestes OD, Adaime MB, Zanella R. Simultaneous Determination of Multiresidues of Pesticides and Veterinary Drugs in Agricultural Soil Using QuEChERS and UHPLC–MS/MS. Separations. 2024; 11(6):188. https://doi.org/10.3390/separations11060188
Chicago/Turabian StyleVicari, Michele C., Janice F. Facco, Sandra C. Peixoto, Gabriel S. de Carvalho, Luana Floriano, Osmar D. Prestes, Martha B. Adaime, and Renato Zanella. 2024. "Simultaneous Determination of Multiresidues of Pesticides and Veterinary Drugs in Agricultural Soil Using QuEChERS and UHPLC–MS/MS" Separations 11, no. 6: 188. https://doi.org/10.3390/separations11060188
APA StyleVicari, M. C., Facco, J. F., Peixoto, S. C., de Carvalho, G. S., Floriano, L., Prestes, O. D., Adaime, M. B., & Zanella, R. (2024). Simultaneous Determination of Multiresidues of Pesticides and Veterinary Drugs in Agricultural Soil Using QuEChERS and UHPLC–MS/MS. Separations, 11(6), 188. https://doi.org/10.3390/separations11060188