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Abstract: Soil is one of the main destinations for pesticides and veterinary drugs used in agriculture
and animal production. The negative consequences of the accumulation of these compounds in
the environment make it important to monitor these compounds in the soil. In this study, we
compared different extraction procedures using solvent shaking, ultrasound, or QuEChERS, and
their combinations, for the simultaneous determination of 75 pesticide and seven veterinary drug
residues in agricultural soil by ultra-high performance liquid chromatography coupled to serial mass
spectrometry (UHPLC–MS/MS). The method using QuEChERS combined with shaking showed the
best results for soil using the addition of water, followed by extraction with acetonitrile acidified
with acetic acid and shaking in a shaker. For partitioning, anhydrous magnesium sulfate and
anhydrous sodium acetate were used. The extract was centrifuged, filtered, and diluted (1:4, v/v)
in water for determination by UHPLC–MS/MS. Method validation showed adequate accuracy and
precision results, with recoveries between 70 and 120% and RSD ≤ 20% for the vast majority of
the compounds evaluated at the spike levels of 10, 25, 50, and 100 µg kg−1. The method limits of
detection (LOD) and quantification (LOQ) ranged from 3.0 to 7.5 µg kg−1 and from 10 to 25 µg kg−1,
respectively. The method was applied to different agricultural soil samples and proved to be efficient
for routine analysis.

Keywords: soil; pesticides; veterinary drugs; sample preparation; LC–MS/MS

1. Introduction

In recent decades, the increase in agricultural activity has led to a growing demand
for pesticides. However, many pesticides have been classified as persistent and highly
toxic, and can cause numerous damages to the environment and to non-target species. Soil
contamination by pesticides is a growing concern due to the damage caused, which can
compromise essential soil functions, biodiversity, and food safety [1]. Animal production is
one of the most significant activities in Brazilian agribusiness, and to ensure the productivity
and competitiveness of the sector, veterinary drugs have been widely used to ensure animal
health, as well as allowing an increase in production [2]. Although the excretion rates of
veterinary antimicrobials depend on the substance administered, the mode of application,
the animal species, and the treatment time, it is estimated that up to 90% of the administered
dose is eliminated in its unmetabolized form or as active metabolites, since the absorption
of these substances generally occurs incompletely in the body [3,4].

Agricultural soils adjacent to concentrated animal feeding operations and animal
husbandry are often fertilized with animal manure. The prevalence of veterinary antibiotics
in agricultural soil can, in the long term, affect the effectiveness of these antibiotics in
the human health sector [5]. Veterinary antibiotics have often been detected in livestock
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manure and composted soil and have reached concentrations in soil well above 100 µg kg−1.
There are also occurrences in surface and groundwater that can be clearly attributed to
veterinary uses, but the concentrations are generally in the ng L−1 range and are therefore
considerably lower than those found in soils [6].

Deficiencies in good practice in the use of pesticides and veterinary drugs result in
the occurrence of residues which, at levels above the maximum residue limits (MRLs),
can pose a risk to human health. These risks are closely related to non-compliance with
the manufacturer’s instructions for use contained in the product’s package leaflet, such as
indication of use for the target species, dosage, route of administration, and grace period [7].
There is a great lack of legislation establishing maximum limits for veterinary drugs in
soil. In 2001, the European Agency for the Evaluation of Medical Products (EMEA) set a
general limit of 100 µg kg−1 for veterinary drugs in soil. This value was established on the
basis of toxicological studies carried out on drugs authorized in the United States and is
below the harmful levels observed in earthworms, microbes, and plants [8]. With regard to
pesticides, soil monitoring is not required by the European Union (EU) and there is little
information on the maximum limits allowed in soil. The Vietnamese government [9] set the
maximum permissible limits for pesticide residues in soil ranging from 10 to 100 µg kg−1.
In view of the above, it can be seen that there is a knowledge gap regarding environmental
risk indicators for pesticides and veterinary drugs in soil. Due to the large number of
active ingredients in use, there is a need to establish maximum permitted values for these
compounds in soil.

Pesticide soil quality standards should be defined situationally, considering that
pesticide fate in the soil and human exposure to soil pesticides vary greatly with specific
patterns [10], the process of setting pesticide standards in soil lacks the integration of the
effectiveness of plant protection, and the prevention of human health risks [11]. Pesticides
reach the soil not only through direct incorporation, but also through seed treatment,
the control of pathogenic fungi and pests, and the elimination of invasive plants, among
other routes. Contamination can also occur indirectly, through the spraying of plants
and the falling of fruit and leaves that have received pesticide application. Due to the
high complexity of environmental processes, the study of the environmental effect of
pesticides is also extremely complex. Generally, the sorption of pesticides in soil is stronger
compared to other matrices, such as fruits and vegetables. The environmental fate of
pesticides is determined by their chemical and physical properties, as well as environmental
characteristics [12]. Soil stands out as an important matrix for environmental monitoring,
since pesticides are often applied directly or found in the soil after being applied to plants.
Many of the veterinary drugs administered are not completely metabolized in the animal
body, being excreted partly in the form of the original compound and partly metabolized.
In addition to the excretions of grazing animals, manure is often dumped directly onto
pastures or used as fertilizer in agriculture. Environmental contamination can also occur
due to poor storage conditions or irregular disposal. The behavior and fate of veterinary
drugs in the environment are regulated, just like pesticides, by chemical, physical, and
biological processes [13]. The behavior of drugs and veterinary drugs in the environment
has not yet been widely studied and there is a lack of quantitative data to estimate the
extent of this contamination, the mobility of these compounds, and their environmental
impacts on the environment and animals [14].

