Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Eo Extraction by Microwave-Assisted Hydrodistillation
2.3. GC–MS Analysis
2.4. Molecular Docking Protocol
2.5. Antidiabetic Activity
2.5.1. α-Amylase Inhibition Assay
2.5.2. α-Glucosidase Inhibition Test
2.5.3. Pancreatic Lipase Inhibition Test
2.5.4. Glycation Inhibition
2.6. Antimicrobial Activity
2.6.1. Microbial Strains
2.6.2. Disc-Diffusion Test
2.6.3. Microdilution Assay for MIC
2.6.4. MBC and MFC Tests
2.7. Antioxidant Activity
2.7.1. DPPH Assay
2.7.2. ABTS Scavenging Assay
2.7.3. FRAP Assay
2.7.4. β-Carotene Test
2.8. Statistical Analysis
3. Results and Discussion
3.1. GC-Characterization of CL-Eo
3.2. Molecular Docking Analysis
3.2.1. Prediction of the Dermatoprotective Activity of the Major Compounds in CL-Eo
3.2.2. Prediction of the Anti-Inflammatory Activity of the Major Compounds in CL-Eo
3.2.3. Prediction of the Antidiabetic Activity of the Major Compounds in CL-Eo
- -
- α-glucosidase inhibitory activity
- -
- α-amylase inhibitory activity
- -
- Lipase pancreatic
3.3. In Vitro Biological Investigations
3.3.1. In Vitro Inhibition of α-Amylase and α-Glucosidase Enzymes
3.3.2. In Vitro Inhibition of Pancreatic Lipase Enzyme
3.3.3. Glycation Inhibition
3.3.4. Antimicrobial Activity
3.3.5. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakanishi, K. A Brief History of Natural Products Chemistry. Compr. Nat. Prod. Chem. 1999, 1, 8. [Google Scholar]
- Abdallah, E.M. Antibacterial Activity of Hibiscus sabdariffa L. Calyces against Hospital Isolates of Multidrug Resistant Acinetobacter Baumannii. J. Acute Dis. 2016, 5, 512–516. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Al-Asmari, A.K.; Athar, M.T.; Kadasah, S.G. An Updated Phytopharmacological Review on Medicinal Plant of Arab Region: Apium Graveolens Linn. Pharmacogn. Rev. 2017, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential Oils of Lavandula Genus: A Systematic Review of Their Chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Tortosa, V.; Pietropaolo, V.; Brandi, V.; Macari, G.; Pasquadibisceglie, A.; Polticelli, F. Computational Methods for the Identification of Molecular Targets of Toxic Food Additives. Butylated Hydroxytoluene as a Case Study. Molecules 2020, 25, 2229. [Google Scholar] [CrossRef]
- Martiz, R.M.; Patil, S.M.; Thirumalapura Hombegowda, D.; Shbeer, A.M.; Alqadi, T.; Al-Ghorbani, M.; Ramu, R.; Prasad, A. Phyto-Computational Intervention of Diabetes Mellitus at Multiple Stages Using Isoeugenol from Ocimum Tenuiflorum: A Combination of Pharmacokinetics and Molecular Modelling Approaches. Molecules 2022, 27, 6222. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xu, S.; Ding, Y.; Li, L.; Huang, C.; Bao, M.; Li, S.; Wang, Q. Dissecting Causal Associations of Type 2 Diabetes with 111 Types of Ocular Conditions: A Mendelian Randomization Study. Front. Endocrinol. 2023, 14, 1307468. [Google Scholar] [CrossRef]
- Khursheed, R.; Singh, S.K.; Wadhwa, S.; Kapoor, B.; Gulati, M.; Kumar, R.; Ramanunny, A.K.; Awasthi, A.; Dua, K. Treatment Strategies against Diabetes: Success so Far and Challenges Ahead. Eur. J. Pharmacol. 2019, 862, 172625. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.-L.; Shen, H.-T.; Chen, S.-P.; Kuan, Y.-H. Protective Effect of Genkwanin against Lipopolysaccharide-Induced Acute Lung Injury in Mice with P38 Mitogen-Activated Protein Kinase and Nuclear Factor-κB Pathway Inhibition. J. Funct. Foods 2022, 98, 105271. [Google Scholar] [CrossRef]
- Bao, Y.; Sun, Y.-W.; Ji, J.; Gan, L.; Zhang, C.-F.; Wang, C.-Z.; Yuan, C.-S. Genkwanin Ameliorates Adjuvant-Induced Arthritis in Rats through Inhibiting JAK/STAT and NF-κB Signaling Pathways. Phytomedicine 2019, 63, 153036. [Google Scholar] [CrossRef] [PubMed]
