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Abstract: Lithium (Li) is vital to the world economy as an irreplaceable element in new-generation
sustainable energy applications. Quantifying Li levels in clay minerals, a key new resource, supports
extensive mineralization surveys. The major limitation in these analyses is complete decomposition,
which often requires the use of strong acids and is labor-intensive, particularly in batch processing.
This paper presents a partial extraction strategy for quantifying Li and multiple elements, employing
ammonium hydrogen fluoride to extract from clay minerals while avoiding the use of various strong
acids. Following extraction, the efficiency for Li reaches 98.61%, with values ranging from 62.68% to
91.43% for multiple elements including three major elements (Ca, Fe, Mg) and eleven trace elements
(Be, Co, Cr, Cu, Ga, Mn, Ni, P, Rb, Sr, V), demonstrating favorable precision (RSD below 7.34%).
This approach offers a promising tool for a simple and efficient batch analysis in the survey of
mineralization in Li-bearing clay deposits.

Keywords: lithium; lithium-bearing clay; partial extraction; ammonium hydrogen fluoride

1. Introduction

Lithium (Li), the lightest solid element (ρ = 0.53 g cm−3 at 20 ◦C), exhibits the smallest
ionic radius among all alkali metals and the highest electrochemical potential [1]. Li is
crucial to the world economy due to its widespread applications in various industries [2],
emerging as an irreplaceable element for many high-tech applications, especially in new-
generation sustainable energy technologies such as high-capacity energy storage and new-
energy vehicles [3,4]. Consequently, demand for Li continues to grow, putting additional
pressure on the Li mining industry. According to the United States Geological Survey
(USGS), the identified global Li resources exceeded 86 Mt in 2020, with annual Li production
reaching 82,000 tons. Brine and pegmatite are the dominant economic lithium deposits,
which support 93% of the global demand [5–7]. However, mining companies display great
eagerness to explore Li deposits due to high profit as the price of spot-battery-grade lithium
carbonate is near RMB 100 kilo for each ton.

The occurrence of Li in clay minerals, predominantly in kaolinite, has been sug-
gested as a potential new resource [8,9]. Therefore, quantifying Li levels in clay minerals
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is critical when surveying for mineralization. To convert a solid mineral sample to an
adequate homogeneity solution, which is suitable for an accurate and stable chemical
analysis by an analytical instrument, digestion is the most ordinary sample pretreatment.
Various digestion methods are used in a routine analysis of geological samples across
different laboratories, such as open vessel acid digestions, microwave dissolution [10], and
high-pressure (bomb) digestions [11]. Complete decomposition is the prerequisite for a
geological sample chemical analysis, but it is limited by environmental and efficiency issues
considering a variety of strong inorganic acids’ consumption, which is a corrosive and
labor-intensive complex process, especially in a batch analysis. For example, decomposition
by an open vessel requires four types of strong inorganic acids, namely hydrofluoric acid
(HF), hydrochloric acid (HCl), nitric acid (HNO3), and perchloric acid (HClO4), which are
operator-endangering and environmentally polluting. Owing to the similar decomposi-
tional capacity with HF and higher boiling point (239.5 ◦C), a rapid and simple digestion
technique using solid ammonium bifluoride (NH4HF2) [12–14] has been developed to
digest refractory geological materials such as zircon for 3 h at 230 ◦C [15]. NH4HF2 offers
several advantages, including efficiency, safety, simple operation, and low blanks [16–19],
importantly avoiding the use of corrosive and toxic HF acid typically used in traditional
acid digestion.

Unlike academic research, the investigation of a target element with some associated
elements instead of all elements in mineral samples is more economic and time-efficient.
Partial extractions, which control the dissolution of specific phases used to investigate the
distribution of target elements, have been widely employed in geochemical exploration. It
is imperative to establish a simple and efficient approach applicable to the newly concerned
Li-bearing-clay-type minerals. This study developed a simple partial extraction approach
using NH4HF2 for Li and multiple associated elements. A detailed comparison of the
different extraction behaviors of Li was conducted, and the extraction efficiency and
precision of the established approach were verified, showcasing its effectiveness in a batch
analysis of mineral surveying targeting Li-bearing clay minerals.