Selective extraction of pesticides from soil is based on physicochemical properties
such as solubility, polarity, molecular mass, Kow, Koc, and volatility [15]. More selective
extraction techniques can eliminate or reduce the need to clean the extract. The extraction
of analytes from solid samples remains a critical step in the analysis of contaminants and
aspects such as selectivity, recovery of the analyte, volume of organic solvent required,
toxicity of the solvent, extraction time, and number of extraction cleaning steps, as well
as the associated costs and simplicity of execution, must be considered. Table 1 presents
examples of different sample preparation techniques applied for the determination of
pesticide and veterinary drug residues in soil samples. Among these techniques, the
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solid–liquid extraction stands out, which includes shaker and ultrasonic-assisted extraction
(UAE) techniques [16], as well techniques developed more recently in order to reduce
solvent consumption and increase extraction efficiency, including microwave-assisted
extraction (MAE), pressurized-liquid extraction (PLE), supercritical fluid extraction (SFE),
solid phase microextraction (SPME), and the QuEChERS method [17–19].

Table 1. Different sample preparation procedures for determining pesticide and veterinary drug
residues in soil samples.

Extraction (Time) Analyte (no.) Extraction Solvent (mL) Ref.

Soxhlet (24 h) Organochlorines (13) DCM (100) [20]
Soxhlet (16 h) Organochlorines (20) Acetone:hexane (1:1, v/v) (250) [21]

Shaker (1 h) Pesticides multiclass (6) MeCN (50) [22]
Shaker (30 min) Pesticides multiclass (37) Acetone with 1% HAc (30) [23]
Shaker (4 h) Pesticides multiclass (9) MeOH or MeOH/EtAc (70:30, v/v) (20) [24]
Shaker (16 h) Pesticides multiclass (30) MeCN (50) + H2O (200) [25]
Shaker (6 min) Veterinary antibiotics (58) Na2EDTA·2H2O (0.4 g)/MeCN:phosphate buffer (1:1, v/v) (40) [26]

Shaker (10 min) Veterinary antibiotics (34) MeCN:MeOH (1:1, v/v) with 0.2% formic
acid + Na2EDTA–McIlvaine buffer (20) [27]

UAE

Organochlorines (17) MeOH (15) [28]
Pesticides multiclass (51) EtAc (10) [29]
Pesticides multiclass (54) MeCN:H2O (1:1, v/v) (20) [30]
Veterinary antibiotics (9) MeOH:MeCN:EDTA:McIlvaine buffer (30:20:25:25) (5) [31]

Sulfonamides (4) MeOH (18) + HCl 0.1 mol L−1 (2) [32]
Organochlorines (12) Petroleum ether:acetone (1:1, v/v) (50) [33]

Veterinary antibiotics (24) ACN:McIlvaine buffer (pH 4.0)(1:1, v/v) (15) [34]
Herbicides (9) H2O:MeOH (10) [35]

MAE
Organochlorines (10) Acetone:hexane (1:1, v/v) (25) [36]

Organophosphates (6) H2O:MeOH (1:1) (1–2 mL) and 0.02 M KH2PO4; hexane (5) [37]
Tetracyclines (3) ACN:McIlvaine buffer:0.1 M EDTA (2:1:1, v/v/v) [38]

PLE

Pesticides multiclass (30) Acetone:DCM (1:1, v/v) [39]
Pesticides multiclass (122) EtAc:MeOH (3:1, v/v) [40]
Pesticides multiclass (24) H2O:MeCN (1:2, v/v) [41]

Antibiotics (23) Citrate–phosphate buffer pH 7.0 and MeOH (1:1, v/v) [42]

SPME
Organochlorines (8) H2O (5) [43]

Pesticides multiclass (20) MeOH, evaporation, dissolution in acetone,
and dilution 1:50 in H2O [44]

Pesticides multiclass (36) H2O [45]

SFE
Pesticides multiclass (31) CO2 added with MeOH [46]
Pesticides multiclass (107) CO2 added with MeOH [47]

QuEChERS original

Carbamates H2O (3) + MeCN (5) [48]
Metaflumizone H2O (5) + MeCN (10) [49]
Procymidone H2O (3) + MeCN (10) [50]

Oxadiargil MeCN (15) [51]
Imidacloprid and

thiamethoxam MeCN (20) [52]

Pesticides (36) H2O (5) + MeCN (10) [53]

QuEChERS acetate
Organochlorines (19) H2O (10) + MeCN with 1% HAc (10) [54]

Pesticides (12) H2O (10) + MeCN with 1% HAc (10) [55]

QuEChERS citrate

Pesticides multiclass (38) H2O (4) + MeCN (20) [56]
Pesticides multiclass (24) MeCN (20) [41]
Organophosphates (10) MeCN (20) [57]

Organochlorines (14) H2O (3) + MeCN (7) [58]
Insecticides (3) H2O (5) + MeCN with 1% HAc (5) [59]

Pesticides multiclass (216) MeCN with 1% formic acid (v/v) (10) [60]
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Table 1. Cont.

Extraction (Time) Analyte (no.) Extraction Solvent (mL) Ref.

QuEChERS modified Herbicides, insecticides,
and fungicides (7) Aqueous saturated calcium hydroxide (20) + MeCN (10) [61]

DCM: dichloromethane; EDTA: ethylenediaminetetraacetic acid; EtAc: ethyl acetate; H2O: water; HAc: acetic
acid; MAE: microwave-assisted extraction; MeCN: acetonitrile; MeOH: methanol; McIlvaine buffer: a sodium
phosphate dibasic dihydrate–citric acid solution; PLE: pressurized-liquid extraction; SFE: supercritical fluid
extraction; SPME: solid phase microextraction; UAE: ultrasonic-assisted extraction.