- Eizirik, D.L.; Pasquali, L.; Cnop, M. Pancreatic β-Cells in Type 1 and Type 2 Diabetes Mellitus: Different Pathways to Failure. Nat. Rev. Endocrinol. 2020, 16, 349–362. [Google Scholar] [CrossRef]
- Benali, T.; Chtibi, H.; Bouyahya, A.; Khabbach, A.; Hammani, K. Detection of Antioxidant and Antimicrobial Activities in Phenol Components and Essential Oils of Cistus ladaniferus and Mentha suaveolens Extracts. Biomed. Pharmacol. J. 2020, 13, 603–612. [Google Scholar] [CrossRef]
- Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical Composition, in Vitro and in Silico Antioxidant Potential of Melissa Officinalis Subsp. Officinalis Essential Oil. Antioxidants 2021, 10, 1081. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Ashmawy, N.S.; Gad, H.A.; El-Nashar, H.A. Comparative Study of Essential Oils from Different Organs of Syzygium Cumini (Pamposia) Based on GC/MS Chemical Profiling and In Vitro Antiaging Activity. Molecules 2023, 28, 7861. [Google Scholar] [CrossRef]
- Al-Mouhajer, L.; Chabo, R.; Saab, A.M.; Saade, K.; Makhlouf, H. Antibacterial Activities of Essential Oils Isolated from Two Species Cupressus Arizonica Greene and Cupressus sempervirens L. (var. horizontalis and pyramidalis). Eur. J. Biomed. Pharm. Sci 2017, 4, 430–435. [Google Scholar]
- Bouyahya, A.; El Omari, N.; Bakha, M.; Aanniz, T.; El Menyiy, N.; El Hachlafi, N.; El Baaboua, A.; El-Shazly, M.; Alshahrani, M.M.; Al Awadh, A.A. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals 2022, 15, 1235. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control 2015, 54, 111–119. [Google Scholar]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Achbani, E.H.; Hammani, K. Chemical Composition and Antibacterial Activity of the Essential Oil and Extracts of Cistus ladaniferus Subsp. ladanifer and Mentha suaveolens against Phytopathogenic Bacteria and Their Ecofriendly Management of Phytopathogenic Bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Köse, M.D.; Tekin, B.N.; Bayraktar, O.; Duman, E.T.; Başpınar, Y. Antioxidant and Antimicrobial Properties of Cistus ladanifer. Int. J. Second. Metab. 2017, 4, 434–444. [Google Scholar] [CrossRef]
- Kosar, M.; Özek, T.; Göger, F.; Kürkcüoglu, M.; Hüsnü Can Baser, K. Comparison of Microwave-Assisted Hydrodistillation and Hydrodistillation Methods for the Analysis of Volatile Secondary Metabolites. Pharm. Biol. 2005, 43, 491–495. [Google Scholar] [CrossRef]
- Nouioura, G.; Ghneim, H.K.; Zbadi, L.; Maache, S.; Zouirech, O.; Danouche, M.; Aboul-Soud, M.A.; Giesy, J.P.; Lyoussi, B.; Derwich, E. Exploring the Essence of Celery Seeds (Apium graveolens L.): Innovations in Microwave-Assisted Hydrodistillation for Essential Oil Extraction Using In Vitro, In Vivo and In Silico Studies. Arab. J. Chem. 2024, 17, 105726. [Google Scholar]
- Frazão, D.F.; Raimundo, J.R.; Domingues, J.L.; Quintela-Sabarís, C.; Gonçalves, J.C.; Delgado, F. Cistus ladanifer (Cistaceae): A Natural Resource in Mediterranean-Type Ecosystems. Planta 2018, 247, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Sendra, E.; Pérez-Alvarez, J.A.; Fernández-López, J.; Amensour, M.; Abrini, J. Identification of Flavonoid Content and Chemical Composition of the Essential Oils of Moroccan Herbs: Myrtle (Myrtus communis L.), Rockrose (Cistus ladanifer L.) and Montpellier Cistus (Cistus monspeliensis L.). J. Essent. Oil Res. 2011, 23, 1–9. [Google Scholar] [CrossRef]
- Taibi, M.; Elbouzidi, A.; Ou-Yahia, D.; Dalli, M.; Bellaouchi, R.; Tikent, A.; Roubi, M.; Gseyra, N.; Asehraou, A.; Hano, C.; et al. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis Verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics 2023, 12, 655. [Google Scholar] [CrossRef] [PubMed]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C.; et al. LC–MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex Halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef]
