A Simple and Efficient Approach to Determine Lithium and Multi-Elements in Lithium-Bearing Clay Minerals through a Partial Extraction Using Ammonium Hydrogen Fluoride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Digestion
2.3. ICP-OES and ICP-MS Analysis
2.4. XRD Analysis
3. Results and Discussion
3.1. Total Li and Multi-Elements’ Content and XRD Spectrum of Li-Bearing Clay Minerals
3.2. Direct Leaching of Li-Bearing Clay Minerals
3.3. Partial Extraction of Li-Bearing Clay Minerals
3.4. Extraction Efficiency of Multi-Elements
3.5. The Reproducibility of Partial Extraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarascon, J.-M. Is lithium the new gold? Nat. Chem. 2010, 2, 510. [Google Scholar] [CrossRef] [PubMed]
- Grey, C.P.; Hall, D.S. Prospects for lithium-ion batteries and beyond—A 2030 vision. Nat. Commun. 2020, 11, 6279. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Sanjuan, B.; Gourcerol, B.; Millot, R.; Rettenmaier, D.; Jeandel, E.; Rombaut, A. Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources. Geothermics 2022, 101, 102385. [Google Scholar] [CrossRef]
- Bazamad, M.; Tangestani, M.H.; Asadi, S.; Staubwasser, M. Investigating the geochemical behavior and exploration potential of lithium in brines; A case study of Bam salt plug, Zagros Zone, southern Iran. Sci. Rep. 2023, 13, 21567. [Google Scholar] [CrossRef] [PubMed]
- Coffey, D.M.; Munk, L.A.; Ibarra, D.E.; Butler, K.L.; Boutt, D.F.; Jenckes, J. Lithium Storage and Release From Lacustrine Sediments: Implications for Lithium Enrichment and Sustainability in Continental Brines. Geochem. Geophys. Geosyst. 2021, 22, e2021GC009916. [Google Scholar] [CrossRef]
- Ling, K.; Wen, H.; Zhang, Q.; Luo, C.; Gu, H.; Du, S.; Yu, W. Super-enrichment of lithium and niobium in the upper Permian Heshan Formation in Pingguo, Guangxi, China. Sci. China Earth Sci. 2021, 64, 753–772. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Cheng, H. Recent advances in lithium extraction from lithium-bearing clay minerals. Hydrometallurgy 2023, 217, 106025. [Google Scholar] [CrossRef]
- Prasad, A.D.; Rastogi, L.; Thangavel, S.; Dash, K. A Single Step Acid Assisted Microwave Digestion Method for the Complete Dissolution of Bauxite and Quantitation of its Composition (Al2O3, Fe2O3, SiO2, TiO2, Cr2O3, MgO, MnO and V2O5) by ICP-AES. Geostand. Geoanal. Res. 2023, 47, 403–413. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples. Spectrochim. Acta Part B At. Spectrosc. 2019, 160, 105690. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; He, T.; Zhang, W.; Zong, K.; Luo, T.; Qiu, X.; Gao, Y.; Li, M. Evaluation of the digestion capability of ammonium bifluoride for the determination of major and trace elements in Ti-rich minerals by ICP-MS. J. Anal. At. Spectrom. 2023, 38, 1146–1154. [Google Scholar]
- He, T.; Li, M.; Hu, Z.; Zhang, W.; Chen, H.; Wang, Z.; Liu, Y. Quantification of Cl, Br and I in Geological Materials by NH4F Digestion: Comparison with Rapid Acid Digestion. Geostand. Geoanal. Res. 2023, 47, 155–168. [Google Scholar]
- Zhang, C.; Zhang, W.; Hu, Z.; He, T.; Liu, Y.; Chen, H. An Improved Procedure for the Determination of Trace Elements in Silicate Rocks Using NH4HF2 Digestion. Geostand. Geoanal. Res. 2022, 46, 21–35. [Google Scholar]
- Zhang, W.; Hu, Z.; Liu, Y.; Chen, H.; Gao, S.; Gaschnig, R.M. Total Rock Dissolution Using Ammonium Bifluoride (NH4HF2) in Screw-Top Teflon Vials: A New Development in Open-Vessel Digestion. Anal. Chem. 2012, 84, 10686–10693. [Google Scholar] [PubMed]
- Újvári, G.; Klötzli, U.; Horschinegg, M.; Wegner, W.; Hippler, D.; Kiss, G.I.; Palcsu, L. Rapid decomposition of geological samples by ammonium bifluoride (NH4HF2) for combined Hf-Nd-Sr isotope analyses. Rapid Commun. Mass Spectrom. 2021, 35, e9081. [Google Scholar]
- Magaldi, T.T.; Navarro, M.S.; Enzweiler, J. Assessment of Dissolution of Silicate Rock Reference Materials with Ammonium Bifluoride and Nitric Acid in a Microwave Oven. Geostand. Geoanal. Res. 2019, 43, 189–208. [Google Scholar]
- O’Hara, M.J.; Kellogg, C.M.; Parker, C.M.; Morrison, S.S.; Corbey, J.F.; Grate, J.W. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis. Chem. Geol. 2017, 466, 341–351. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, W.; Liu, Y.; Chen, H.; Gaschnig, R.M.; Zong, K.; Li, M.; Gao, S.; Hu, S. Rapid bulk rock decomposition by ammonium fluoride (NH4F) in open vessels at an elevated digestion temperature. Chem. Geol. 2013, 355, 144–152. [Google Scholar] [CrossRef]
- GBW07152 Lithium Ore-National Sharing Platform for Reference Materials. Available online: https://www.ncrm.org.cn/Web/OrderingEn/MaterialDetail?autoID=7200 (accessed on 30 May 2024).