The QuEChERS method has been used successfully in soil samples, as it has advan-
tages such as simplicity, speed, low cost, and the ability to provide high-quality analytical
results [62–64]. In addition to using the original QuEChERS method, modifications us-
ing extractions with acidic buffers, such as acetate and citrate, have been used to obtain
adequate recoveries for compounds sensitive to pH variation [65–67]. In addition, the
addition of water to obtain adequate humidity and the use of different adsorbents in the
extract cleaning stage have been described for the extraction of pesticides from soils with
adequate results.

The ultra-high performance liquid chromatography coupled to serial mass spectrome-
try (UHPLC–MS/MS) technique has been widely used for the determination of pesticides
and veterinary drugs in various matrices, as it has high selectivity and sensibility. The
acquisition of results using the selected reaction monitoring (SRM) mode adds selectivity
for analysis at low concentrations, since two transitions per analyte are monitored [68].
Thus, considering the importance of using soil for food production, the intensive use of
pesticides for pest control, and the use of animal waste containing veterinary drugs and the
consequent possibility of these compounds contaminating humans and the environment,
this work compared different extraction procedures in order to establish and validate a
suitable sample preparation method for the multiresidue determination of 75 pesticides
and seven veterinary drugs in agricultural soil samples by UHPLC–MS/MS, demonstrating
the applicability of the proposed method in routine analysis.

2. Materials and Methods
2.1. Reagents and Materials

The solid standards of the pesticides and veterinary drugs selected for this study were
purchased from LGC Standards (Augsburg, Germany) with a purity of between 91.5 and
99.9%. The analytical stock solutions of each compound, at a concentration of 1000 mg L−1,
were prepared in acetonitrile, taking into account the purity of the solid standards. The
working solution at a concentration of 5.0 mg L−1 containing all the compounds studied,
including the surrogate standard (SS), deuterated linuron (linuron d6), was prepared in
acetonitrile. Triphenylphosphate, used as the internal standard (IS), was acquired from
Sigma-Aldrich (St. Louis, MO, USA).

LC–MS-grade methanol and acetonitrile, anhydrous sodium acetate p.a., and anhy-
drous magnesium sulfate (MgSO4) p.a. were purchased from J.T. Baker (Phillipsburg, NJ,
USA). Glacial acetic acid 99.9% and sodium chloride were purchased from Merck (Rio
de Janeiro, Brazil). Formic acid 98%, sodium citrate dihydrate (C6H5Na3O7·2H2O), and
sodium hydrogen citrate sesquihydrate (C6H6Na2O7·1.5H2O), all p.a., were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Bondesil C18 and Bondesil PSA sorbents, both
with a particle size of 40 µm, were purchased from Agilent Technologies (Santa Clara, CA,
USA). Argon, 99.9992% pure, used as the collision gas in the UHPLC–MS/MS system, was
purchased from Air Products (Guaiba, Brazil). Ultrapure water (resistivity of 18.2 MΩ cm)
was obtained with the Milli-Q Direct UV3® system from Millipore (Molshein, France).
Other materials included nylon filters of 13 mm i.d. and porosity of 0.2 µm, used for extract
filtration before analysis, and glass vials with a capacity of 2 mL, both purchased from
Agilent Technologies (Santa Clara, CA, USA), polypropylene tubes (15 and 50 mL) with
screw caps (Sarstedt, Nümbrecht, Germany), and common laboratory glassware.
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2.2. Soil Samples

The agricultural soil sample used as a blank sample to develop the method was
collected from a site with no agropastoral activity and had the following characteristics:
pHwater (1:1) = 4.9; Ca = 5.9 centimoles of charge (cmolc)/dm3; Mg = 1.4 cmolc/dm3;
Al = 0.8 cmolc/dm3; H + Al = 9.7 cmolc/dm3; cation exchange capacity (CTC) = 8.1 cmolc/dm3;
Al saturation = 9.9%; Shoemaker–McLean–Pratt (SMP) buffer, a solution of p-nitrophenol,
potassium chromate, calcium chloride, calcium acetate, and triethanolamine, pH = 5.3;
organic matter (% MO) = 2.2 (m/v); % clay = 20 (m/v); and texture = 3.0. Before use, soil
samples were homogenized, air-dried at room temperature, grinded, and sieved (2 mm
mesh). The sample showed no residues of the pesticides and veterinary drugs under study
and was used as a blank sample.

2.3. Instrumentation

This work was carried out using a UHPLC–MS/MS system from Waters Technologies
(Milford, USA) equipped with a binary pump, sample manager Acquity, triple quadrupole
mass spectrometer model Xevo TQ, electrospray ionization (ESI) source, and data acquisi-
tion using MassLynx software (version 4.1).

Precision analytical balances were used, models AUW-220D and UX-420H (Shimadzu,
Kyoto, Japan), as well as the following instruments: centrifuges 80-2B (Centribio Co., Ltd.,
Shanghai, China) and NT 825 (Nova Técnica, Piracicaba, Brazil); Biomixer QL-901 vortex
mixer (Microtécnica, Curitiba, Brazil); TE-394/1 air circulation oven (Tecnal, Piracicaba,
Brazil); TE-240/1 pendulum shaker table (Tecnal, Piracicaba, Brazil); and Sonorex RK 510
ultrasound, 40 kHz frequency, and 135 W power (Bandelin, Berlin, Germany).