- Jianu, C.; Goleț, I.; Stoin, D.; Cocan, I.; Bujancă, G.; Mișcă, C.; Mioc, M.; Mioc, A.; Șoica, C.; Lukinich-Gruia, A.T.; et al. Chemical Profile of Ruta Graveolens, Evaluation of the Antioxidant and Antibacterial Potential of Its Essential Oil, and Molecular Docking Simulations. Appl. Sci. 2021, 11, 11753. [Google Scholar] [CrossRef]
- di Giacomo, V.; Recinella, L.; Chiavaroli, A.; Orlando, G.; Cataldi, A.; Rapino, M.; Di Valerio, V.; Politi, M.; Antolini, M.D.; Acquaviva, A.; et al. Metabolomic Profile and Antioxidant/Anti-Inflammatory Effects of Industrial Hemp Water Extract in Fibroblasts, Keratinocytes and Isolated Mouse Skin Specimens. Antioxidants 2021, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- El Hachlafi, N.; Fikri-Benbrahim, K.; Al-Mijalli, S.H.; Elbouzidi, A.; Jeddi, M.; Abdallah, E.M.; Assaggaf, H.; Bouyahya, A.; Alnasser, S.M.; Attar, A.; et al. Tetraclinis Articulata (Vahl) Mast. Essential Oil as a Promising Source of Bioactive Compounds with Antimicrobial, Antioxidant, Anti-Inflammatory and Dermatoprotective Properties: In Vitro and In Silico Evidence. Heliyon 2024, 10, e23084. [Google Scholar] [CrossRef]
- Fadimu, G.J.; Farahnaky, A.; Gill, H.; Olalere, O.A.; Gan, C.-Y.; Truong, T. In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach. Foods 2022, 11, 3375. [Google Scholar] [CrossRef] [PubMed]
- Etsassala, N.G.E.R.; Badmus, J.A.; Marnewick, J.L.; Egieyeh, S.; Iwuoha, E.I.; Nchu, F.; Hussein, A.A. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Plectranthus Ecklonii Constituents. Antioxidants 2022, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.T.; Huynh, H.A.; Truong, D.V.; Tran, T.-D.; Vo, C.-V.T. Exploring Aurone Derivatives as Potential Human Pancreatic Lipase Inhibitors through Molecular Docking and Molecular Dynamics Simulations. Molecules 2020, 25, 4657. [Google Scholar] [CrossRef] [PubMed]
- Al-Mijalli, S.H.; Mrabti, H.N.; El Hachlafi, N.; El Kamili, T.; Elbouzidi, A.; Abdallah, E.M.; Flouchi, R.; Assaggaf, H.; Qasem, A.; Zengin, G. Integrated Analysis of Antimicrobial, Antioxidant, and Phytochemical Properties of Cinnamomum Verum: A Comprehensive In Vitro and In Silico Study. Biochem. Syst. Ecol. 2023, 110, 104700. [Google Scholar] [CrossRef]
- Thalapaneni, N.R.; Chidambaram, K.A.; Ellappan, T.; Sabapathi, M.L.; Mandal, S.C. Inhibition of Carbohydrate Digestive Enzymes by Talinum portulacifolium (Forssk) Leaf Extract. J. Complement. Integr. Med. 2008, 5, 6–16. [Google Scholar] [CrossRef]
- Sugiwati, S.; Setiasih, S.; Afifah, E. Antihyperglycemic Activity of the Mahkota Dewa Leaf Extracts as an Alpha-Glucosidase Inhibitor. Makara J. Health Res. 2009, 13, 74–78. [Google Scholar] [CrossRef]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry Polyphenols Inhibit Pancreatic Lipase Activity In Vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Vinson, J.A.; Howard III, T.B. Inhibition of Protein Glycation and Advanced Glycation End Products by Ascorbic Acid and Other Vitamins and Nutrients. J. Nutr. Biochem. 1996, 7, 659–663. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Mrabti, H.N.; Al-Mijalli, S.H.; Jeddi, M.; Abdallah, E.M.; Benkhaira, N.; Hadni, H.; Assaggaf, H.; Qasem, A.; Goh, K.W.; et al. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus Atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules 2023, 28, 5913. [Google Scholar] [CrossRef] [PubMed]
- Hombach, M.; Bloemberg, G.V.; Böttger, E.C. Effects of Clinical Breakpoint Changes in CLSI Guidelines 2010/2011 and EUCAST Guidelines 2011 on Antibiotic Susceptibility Test Reporting of Gram-Negative Bacilli. J. Antimicrob. Chemother. 2012, 67, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Mrabti, H.N.; El Hachlafi, N.; Al-Mijalli, S.H.; Jeddi, M.; Elbouzidi, A.; Abdallah, E.M.; Flouchi, R.; Assaggaf, H.; Qasem, A.; Zengin, G. Phytochemical Profile, Assessment of Antimicrobial and Antioxidant Properties of Essential Oils of Artemisia Herba-Alba Asso., and Artemisia Dracunculus L.: Experimental and Computational Approaches. J. Mol. Struct. 2023, 1294, 136479. [Google Scholar] [CrossRef]