2. Materials and Methods
2.1. Materials and Reagents

Citric acid (C6H8O7), ammonium chloride (NH4Cl), ammonium sulfate ((NH4)2SO4),
ferric chloride (FeCl3), ferric nitrate (Fe(NO3)3), and ammonium hydrogen fluoride
((NH4)HF2) were all purchased from Sinopharm Chemical Reagent (Shanghai, China).
Ferric sulfate (Fe2(SO4)3) was purchased from Kemiou Chemical Reagent (Tianjin, China).
HF, HCl, HNO3, HClO4 and sulfuric acid (H2SO4) were purchased from Zhongtian Chem
(Wuhan, China). Except for HNO3 and (NH4)HF2, which are guaranteed reagent grades,
all other reagents are of analytical grades. All water used was deionized. A Li standard
solution in HNO3 (1000 µg mL−1), and multi-elements’ standard solution (1000 µg mL−1)
were purchased from Guobiao (Beijing, China) Testing & Certification (GBTC, Beijing,
China). National reference materials GBW07152 [20] and GBW07735 [21] were purchased
from the National Sharing Platform for Reference Materials (Beijing, China).

2.2. Sample Digestion

Li-bearing clay minerals were collected from Nanzhang (Xiangyang, China) and their
original photograph is shown in Figure 1. The clay minerals were milled to −200 mesh
(<74 µm) using GSXX-4 Planetary Ball Mills (Huaxiang Geological Environment Testing
Technology, Wuhan, China).

For the total content quantification of multiple elements in mineral samples, the
Li-bearing clay mineral was fully digested by an open vessel acid digestion method. Briefly,
0.1 g of the sample was accurately weighed into a 30 mL Teflon vessel, and samples were
wetted with several drops of water. In total, 5 mL of HF, 3 mL of HCl, 2 mL of HNO3, and
1 mL of HClO4 were added and left overnight at room temperature. The vessel was then
slowly heated to 120 ◦C for pre-digestion and increased to 200 ◦C to remove fluorine. The
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residue in the vessel was extracted with 1 mL of HCl to obtain a sample solution. This
solution was then diluted with water to achieve a dilution factor of 100 for measurement.
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2.3. ICP-OES and ICP-MS Analysis

Thirteen elements, namely Li, Al, Ca, Cr, Fe, K, Mg, Mn, Na, P, Sr, Ti, and V, were
analyzed using an iCAP™ 7400 ICP-OES analyzer (Thermo Fisher Scientific, Waltham,
MA, USA). The parameters were as follows: nebulizer gas pressure, 0.25 MPa; auxiliary
gas flow, 0.5 L/min; coolant gas flow, 12 L/min; RF power, 1100 W; vertical observation
height, 12 mm; analysis pump speed, 50 rpm; long-wave exposure time, 7 s; and short-wave
exposure time, 12 s. Relevant wavelengths are summarized in Table 1. Data acquisition was
performed using iTEVA iCAP software (version 2.8.0.96, Thermo Fisher Scientific, Waltham,
MA, USA).

Table 1. Wavelengths chosen in ICP-OES for several elements in Li-bearing clay minerals.

Elements Wavelength (nm)

Li 670.7
Al 394.4
Ca 318.1
Cr 267.7
Fe 259.9
K 766.4

Mg 279.0
Mn 257.6
Na 589.5
P 214.9
Sr 407.7
Ti 337.2
V 292.4

Seven elements, namely Be, Co, Cs, Cu, Ga, Ni, and Rb, were analyzed using a
Thermo Scientific XSERIES 2 ICP-MS (Thermo Fisher Scientific, Waltham, MA, USA). The
parameters were as follows: nebulizer gas flow, 0.88 L/min; auxiliary gas flow, 0.8 L/min;
coolant gas flow, 14 L/min; RF power, 1300 W; analysis pump speed, 50 rpm; sample cone,
1.0 mm; and skimmer cone, 0.8 mm. Relevant isotopes are summarized in Table 2. Re
(2 ng/mL) and Rh (2 ng/mL) in 2% nitric acid were used as internal standard solutions.
Data acquisition was performed using PlasmaLab software (version 2.6.1.335, Thermo
Fisher Scientific, Waltham, MA, USA).
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Table 2. Isotopes chosen in ICP-MS for several elements in Li-bearing clay minerals.