2.4. UHPLC–MS/MS Analysis

The analytes were determined using UHPLC–MS/MS under the following conditions:
Acquity UPLC® BEH C18 column (50 mm× 2.1 mm i.d.; 1.7 µm), maintained at 40 ◦C;
mobile phase (A) water:methanol (98:2, v/v) and (B) methanol, both containing 0.1% (v/v)
formic acid to improve the ionization of the analytes; elution gradient: 5% B from 0 to
0.25 min; changing until reaching 100% B at 7.75 min and remaining until 8.50 min; return-
ing to 5% B at 8.51 min and remaining until 10 min; mobile phase flow rate: 0.25 mL min−1;
injection volume: 10 µL; ionization source: electrospray (ESI); and triple quadrupole mass
spectrometric detector, operating in selected reaction monitoring (SRM) mode. Other
selected parameters were as follows: capillary voltage: 2.0 kV; desolvation temperature:
500 ◦C; desolvation gas flow rate (N2): 600 L h−1; spray flow rate (N2): 80 L h−1; collision
gas flow rate (argon): 0.15 mL min−1; and source temperature: 150 ◦C. Most of the com-
pounds were analyzed in ESI+ mode, with the exception of 2,4-dichlorophenoxyacetic acid
(2,4-D), chloramphenicol, and fipronil, which were analyzed by ESI–. Table S1 shows the
compounds studied and the respective retention time (tR), precursor and product ions,
and collision energy of the transitions monitored by UHPLC–MS/MS. Two characteristic
transitions were selected for each compound, with the most intense transition being used
for quantification and the second most intense transition for confirmation of identity.

2.5. Sample Preparation Evaluation

The evaluation of the extraction tests carried out in this study used 10 g of blank
soil samples weighed into 50 mL conical-bottom Falcon-type polypropylene (PP) tubes,
spiked at a concentration of 100 µg kg−1, and each test was carried out in triplicate.
After spike, the samples were left to stand for 1 h before the extraction procedure was
carried out. Acetonitrile was selected as the extraction solvent in all the tests evaluated
(ultrasound, shaker, QuEChERS method, and their combinations), as it allows the extraction
of compounds with different polarities and, when acidified, allows satisfactory recoveries
of pesticides that generally present stability problems. In this study, different sample
preparation approaches (Table 2) were investigated in order to obtain the most efficient
extraction method for the analytes in the soil matrix. The recovery of the analytes at a
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concentration level of 100 µg kg−1 was evaluated in triplicate using ultrasound (tests 1A
and 1B), shaker (tests 2A and 2B), the QuEChERS method, and combinations of these tests
(tests 3–6). After the partitioning step, the tube was centrifuged at 2140× g and 20 ◦C for
8.0 min, and the extracts were diluted 1:4 (v/v) with water and filtered for analysis.

Table 2. Tests carried out to select the extraction procedure based on different procedures with and
without the addition of water before extraction.

Test Extraction Using Ultrasound (10 g Sample)

1A 10 mL MeCN Ultrasound
5, 10, 15, 20, and

30 min
4.0 g MgSO4 Vortex 1 min

Extract diluted in
water (1:4, v/v)

without clean-up1B 10 mL water [41]
10 mL MeCN

Test Extraction Using Shaker (10 g sample)

2A 10 mL MeCN Shaker
5, 10, 15, 20, and

30 min
4.0 g MgSO4 Vortex 1 min

Extract diluted in
water (1:4, v/v)

without clean-up2B 10 mL water [41]
10 mL MeCN

Test Original QuEChERS Method (10 g sample)

3A
10 mL MeCN Vortex 1 min 4.0 g MgSO4

+ 1.0 g NaCl Vortex 1 min

1 mL extract +
150 mg MgSO4 +

25 mg PSA

3B Without clean-up

3C 10 mL H2O → rest for
10 min

→ 10 mL MeCN

Vortex 1 min 4.0 g MgSO4
+ 1.0 g NaCl

Vortex 1 min

Without clean-up3D Ultrasound 15 min

3E Shaker 15 min Vortex 1 min

Test Citrate QuEChERS Method (10 g sample)

4A
10 mL MeCN Vortex 1 min

4.0 g MgSO4 + 1.0 g NaCl +
1.0 g C6H5Na3O7·2H2O

+ 0.5 g C6H6Na2O7·1.5H2O
Vortex 1 min

1 mL extract +
150 mg MgSO4 +

25 mg PSA

4B Without clean-up

4C 10 mL H2O → rest for
10 min

→ 10 mL MeCN

Vortex 1 min 4.0 g MgSO4 + 1.0 g NaCl +
1.0 g C6H5Na3O7·2H2O

+ 0.5 g C6H6Na2O7·1.5H2O

Vortex 1 min

Without clean-up4D Ultrasound 15 min

4E Shaker 15 min Vortex 1 min

Test Acetate QuEChERS Method (15 g sample)

5A 15 mL MeCN
with 1% HAc

Vortex 1 min 6.0 g MgSO4 + 1.5 g
CH3COONa

Vortex 1 min

1 mL extract +
150 mg MgSO4 +

50 mg PSA

5B Without clean-up

5C 15 mL H2O → rest for
10 min → 15 mL

MeCN with 1% HAc

Vortex 1 min 6.0 g MgSO4 + 1.5 g
CH3COONa

Vortex 1 min

Without clean-up5D Ultrasound 15 min

5E Shaker 15 min Vortex 1 min

Test Proposed QuEChERS Method (10 g sample)