- Jaradat, N.; Al-Maharik, N.; Abdallah, S.; Shawahna, R.; Mousa, A.; Qtishat, A. Nepeta Curviflora Essential Oil: Phytochemical Composition, Antioxidant, Anti-Proliferative and Anti-Migratory Efficacy against Cervical Cancer Cells, and α-Glucosidase, α-Amylase and Porcine Pancreatic Lipase Inhibitory Activities. Ind. Crops Prod. 2020, 158, 112946. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Radical Scavenging Ability of Polyphenolic Compounds towards DPPH Free Radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef] [PubMed]
- El Omari, N.; Sayah, K.; Fettach, S.; El Blidi, O.; Bouyahya, A.; Faouzi, M.E.A.; Kamal, R.; Barkiyou, M. Evaluation of in Vitro Antioxidant and Antidiabetic Activities of Aristolochia Longa Extracts. Evid.-Based Complement. Altern. Med. 2019, 2019, 7384735. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and Antioxidant Properties of the Essential Oils and Methanol Extract from Mentha longifolia L. Ssp. Longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Greche, H.; Mrabet, N.; Zrira, S.; Ismaïli-Alaoui, M.; Benjilali, B.; Boukir, A. The Volatiles of the Leaf Oil of Cistus ladanifer L. Var. albiflorus and Labdanum Extracts of Moroccan Origin and Their Antimicrobial Activities. J. Essent. Oil Res. 2009, 21, 166–173. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; Del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and Human Health: A Comprehensive Review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef]
- Al-Farhan, K.; Warad, I.; Al-Resayes, S.; Fouda, M.; Ghazzali, M. Synthesis, Structural Chemistry and Antimicrobial Activity of −(−) Borneol Derivative. Open Chem. 2010, 8, 1127–1133. [Google Scholar] [CrossRef]
- Ramalho, T.; Pacheco De Oliveira, M.; Lima, A.; Bezerra-Santos, C.; Piuvezam, M. Gamma-Terpinene Modulates Acute Inflammatory Response in Mice. Planta Med. 2015, 81, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Hachlafi, N.E.; Aanniz, T.; Menyiy, N.E.; Baaboua, A.E.; Omari, N.E.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Rev. Int. 2023, 39, 1799–1826. [Google Scholar] [CrossRef]
- El Karkouri, J.; Bouhrim, M.; Al Kamaly, O.M.; Mechchate, H.; Kchibale, A.; Adadi, I.; Amine, S.; Alaoui Ismaili, S.; Zair, T. Chemical Composition, Antibacterial and Antifungal Activity of the Essential Oil from Cistus ladanifer L. Plants 2021, 10, 2068. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Izquierdo, C.; Jordán Bueso, M.J.; Rodríguez-Molina, M.d.C.; Pulido, F. Spatial Variation in Yield, Chemical Composition, and Phytotoxic Activity of Cistus ladanifer Essential Oils. Chem. Biodivers. 2023, 20, e202300995. [Google Scholar] [CrossRef]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Chemical Composition and Herbicidal Activity of the Essential Oil from a Cistus ladanifer L. Population from Spain. Nat. Prod. Res. 2012, 26, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, M.; El Hachlafi, N.; El Fadili, M.; Benkhaira, N.; Al-Mijalli, S.H.; Kandsi, F.; Abdallah, E.M.; Ouaritini, Z.B.; Bouyahya, A.; Lee, L.-H. Antimicrobial, Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities of a Chemically Characterized Essential Oil from Lavandula Angustifolia Mill.: In Vitro and In Silico Investigations. Biochem. Syst. Ecol. 2023, 111, 104731. [Google Scholar] [CrossRef]
- Gomes, P.B.; Mata, V.G.; Rodrigues, A.E. Characterization of the Portuguese-Grown Cistus ladanifer Essential Oil. J. Essent. Oil Res. 2005, 17, 160–165. [Google Scholar] [CrossRef]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Adelusi, T.I.; Oyedele, A.-Q.K.; Boyenle, I.D.; Ogunlana, A.T.; Adeyemi, R.O.; Ukachi, C.D.; Idris, M.O.; Olaoba, O.T.; Adedotun, I.O.; Kolawole, O.E. Molecular Modeling in Drug Discovery. Inform. Med. Unlocked 2022, 29, 100880. [Google Scholar] [CrossRef]