- GBW07735 Lithium Ore-National Sharing Platform for Reference Materials. Available online: https://www.ncrm.org.cn/Web/Material/Components?autoID=23421&pageIndex=5 (accessed on 30 May 2024).
- Chen, S.; Wang, X.; Niu, Y.; Sun, P.; Duan, M.; Xiao, Y.; Guo, P.; Gong, H.; Wang, G.; Xue, Q. Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS. Sci. Bull. 2017, 62, 277–289. [Google Scholar] [CrossRef]
- Wang, G.; Xu, J.; Ran, L.; Zhu, R.; Ling, B.; Liang, X.; Kang, S.; Wang, Y.; Wei, J.; Ma, L.; et al. A green and efficient technology to recover rare earth elements from weathering crusts. Nat. Sustain. 2023, 6, 81–92. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, H.; Xiong, K.; Yu, C.; Cheng, H. Structural transformation and dehydroxylation of clay minerals in lithium-bearing clay. J. Therm. Anal. Calorim. 2022, 147, 13231–13237. [Google Scholar] [CrossRef]
Elements | Wavelength (nm) |
---|---|
Li | 670.7 |
Al | 394.4 |
Ca | 318.1 |
Cr | 267.7 |
Fe | 259.9 |
K | 766.4 |
Mg | 279.0 |
Mn | 257.6 |
Na | 589.5 |
P | 214.9 |
Sr | 407.7 |
Ti | 337.2 |
V | 292.4 |
Elements | Isotopes |
---|---|
Be | 9Be |
Co | 59Co |
Cs | 133Cs |
Cu | 63Cu |
Ga | 71Ga |
Ni | 60Ni |
Rb | 85Rb |
Major Elements * | Content (%) | Trace Elements | Content (μg/g) |
---|---|---|---|
Li2O | 0.49 | Be | 3.43 |
Al2O3 | 40.51 | Co | 9.65 |
CaO | 0.21 | Cr | 101.15 |
TFe2O3 | 1.10 | Cs | 11.07 |
K2O | 0.61 | Cu | 29.80 |
MgO | 1.03 | Ga | 41.57 |
Na2O | 0.22 | Mn | 15.24 |
SiO2 | 39.53 | Ni | 94.30 |
TiO2 | 1.35 | P | 285.10 |
Pb | 28.60 | ||
Rb | 21.64 | ||
Sr | 139.64 | ||
V | 180.74 | ||
Zn | 18.70 |
Elements | Extraction Efficiency (%) | Elements | Extraction Efficiency (%) |
---|---|---|---|
Al | 50.47 | Ga | 62.89 |
Be | 86.86 | Mg | 75.94 |
Ca | 90.43 | Mn | 91.32 |
Co | 78.82 | Ni | 77.06 |
Cr | 65.01 | P | 88.73 |
Cs | 51.03 | Rb | 64.78 |
Cu | 62.68 | Sr | 73.81 |
Elements | Li | Al | Be | Ca | Co | Cr | Cs | Cu | Fe |
Precision (RSD, %; n = 6) | 2.12 | 5.53 | 7.34 | 1.97 | 4.73 | 3.12 | 6.49 | 5.00 | 2.40 |
Elements | Ga | Mg | Mn | Ni | P | Rb | Sr | V | |
Precision (RSD, %; n = 6) | 4.42 | 2.27 | 2.08 | 3.73 | 1.63 | 5.67 | 2.69 | 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, Q.; Chen, Z.; Fang, X.; Yu, X.; Li, G.; Chen, D. A Simple and Efficient Approach to Determine Lithium and Multi-Elements in Lithium-Bearing Clay Minerals through a Partial Extraction Using Ammonium Hydrogen Fluoride. Separations 2024, 11, 200. https://doi.org/10.3390/separations11070200
Zhang F, Zhang Q, Chen Z, Fang X, Yu X, Li G, Chen D. A Simple and Efficient Approach to Determine Lithium and Multi-Elements in Lithium-Bearing Clay Minerals through a Partial Extraction Using Ammonium Hydrogen Fluoride. Separations. 2024; 11(7):200. https://doi.org/10.3390/separations11070200
Chicago/Turabian StyleZhang, Feige, Qinfeng Zhang, Zhigui Chen, Xiaoqing Fang, Xiaoqi Yu, Guangyi Li, and Di Chen. 2024. "A Simple and Efficient Approach to Determine Lithium and Multi-Elements in Lithium-Bearing Clay Minerals through a Partial Extraction Using Ammonium Hydrogen Fluoride" Separations 11, no. 7: 200. https://doi.org/10.3390/separations11070200
APA StyleZhang, F., Zhang, Q., Chen, Z., Fang, X., Yu, X., Li, G., & Chen, D. (2024). A Simple and Efficient Approach to Determine Lithium and Multi-Elements in Lithium-Bearing Clay Minerals through a Partial Extraction Using Ammonium Hydrogen Fluoride. Separations, 11(7), 200. https://doi.org/10.3390/separations11070200