6A 10 mL MeCN
with 1% HAc

Vortex 1 min 4.0 g MgSO4 + 1.7 g
CH3COONa

Vortex 1 min

1 mL extract +
600 mg MgSO4 +

500 mg C18

6B Without clean-up

6C 10 mL H2O → rest for
10 min → 10 mL

MeCN with 1% HAc

Vortex 1 min 4.0 g MgSO4 + 1.7 g
CH3COONa

Vortex 1 min

Without clean-up6D Ultrasound 15 min

6E Shaker 15 min Vortex 1 min
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The QuEChERS tests described in Table 2 were carried out using the original QuECh-
ERS method [69], the acetate QuEChERS method [70], the citrate QuEChERS method [71],
and the modified QuEChERS method proposed in this study. In order to verify the effi-
ciency of the extract cleaning step, the tests were evaluated with and without clean-up. The
effect of adding ultrapure water before extraction with MeCN [49,60] and using a shaker
and ultrasound instead of vortex stirring in the first stage of the QuEChERS method were
also evaluated.

2.6. Established Sample Preparation Procedure

The selected sample preparation procedure (Figure 1) was based on the modified
QuEChERS method proposed in this study. An aliquot of 10 g of soil sample was weighed
directly into 50 mL PP tubes followed by the addition of 50 µL of surrogate standard and
10 mL of water. The tube was vortexed for 1 min and left to stand for 10 min before the
extraction step using 10 mL of acetonitrile containing 1% (v/v) acetic acid followed by
agitation on a pendulum shaker for 15 min. For the partitioning step, 4 g of anhydrous
magnesium sulphate and 1.7 g of sodium acetate were added to the extract and the tube
was vortexed for 1 min. After centrifugation at 2140× g and 20 ◦C for 8 min and filtration
(0.2 µm), the extract was diluted with water in a ratio of 1:4 (v/v) and 20 µL of the 1 mg L−1

solution of the internal standard was added for analysis by UHPLC–MS/MS. No cleaning
of the extract was necessary, even though it was a complex matrix.
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2.7. Method Validation

Validation was carried out in accordance with the SANTE [72] guidelines considering
the parameters of selectivity, linearity, analytical curve, matrix effect, detection and quan-
tification limits, accuracy, and precision, evaluated in the repeatability and intermediate
precision assay. The method selectivity was assessed by comparing the chromatograms
obtained by UHPLC–MS/MS for the blank sample extracts and the spiked sample extracts
at a concentration of 10 µg L−1, with the aim of verifying the presence of interfering com-
pounds at the retention time of selected pesticides. The linearity was evaluated considering
the coefficient of determination (r2) results using the analytical curves prepared in solvent
and in the blank extract of the matrix at 0.5, 1, 2, 5, 10, 20, and 30 µg L−1, in triplicate.
Linearity was considered satisfactory for compounds that presented r2 ≥ 0.990. To evaluate
the accuracy, through recovery, and precision, in terms of relative standard deviation (RSD),
in the assay of repeatability carried out on the same day, recovery tests were performed
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at the spike levels of 10, 25, 50, and 100 µg kg−1, with 7 replicates. For the intermediate
precision assay, recovery and RSD were evaluated by carrying out the analytical procedure
on 3 different days, with 7 repetitions for each day, at the 50 µg kg−1 level. Accuracy
and precision were considered satisfactory if recovery results were from 70 to 120%, with
RSD ≤ 20%. The practical limit of quantification (LOQ) was determined from the spike
tests, considering the LOQ the lowest spike level with acceptable accuracy and precision.
The limit of detection (LOD) was obtained by dividing the LOQ value by 3.33. The matrix
effect was estimated by comparing the slopes of the analytical curves obtained from the
matrix-matched extract with those obtained from the solvent (acetonitrile) [73]. Validation
results are presented in Table 3.

Table 3. Method validation data of selected pesticides and veterinary drugs in soil.

Compounds
Method

LOD
(µg kg−1)

Method
LOQ

(µg kg−1)

Repeatability: Recovery (RSD), %
Interm.
Prec.:

R (RSD), % Matrix
Effect

(%)Spike Levels (µg kg−1), n = 7 (µg kg−1),
n = 7

10 25 50 100 50

1 2,4-D 7.5 25 92 (11) 71 (15) 79 (12) 77 (11) 86
2 Atrazine 3.0 10 91 (7) 88 (10) 90 (8) 85 (9) 2
3 Azoxystrobin 3.0 10 83 (14) 90 (15) 99 (15) 84 (14) −4
4 Bentazone 3.0 10 101 (13) 96 (13) 104 (9) 78 (13) −11
5 Bispyribac sodium 3.0 10 84 (11) 83 (14) 101 (14) 79 (12) −19
6 Bitertanol 7.5 25 96 (13) 15 (14) 104 (14) 93 (14) 28
7 Boscalid 7.5 25 101 (15) 106 (15) 77 (13) 75 (12) −45
8 Bromuconazole 7.5 25 74 (14) 77 (13) 83 (12) 79 (10) 4
9 Buprofezin 3.0 10 90 (13) 83 (9) 85 (9) 81 (11) 60
10 Carbaryl 3.0 10 82 (12) 100 (8) 88 (15) 87 (11) 21
11 Carbendazim 7.5 25 71 (12) 85 (14) 79 (12) 77 (9) −17
12 Carbofuran 7.5 25 79 (12) 112 (12) 75 (12) 78 (13) −40
13 Carbofuran-3OH 7.5 25 79 (13) 123 (5) 89 (13) 80 (13) 19
14 Chloramphenicol 3.0 10 116 (12) 90 (14) 104 (14) 83 (11) 8
15 Chlorpropham 7.5 25 93 (12) 82 (14) 83 (13) 95 (11) 21
16 Chlorpyrifos-ethyl 7.5 25 95 (11) 113 (15) 95 (12) 82 (13) −19
17 Chlorpyrifos-methyl 3.0 10 77 (12) 117 (14) 111 (11) 79 (12) 267
18 Clomazone 3.0 10 83 (11) 88 (9) 85 (9) 85 (12) −17
19 Clorimuron-ethyl 7.5 25 75 (14) 101 (9) 71 (9) 92 (9) 12
20 Cyanazine 3.0 10 88 (14) 87 (7) 88 (5) 101 (13) 0.3
21 Diazinon 3.0 10 90 (14) 90 (5) 91 (6) 91 (11) 4
22 Difenoconazole 7.5 25 101 (10) 97 (12) 97 (12) 87 (14) 1
23 Dimethoate 7.5 25 74 (15) 116 (13) 118 (11) 105 (13) 132
24 Epoxiconazole 3.0 10 91 (14) 73 (10) 95 (9) 89 (12) −8
25 Fenarimol 7.5 25 87 (12) 77 (12) 98 (14) 79 (11) −16
26 Fenpropathrin 3.0 10 103 (9) 108 (12) 105 (13) 92 (4) 287
27 Fenpropimorph 3.0 10 79 (10) 85 (9) 86 (10) 84 (13) 88
28 Fenthion 7.5 25 103 (13) 73 (14) 95 (13) 87 (12) 14
29 Fipronil 3.0 10 90 (15) 87 (9) 83 (14) 89 (11) −18
30 Fluquiconazol 3.0 10 81 (12) 106 (12) 93 (11) 82 (13) −14
31 Fluroxypyr 7.5 25 75 (13) 76 (14) 72 (8) 85 (12) 1
32 Flutolanil 7.5 25 71 (12) 71 (4) 85 (13) 88 (13) 21
33 Imazalil 3.0 10 94 (14) 76 (14) 84 (13) 71 (11) −14
34 Imidacloprid 7.5 25 75 (14) 77 (14) 89 (14) 79 (12) 16
35 Iprovalicarb 3.0 10 107 (13) 101 (15) 112 (13) 105 (10) −11
36 Linuron 7.5 25 89 (11) 110 (14) 83 (12) 83 (9) 10
37 Linuron d6 (SS) 7.5 25 90 (13) 101 (13) 92 (13) 78 (13) −12
38 Malathion 7.5 25 89 (7) 95 (13) 77 (13) 79 (10) −42
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Table 3. Cont.

Compounds
Method

LOD
(µg kg−1)

Method
LOQ

(µg kg−1)

Repeatability: Recovery (RSD), %
Interm.
Prec.:

R (RSD), % Matrix
Effect

(%)Spike Levels (µg kg−1), n = 7 (µg kg−1),
n = 7

10 25 50 100 50

39 Mecarbam 7.5 25 71 (8) 91 (14) 83 (18) 89 (13) 87
40 Mepronil 3.0 10 85 (12) 102 (8) 90 (11) 83 (11) 4
41 Metalaxyl 3.0 10 84 (10) 98 (13) 91 (7) 86 (14) −3
42 Metconazole 3.0 10 76 (13) 71 (12) 89 (11) 84 (10) −14
43 Methiocarb sulfone 3.0 10 96 (14) 94 (9) 92 (6) 90 (10) 48
44 Methiocarb sulfoxid 7.5 25 70 (7) 114 (11) 82 (8) 79 (11) −13
45 Metsulfuron-methyl 3.0 10 100 (14) 71 (4) 93 (12) 77 (12) 16
46 Mevinphos 7.5 25 73 (10) 110 (12) 78 (13) 79 (9) 101
47 Miclobutanil 3.0 10 83 (13) 84 (12) 84 (12) 84 (8) −7
48 Monensin 3.0 10 88 (11) 120 (8) 90 (4) 91 (11) −22
49 Monocrotophos 3.0 10 72 (9) 102 (8) 101 (13) 94 (13) −17
50 Monolinuron 7.5 25 77 (7) 90 (13) 99 (10) 89 (15) −25
51 Paraoxon-ethyl 3.0 10 89 (12) 88 (15) 77 (12) 86 (14) 39
52 Pirimicarb 7.5 25 111 (10) 107 (9) 79 (10) 78 (5) 18
53 Pirimiphos-methyl 3.0 10 85 (13) 86 (11) 85 (7) 98 (14) −10
54 Profenofos 7.5 25 78 (11) 103 (13) 105 (13) 83 (14) −13
55 Propargito 3.0 10 84 (13) 117 (8) 117 (6) 73 (8) 32
56 Propiconazole 3.0 10 77 (12) 86 (10) 91 (11) 85 (11) −6
57 Propoxur 3.0 10 78 (13) 111 (12) 79 (13) 78 (7) 10
58 Propyzamide 3.0 10 91 (14) 96 (13) 95 (14) 87 (9) 15
59 Pyraclostrobin 7.5 25 83 (14) 105 (14) 117 (13) 85 (11) −2
60 Pyrazophos 3.0 10 106 (10) 90 (14) 90 (11) 81 (13) 2
61 Pyridaben 7.5 25 79 (13) 101 (15) 89 (15) 94 (12) 12
62 Pyridaphenthion 7.5 25 87 (12) 102 (13) 101 (13) 108 (9) −3
63 Pyridate 7.5 25 92 (11) 114 (11) 72 (14) 86 (8) 88
64 Pyrimethanil 3.0 10 84 (12) 82 (4) 79 (7) 91 (9) 0.4
65 Quinoxyfen 7.5 25 109 (5) 117 (10) 72 (9) 77 (8) −13
66 Robenidin 7.5 25 82 (14) 107 (13) 90 (6) 85 (7) 6
67 Salinomycin 3.0 10 88 (13) 116 (5) 75 (9) 75 (4) −62
68 Simazine 3.0 10 92 (15) 107 (12) 85 (11) 87 (9) −7
69 Sulfadimethoxin 3.0 10 96 (7) 88 (7) 79 (6) 84 (12) 3
70 Sulfamethazin 7.5 25 89 (13) 97 (14) 78 (14) 76 (13) 16
71 Sulfathiazol 7.5 25 71 (14) 71 (8) 77 (12) 77 (11) −7
72 Tebuconazole 3.0 10 83 (13) 84 (11) 88 (11) 83 (7) 22
73 Terbuthylazine 3.0 10 94 (10) 112 (14) 79 (10) 87 (14) −16
74 Tetraconazole 3.0 10 89 (14) 89 (9) 93 (13) 89 (9) −17
75 Thiacloprid 3.0 10 94 (13) 110 (9) 97 (4) 95 (10) −12
76 Thiamethoxam 7.5 25 99 (11) 101 (14) 105 (8) 86 (8) −18
77 Tolcofos-methyl 3.0 10 76 (15) 103 (13) 91 (14) 93 (12) 7
78 Triadimefon 3.0 10 95 (13) 78 (6) 96 (14) 79 (11) −35
79 Triazophos 3.0 10 81 (12) 83 (12) 93 (8) 89 (10) −4
80 Trichlorfon 7.5 25 74 (7) 103 (7) 93 (12) 90 (13) 10
81 Trifloxystrobin 3.0 10 80 (14) 104 (14) 104 (14) 95 (11) −3
82 Triflumizole 7.5 25 75 (14) 86 (10) 86 (8) 79 (9) −20
83 Vamidothion 7.5 25 87 (9) 99 (11) 87 (11) 78 (13) 12