- Abdanipour, A.; Nejatbakhsh, R.; Jafari Anarkooli, I.; Ghorbanlo, M.; Nikfar, A.; Noriyan, A. Prolifration and Anti-Apoptotic Effect of Hydroethanolic Extract of Lavandula Officinalis on Rat Neural Stem Cells. J. Adv. Med. Biomed. Res. 2016, 24, 43–52. [Google Scholar]
- Baysal, T.; Demirdöven, A. Lipoxygenase in Fruits and Vegetables: A Review. Enzym. Microb. Technol. 2007, 40, 491–496. [Google Scholar] [CrossRef]
- Brash, A.R. Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition of Substrate. J. Biol. Chem. 1999, 274, 23679–23682. [Google Scholar] [CrossRef]
- Haeggström, J.Z. Leukotriene Biosynthetic Enzymes as Therapeutic Targets. J. Clin. Investig. 2018, 128, 2680–2690. [Google Scholar] [CrossRef]
- Attjioui, M.; Ryan, S.; Ristic, A.K.; Higgins, T.; Goñi, O.; Gibney, E.R.; Tierney, J.; O’Connell, S. Comparison of Edible Brown Algae Extracts for the Inhibition of Intestinal Carbohydrate Digestive Enzymes Involved in Glucose Release from the Diet. J. Nutr. Sci. 2021, 10, e5. [Google Scholar] [CrossRef]
- Qurtam, A.A.; Mechchate, H.; Es-safi, I.; Al-zharani, M.; Nasr, F.A.; Noman, O.M.; Aleissa, M.; Imtara, H.; Aleissa, A.M.; Bouhrim, M.; et al. Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021, 13, 1818. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-Safi, I.; Bourhia, M.; Kyrylchuk, A.; El Moussaoui, A.; Conte, R.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; et al. In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves. Molecules 2020, 25, 5073. [Google Scholar] [CrossRef]
- Suvd, D.; Fujimoto, Z.; Takase, K.; Matsumura, M.; Mizuno, H. Crystal Structure of Bacillus Stearothermophilus A-Amylase: Possible Factors Determining the Thermostability1. J. Biochem. 2001, 129, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Aghajari, N.; Haser, R.; Feller, G.; Gerday, C. Crystal Structures of the Psychrophilic α-Amylase from Alteromonas Haloplanctis in Its Native Form and Complexed with an Inhibitor. Protein Sci. 1998, 7, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Ragunath, C.; Manuel, S.G.A.; Kasinathan, C.; Ramasubbu, N. Structure-Function Relationships in Human Salivary α-Amylase: Role of Aromatic Residues in a Secondary Binding Site. Biologia 2008, 63, 1028–1034. [Google Scholar] [CrossRef]
- Ragunath, C.; Manuel, S.G.A.; Venkataraman, V.; Sait, H.B.R.; Kasinathan, C.; Ramasubbu, N. Probing the Role of Aromatic Residues at the Secondary Saccharide-Binding Sites of Human Salivary α-Amylase in Substrate Hydrolysis and Bacterial Binding. J. Mol. Biol. 2008, 384, 1232–1248. [Google Scholar] [CrossRef]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- İnan, Y.; Akyüz, S.; Kurt-Celep, I.; Celep, E.; Yesilada, E. Influence of in Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species. Molecules 2021, 26, 5322. [Google Scholar] [CrossRef] [PubMed]
- Sayah, K.; Marmouzi, I.; Naceiri Mrabti, H.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus Monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. BioMed Res. Int. 2017, 2017, 2789482. [Google Scholar] [CrossRef]
- Hitl, M.; Bijelić, K.; Stilinović, N.; Božin, B.; Srđenović-Čonić, B.; Torović, L.; Kladar, N. Phytochemistry and Antihyperglycemic Potential of Cistus salviifolius L., Cistaceae. Molecules 2022, 27, 8003. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.C.; Chua, K.H.; Ravishankar Ram, M.; Kuppusamy, U.R. Monoterpenes: Novel Insights into Their Biological Effects and Roles on Glucose Uptake and Lipid Metabolism in 3T3-L1 Adipocytes. Food Chem. 2016, 196, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Kochar Kaur, K.; Allahbadia, G.; Singh, M. Monoterpenes-A Class of Terpenoid Group of Natural Products as a Source of Natural Antidiabetic Agents in the Future—A Review. CPQ Nutr. 2019, 3, 1–21. [Google Scholar]
- Kaur, G.; Tharappel, L.J.P.; Kumawat, V. Evaluation of Safety and in Vitro Mechanisms of Anti-Diabetic Activity of β-Caryophyllene and L-Arginine. J. Biol. Sci. 2018, 18, 124–134. [Google Scholar] [CrossRef]
- Aazza, S.; El-Guendouz, S.; Miguel, M.G.; Dulce Antunes, M.; Leonor Faleiro, M.; Isabel Correia, A.; Cristina Figueiredo, A. Antioxidant, Anti-Inflammatory and Anti-Hyperglycaemic Activities of Essential Oils from Thymbra Capitata, Thymus Albicans, Thymus Caespititius, Thymus Carnosus, Thymus Lotocephalus and Thymus Mastichina from Portugal. Nat. Prod. Commun. 2016, 11, 1029–1038. [Google Scholar] [CrossRef]
- Mehdizadeh, L.; Moghaddam, M. Chapter 10-Essential Oils: Biological Activity and Therapeutic Potential. In Holban Probiotic, and Unconventional Foods; Academic Press: Cambridge, MA, USA, 2018; pp. 167–179. ISBN 978-0-12-814625-5. [Google Scholar]
- Fruh, S.M. Obesity: Risk Factors, Complications, and Strategies for Sustainable Long-term Weight Management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Aji, O.R.; Hudaya, R.A.; Putri, D.A. In Vitro Pancreatic Lipase Inhibitor Activity of Mangifera Foetida Leaves Extract. J. Biodjati 2021, 6, 82–92. [Google Scholar] [CrossRef]
- Benrahou, K.; Naceiri Mrabti, H.; Bouyahya, A.; Daoudi, N.E.; Bnouham, M.; Mezzour, H.; Mahmud, S.; Alshahrani, M.M.; Obaidullah, A.J.; Cherrah, Y.; et al. Inhibition of α -Amylase, α -Glucosidase, and Lipase, Intestinal Glucose Absorption, and Antidiabetic Properties by Extracts of Erodium Guttatum. Evid.-Based Complement. Altern. Med. 2022, 2022, 5868682. [Google Scholar] [CrossRef] [PubMed]
- Vlassopoulos, A.; Mikrou, T.; Papantoni, A.; Papadopoulos, G.; Kapsokefalou, M.; Mallouchos, A.; Gardeli, C. The Effect of Terpenoid Compounds on the Formation of Advanced Glycation Endproducts (AGEs) in Model Systems. Appl. Sci. 2022, 12, 908. [Google Scholar] [CrossRef]
- Asgary, S.; Naderi, G.A.; Sahebkar, A.; Ardekani, M.R.S.; Kasher, T.; Aslani, S.; Airin, A.; Emami, S.A. Essential Oils from the Fruits and Leaves of Juniperus Sabina Possess Inhibitory Activity against Protein Glycation and Oxidative Stress: An In Vitro Phytochemical Investigation. J. Essent. Oil Res. 2013, 25, 70–77. [Google Scholar] [CrossRef]
- Bernacka, K.; Bednarska, K.; Starzec, A.; Mazurek, S.; Fecka, I. Antioxidant and Antiglycation Effects of Cistus × Incanus Water Infusion, Its Phenolic Components, and Respective Metabolites. Molecules 2022, 27, 2432. [Google Scholar] [CrossRef] [PubMed]
- Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- ALrajhi, M.; Al-Rasheedi, M.; Eltom, S.E.M.; Alhazmi, Y.; Mustafa, M.M.; Ali, A.M. Antibacterial Activity of Date Palm Cake Extracts (Phoenix Dactylifera). Cogent Food Agric. 2019, 5, 1625479. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, W.; Guan, Y.; Saren, G. Effects of Plant Essential Oil Treatment on the Growth of Pathogenic Fungi and the Activity of Defense-Related Enzymes of Fungi-Inoculated Blueberry. Horticulturae 2024, 10, 318. [Google Scholar] [CrossRef]
- Ferreira, S.; Santos, J.; Duarte, A.; Duarte, A.P.; Queiroz, J.A.; Domingues, F.C. Screening of Antimicrobial Activity of Cistus ladanifer and Arbutus unedo Extracts. Nat. Prod. Res. 2012, 26, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L. Pharmacologic Principles. Equine Intern. Med. 2018, 4, 79–137. [Google Scholar]
- Barros, L.; Duenas, M.; Alves, C.T.; Silva, S.; Henriques, M.; Santos-Buelga, C.; Ferreira, I.C. Antifungal Activity and Detailed Chemical Characterization of Cistus Ladanifer Phenolic Extracts. Ind. Crops Prod. 2013, 41, 41–45. [Google Scholar] [CrossRef]
- Rihab, G. Valorisation of Cistus ladanifer L. Biomass as a Source of Compounds for Bio-Based Industries. Ph.D. Thesis, Polytechnic Institute of Bragança, Bragança, Portugal, 2022. [Google Scholar]