Interm. Prec. = intermediate precision; R = recovery; RSD = relative standard deviation; LOD = limit of detection;
LOQ = limit of quantification; SS = surrogate standard.

2.8. Application of the Proposed Method to Agricultural Soil Samples

The method developed was applied to determine pesticide and veterinary drug
residues in 60 soil samples collected around the coordinates 29◦41′0′′ S 53◦48′0′′ W in the
central region of the Rio Grande do Sul State, Brazil. All the samples were collected from
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recently cultivated areas where there were reports of organic fertilizer being used. In each
sampling unit, after removing the surface litter at the sampling spot, 10 soil sub-samples
were collected with an auger to a depth of 15 cm and placed in the same clean bucket. Each
sample was homogenized and reduced to approximately half a kilogram by quartering,
air-dried at room temperature, grinded, and sieved (2 mm mesh) before analysis.

3. Results and Discussion
3.1. Sample Preparation Method

The extraction tests were carried out using blank soil samples, spiked at a concentration
of 100 µg kg−1, and each test was carried out in triplicate. After spiking in a 50 mL Falcon
tube, the samples were homogenized and kept for 1 h before the extraction procedure was
carried out. ACN was used as the extraction solvent for all the tests (ultrasound, shaker,
and QuEChERS method), as it allows the extraction of a wide range of compounds with
different polarities and, when acidified, allows satisfactory recoveries of pesticides that
generally have stability problems, as well as being suitable for analysis by UHPLC–MS/MS.

The results obtained by ultrasound extraction (Test 1A) were unsatisfactory, as less
than 60% of the compounds showed recoveries of 70 to 120%, with RSD ≤ 20%. The tests
that used hydration of the sample before extraction (Test 1B) showed an increase in the
number of compounds recovered in the appropriate range, and the test with the highest
percentage (60%) of compounds recovered was the one that used 15 min of ultrasound. The
tests carried out with a shaker (Test 2A) only showed adequate results for around 40% of
the compounds. The inclusion of a hydration step before extraction (Test 2B) increased this
percentage to around 65%.

The initial tests using the QuEChERS method were based on the original procedures,
citrate, acetate, and the proposed method, as described in Table 2, identified as tests 3A, 4A,
5A, and 6A, respectively. Next, in order to assess the need for the extract cleaning step, the
same tests were repeated excluding the cleaning step (tests 3B–6B).

Looking at Figure 2, it can be seen that for all the pairs of tests carried out, there were no
significant differences in the percentage of compounds recovered and that tests 3B, 5B, and
6B, which did not use the extract cleaning step, showed the best results. Therefore, it can be
said that the extract cleaning step with dispersive sorbents did not improve the recovery
of the analytes evaluated. The primary secondary amine (PSA) sorbent has a bidentate
structure with a high chelating effect due to the presence of primary and secondary amino
groups, removing part of the coextractives. As a result, the retention of free fatty acids,
sugars, and pigments present in the matrix is very strong [74]. On the other hand, C18 is
a sorbent that is effective in removing starch and sugar from some samples [75]. These
coextractives are generally not present in soil and so the cleaning process did not improve
the recovery values. Based on these results, it can be concluded that the extract cleaning
step is not necessary, making the procedure quicker and reducing the cost of analysis.