- Bouabidi, M.; Salamone, F.L.; Gadhi, C.; Bouamama, H.; Speciale, A.; Ginestra, G.; Pulvirenti, L.; Siracusa, L.; Nostro, A.; Cristani, M. Efficacy of Two Moroccan Cistus Species Extracts against Acne Vulgaris: Phytochemical Profile, Antioxidant, Anti-Inflammatory and Antimicrobial Activities. Molecules 2023, 28, 2797. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Jangle, S.N. Evaluation of DPPH Radical Scavenging Activity and Reducing Power of Four Selected Medicinal Plants and Their Combinations. Int. J. Pharm. Sci. Drug Res. 2012, 4, 143–146. [Google Scholar]
- Nouioura, G.; Tourabi, M.; El Ghouizi, A.; Kara, M.; Assouguem, A.; Saleh, A.; Kamaly, O.A.; El Ouadrhiri, F.; Lyoussi, B.; Derwich, E.H. Optimization of a New Antioxidant Formulation Using a Simplex Lattice Mixture Design of Apium Graveolens L., Coriandrum Sativum L., and Petroselinum Crispum M. Grown in Northern Morocco. Plants 2023, 12, 1175. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, B.B.; Frescura, L.M.; Duarte, R.; Villetti, M.A.; Da Rosa, M.B. A Critical Examination of the DPPH Method: Mistakes and Inconsistencies in Stoichiometry and IC50 Determination by UV–Vis Spectroscopy. Anal. Chim. Acta 2021, 1157, 338398. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Shahidi, F. Revisiting DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Assay as a Useful Tool in Antioxidant Evaluation: A New IC100 Concept to Address Its Limitations. J. Food Bioact. 2019, 7, 36–42. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef]
- Zidane, H.; Elmiz, M.; Aouinti, F.; Tahani, A.; Wathelet, J.; Sindic, M.; Elbachiri, A. Chemical Composition and Antioxidant Activity of Essential Oil, Various Organic Extracts of Cistus Ladanifer and Cistus Libanotis Growing in Eastern Morocco. Afr. J. Biotechnol. 2013, 12, 5314–5320. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Al-Jaber, H.I.; Tashtoush, H.I.; Lahham, J.N. Antioxidant Activity of Crude Extracts and Essential Oils from Flower Buds and Leaves of Cistus Creticus and Cistus salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
- Upadhyay, N.; Singh, V.K.; Dwivedy, A.K.; Das, S.; Chaudhari, A.K.; Dubey, N.K. Cistus ladanifer L. Essential Oil as a Plant Based Preservative against Molds Infesting Oil Seeds, Aflatoxin B1 Secretion, Oxidative Deterioration and Methylglyoxal Biosynthesis. LWT 2018, 92, 395–403. [Google Scholar] [CrossRef]
N.pic | Compounds | Formula | MW (g/mol) | T (min) | % Area |
---|---|---|---|---|---|
1 | Tricyclene | C10H16 | 136.23 | 5.015 | 0.30 |
2 | alpha-Thujene | C10H16 | 136.23 | 5.072 | 0.26 |
3 | alpha-Pinene | C10H16 | 136.23 | 5.201 | 3.76 |
4 | Camphene | C10H16 | 136.23 | 5.463 | 6.52 |
5 | Sabinene | C10H16 | 136.23 | 5.928 | 0.86 |
6 | beta-pinene | C10H16 | 136.23 | 6.101 | 0.34 |
7 | (+)-4-Carene | C10H16 | 136.23 | 6.575 | 0.52 |
8 | beta-Cymene | C10H14 | 134.22 | 6.724 | 4.62 |
9 | D-Limonene | C10H16 | 136.23 | 6.783 | 1.30 |
10 | Eucalyptol | C10H18O | 154.25 | 6.832 | 2.02 |
11 | 2-Carene | C10H16 | 136.23 | 7.777 | 0.27 |
12 | beta.-Linalool | C10H18O | 154.25 | 7.977 | 3.96 |
13 | Camphor | C10H16O | 152.23 | 8.777 | 1.73 |
14 | Linderol | C10H18O | 154.25 | 9.187 | 17.76 |
15 | Borneol | C10H18O | 154.25 | 9.315 | 13.78 |
16 | gamma-Terpinen | C10H16 | 136.23 | 9.550 | 17.55 |
17 | alpha.-Citral | C10H16O | 152.23 | 10.076 | 0.63 |
18 | Thymol methyl ether | C10H16O | 164.24 | 10.259 | 1.84 |
19 | p-Cumic aldehyde | C10H12O | 148.2 | 10.543 | 0.21 |
20 | Isoborneol, acetate | C12H20O2 | 196.29 | 10.916 | 2.30 |
21 | Thymol | C10H14O | 150.22 | 11.150 | 3.11 |
22 | Carvacrol | C10H14O | 150.22 | 11.318 | 7.93 |
23 | Caryophyllene | C15H24 | 204.35 | 13.118 | 7.06 |
24 | Cedr-8-ene | C15H24 | 204.35 | 14.306 | 0.74 |
Yield (%, v/w) | 4.15 ± 0.03 | ||||
Total identified (%) | 99.37 | ||||
Monoterpene hydrocarbons | 36.3 | ||||
Oxygenated monoterpenes | 55.29 | ||||
Sesquiterpene hydrocarbons | 7.80 | ||||
Oxygenated sesquiterpenes | - | ||||
Other | - |
N° | Compounds | 5I3B | 1N8Q | 5NN5 | 1SMD | 1LPB |
---|---|---|---|---|---|---|
(Dermatoprotective) | (Anti-Inflammatory) | (Anti-Diabetic) | ||||
Free Binding Energy (Kcal/mol) * | ||||||
- | Native Ligand | −5.5 | −5.9 | −7.4 | −7.8 | −7.8 |
1 | Linderol | −4.6 | −6.2 | −5.3 | −5.5 | −5 |
2 | γ-Terpinene | −4.6 | −6.4 | −7 | −5.3 | −5.1 |
3 | Borneol | −5 | −5.7 | −5.2 | −5.5 | −5.1 |
4 | Carvacrol | −5.1 | −6 | −5.8 | −6.4 | −5.6 |
5 | Caryophyllene | −5.3 | −6.5 | −5.7 | −7.8 | −7.9 |
6 | Camphene | −4.6 | −6.1 | −5.3 | −5.5 | −5 |
7 | β-Linalool | −4.4 | −4.7 | −5.1 | −5 | −5 |
8 | α-Pinene | −4.8 | −5.6 | −5.2 | −5.4 | −5.1 |
9 | β-Cymene | −5.8 | −5.4 | −6.2 | −5.7 | −5.6 |
10 | Thymol | −5 | −5.6 | −5.7 | −5.9 | −5.8 |
11 | Isoborneol, acetate | −5.3 | −5.8 | −5.4 | −6 | −5.4 |
12 | Eucalyptol | −4.8 | −5.1 | −5.4 | −5.4 | −5.1 |
13 | Thymol methyl ether | −5.1 | −5.2 | −5.4 | −5.4 | −5.4 |
14 | Camphor | −5 | −5.3 | −5.6 | −5.4 | −5.1 |
Microorganisms | Mean Zone of Inhibition (mm ± SD) | ||
---|---|---|---|
CL-Eo (10 μL/disc) | Erythromycin (15 μg/disc) | Clotrimazole (20 μg/disc) | |
Listeria innocua ATCC 33090 | 13.48 ± 1.65 a | 13.7 ± 1.56 a | NT |
Escherichia coli O157:H7 | 12.47 ± 0.61 b | 10.02 ± 0.07 a | NT |
Proteus mirabilis ATCC 25933 | 17.16 ± 1.04 b | 14.80 ± 1.73 a | NT |
Candida albicans (clinical isolate) | 18.01 ± 0.91 a | NT | 22.05 ± 0.73 b |
Candida tropicalis (clinical isolate) | 16.45 ± 0.32 a | NT | 18.23 ± 0.46 b |
Bacteria | CL-Eo (% v/v) | Erythromycin (µg/mL) | ||||
---|---|---|---|---|---|---|
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
L. innocua | 0.25 | 0.5 | 2 | 256 | 256 | 1 |
E. coli O157:H7 | 4 | 4 | 1 | 1024 | 1024 | 1 |
P. mirabilis | 0.25 | 0.25 | 1 | 128 | 1024 | 4 |
Yeasts | CL-Eo (% v/v) | Clotrimazole (µg/mL) | ||||
---|---|---|---|---|---|---|
MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | |
C. albicans | 2 | 2 | 1 | 0.25 | 0.25 | 1 |
C. tropicalis | 8 | 16 | 2 | 0.50 | 0.50 | 1 |
Tests/Samples | IC50 (µg/mL) | ||
---|---|---|---|
CL-Eo | BHT | Tocopherol | |
DPPH | 178.29± 2.05 c | 56.11 ± 0.38 a | 102.45 ± 2.04 b |
ABTS | 134.02 ± 0.67 c | 74.90 ± 2.56 b | 48.01 ± 1.17 a |
FRAP | 321.71 ± 4.66 c | 32.01 ± 1.28 a | 86.22 ± 4.92 b |
Beta-carotene | 246.14 ± 6.28 c | 50.4 ± 4.31 a | 157.6 ± 5.23 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hachlafi, N.; Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Nouioura, G.; Abdallah, E.M.; Abdnim, R.; Bnouham, M.; Al-Mijalli, S.H.; Naceiri Mrabti, H.; et al. Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking. Separations 2024, 11, 199. https://doi.org/10.3390/separations11070199
El Hachlafi N, Kandsi F, Elbouzidi A, Lafdil FZ, Nouioura G, Abdallah EM, Abdnim R, Bnouham M, Al-Mijalli SH, Naceiri Mrabti H, et al. Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking. Separations. 2024; 11(7):199. https://doi.org/10.3390/separations11070199
Chicago/Turabian StyleEl Hachlafi, Naoufal, Fahd Kandsi, Amine Elbouzidi, Fatima Zahra Lafdil, Ghizlane Nouioura, Emad M. Abdallah, Rhizlan Abdnim, Mohamed Bnouham, Samiah Hamad Al-Mijalli, Hanae Naceiri Mrabti, and et al. 2024. "Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking" Separations 11, no. 7: 199. https://doi.org/10.3390/separations11070199
APA StyleEl Hachlafi, N., Kandsi, F., Elbouzidi, A., Lafdil, F. Z., Nouioura, G., Abdallah, E. M., Abdnim, R., Bnouham, M., Al-Mijalli, S. H., Naceiri Mrabti, H., & Fikri-Benbrahim, K. (2024). Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking. Separations, 11(7), 199. https://doi.org/10.3390/separations11070199