Based on these initial results, new tests were carried out without using the extract
cleaning step, and the influence of adding water to the soil before extraction with acetonitrile
was evaluated according to tests 3C to 6C, described in Table 2. The addition of water to the
samples before the extraction stage is used to weaken the interactions of the analytes with
the matrix and ensure adequate partitioning in samples with low amounts of water [76].
Based on the results shown in Figure 2, it can be seen that in the tests where the sample was
hydrated, the number of compounds that showed satisfactory recovery values was higher
than in the tests where no water was added, reaching 77% of the compounds recovered in
the range between 70 and 120% using the QuEChERS acetate method.

The different QuEChERS methods were tested including 15 min of ultrasound in the
extraction stage (tests 3D–6D) and using a shaker for 15 min (tests 3E to 6E), as described
in Table 2, with the 15 min time chosen because it showed the best recovery results in
tests 1 and 2.
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The results shown in Figure 2 demonstrate an increase in the number of compounds
recovered in the range of 70 to 120% with the use of shaker or ultrasound for 15 min in all
the different QuEChERS methods used. In addition, it is worth noting that test 6E, based on
the proposed QuEChERS method and 15 min of shaking, showed the highest percentage
(86%) of compounds with satisfactory recovery, and was chosen for validation.

According to the results obtained, the best conditions used were as follows: a proce-
dure based on the proposed QuEChERS method, with ultrapure water added to the sample,
followed by extraction with acetonitrile acidified with acetic acid, shaking for 15 min, using
magnesium sulphate and sodium acetate in the partitioning stage, and without cleaning
the extracts.

3.2. Validation of the Method

The proposed method was evaluated for the determination of 75 pesticides and seven
veterinary drugs in agricultural soil. The validation parameters were obtained according
to SANTE [72]. Recovery tests were carried out at the spike levels of 10 or 25, 50, and
100 µg kg−1. For compounds that did not show a reasonable signal at a concentration of
10 µg kg−1, it was decided to use the spike level of 25 µg kg−1. The recovery and RSD
values obtained are shown in Table 3. From the results obtained, it can be observed that all
pesticides and veterinary drugs evaluated showed recovery between 70 and 120%, with
RSD ≤ 20%, in all spike levels, as recommended by SANTE guidelines [72].

The matrix effect in UHPLC–MS/MS systems stems from the suppression or enhance-
ment of the analytical response caused by the co-elution and consequent simultaneous
ionization of matrix constituents. Depending on the composition of the sample and the
properties of the analytes, the matrix extract (ME) can be observed to a lesser or greater
degree, directly affecting the accuracy of the method. Mild ionization or suppression effects
(0 to 20%) are considered negligible. When the ME is moderate (20–50%) or strong (>50%),
some approaches based on matrix effect compensation can be used, such as the diluted cali-
bration curve with blank extract [73]. The ME was calculated using the following equation:

ME(%) =

(
Smatrix
Ssolvent

− 1
)
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where Smatrix and Ssolvent are the slopes of the calibration curves prepared in the matrix
and solvent, respectively. Table 3 shows the matrix effect values obtained for the soil
sample. It can be seen that for most of the analytes the ME was not significant; however,
certain analytes showed moderate suppression (boscalid, carbofuran, malathion, monesin,
and monolinuron) or signal increase (bitertanol, carbaryl, chlorpropham and flutolanil,
methiocarb sulfone, paraoxon-ethyl, propargite, and tebuconazole) of the analytical signal.
In addition, a significant suppression effect was observed for salinomycin, and significant
signal increases for 2,4-D, buprofezin, chlorpyrifos methyl, dimethoate, fenpropathrin, fen-
propimorph, and mecarbam. It is known that the ME observed for the QuEChERS method
is commonly pronounced, since ionization suppression is greater, especially for complex
matrices [77]. Therefore, curves in the blank matrix extract were used to compensate for
the ME.

LOQ values were determined using the lowest point on the analytical curve for each
analyte, which, when spiked in the matrix, shows recovery results of between 70 and 120%
with RSD ≤ 20% [72]. The method LOQ value for most of the compounds was 10 µg kg−1.
To date, there is no specific legislation with maximum permitted limits (MRLs) for these
compounds in soil.

3.3. Application of the Validated Method

The developed method was applied to 60 soil samples collected in the central region
of the Rio Grande do Sul State, Brazil. Among the samples analyzed, 24 contained pes-
ticide residues in concentrations from 8 to 36 µg kg−1. Chloramphenicol was the only
veterinary drug found in four samples in concentrations of 12 to 25 µg kg−1. The fungicide
carbendazim was found in four samples at concentrations above 20 µg kg−1. Two samples
contained the fungicide tebuconazole above 25 µg kg−1, two contained the insecticide and
nematicide carbofuran from 8 to 12 µg kg−1, seven had the fungicide epoxiconazole from
8 to 16 µg kg−1, and seven had the insecticide imidacloprid from 15 to 36 µg kg−1. The
fungicides azoxystrobin and pyraclostrobin, and the insecticide profenofos, were found at
concentrations < LOQ in one, three, and one samples, respectively.

4. Conclusions

A new and comprehensive multiresidue method for the determination of 76 pesti-
cides and nine veterinary drugs in agricultural soil by UHPLC–MS/MS was successfully
validated using a modified QuEChERS method associated with a shaker. In addition, the
proposed method has the advantage of being simple to carry out, low-cost, and environ-
mentally friendly, since it uses a small amount of solvent. The absence of a cleaning step
makes it possible to use the proposed method for routine analysis in different laboratories.
Agricultural soil samples were used to verify the applicability of the validated method,
where 24 of the 60 samples contained residues of the pesticides and four samples contained
the veterinary drug chloramphenicol. It can be concluded that the method is suitable for
multiresidue determination of pesticides and veterinary drugs in agricultural soil and can
be applied in routine analysis.
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