Elements Isotopes

Be 9Be
Co 59Co
Cs 133Cs
Cu 63Cu
Ga 71Ga
Ni 60Ni
Rb 85Rb

2.4. XRD Analysis

The XRD patterns of the Li-bearing clay minerals were obtained using a Bruker D8
FOCUS X-ray diffractometer (Bruker, Billerica, MA, USA) with Cu irradiation in the 2θ
range of 5–60◦, operating at 40 kV and 40 mA.

3. Results and Discussion
3.1. Total Li and Multi-Elements’ Content and XRD Spectrum of Li-Bearing Clay Minerals

The XRD spectrum of the Li-bearing clay minerals revealed that the primary mineral
composition is kaolinite (represent as red line), a typical clay-type mineral (Figure 2A). The
total content of major and trace elements in the Li-bearing clay minerals, obtained by a full
digestion method using an acid mixture, is presented in Table 3. The results showed that
the Li2O grade of these minerals is 0.49%, with the basic elemental composition primarily
consisting of SiO2 and Al2O3, while other major elements are below 1.35%. These findings
suggest that Li-bearing clay minerals have significant potential as a Li deposit.
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Table 3. Major and trace elements’ contents in Li-bearing clay minerals.

Major Elements * Content (%) Trace Elements Content (µg/g)

Li2O 0.49 Be 3.43
Al2O3 40.51 Co 9.65
CaO 0.21 Cr 101.15

TFe2O3 1.10 Cs 11.07
K2O 0.61 Cu 29.80
MgO 1.03 Ga 41.57
Na2O 0.22 Mn 15.24
SiO2 39.53 Ni 94.30
TiO2 1.35 P 285.10

Pb 28.60
Rb 21.64
Sr 139.64
V 180.74

Zn 18.70
* Major elements are presented in oxide form.

3.2. Direct Leaching of Li-Bearing Clay Minerals

Routine digestion methods such as open vessel acid digestion, microwave dissolution,
alkali fusion, and high-pressure (bomb) digestion are capable of decomposing several
geological materials [22]. However, these methods are labor-intensive and time-consuming
and can cause environmental damage due to the emission of acid gases during a batch
analysis. Given the simple elemental and mineral composition of clay-type minerals, this
research aimed to establish an extraction method that avoids prolonged digestion times
and extensive use of acids in a batch analysis.

Ammonium-salt-based leaching techniques have been widely used in the weathering
crusts for rare earth element mining [23]. Five salt-based leaching solutions, including two
ammonium-salt-based solutions (NH4Cl, (NH4)2SO4) and three ferric-salt-based solutions
(FeCl3, Fe2(SO4)3, Fe(NO3)3), were assessed with C6H8O7 and H2SO4 for directly leaching
Li from minerals. In total, 5 g of clay minerals was agitated (160 rpm) with 25 mL of
a leaching solution (10%, w/v) at 25 ◦C for 2 h. The results indicated that the recovery
efficiency of all these leaching solutions was lower than 0.15% (Figure 3A), demonstrating
that direct leaching barely extracts Li from clay minerals. It can be deduced that Li-bearing
clay minerals, which are phyllosilicates with crystal structures primarily composed of two
tetrahedral sheets and an octahedral sheet [9], restrict the extraction of Li due to Li+ and
other cations substituting for Al3+, Fe3+, and Mg2+ in octahedral sites.

A roasting process at 600 ◦C for 2 h was performed on the Li-bearing clay prior to
leaching to alter the mineral structure. It was found that the recovery efficiency of all
leaching solutions significantly increased under the same leaching conditions (Figure 3B),
with a maximum of nearly 90%. The XRD spectrum showed that the mineral structure was
completely changed after roasting (Figure 2B). Research indicated that a dehydroxylation
reaction occurred, and gases including CH2, CH4, C3H4, C6H5, and C8H9 were evolved
during the roasting process, transforming AlO4(OH)2 octahedra into AlO4 tetrahedra
due to the reaction between the reductive gases and the residual oxygen in AlO5, which
rendered the kaolinite amorphous [24].

Owing to the highest recovery efficiency of H2SO4, the concentration of the acid was
further optimized using three different inorganic acids (HCl, HNO3, and H2SO4) at five
levels (10%, 20%, 30%, 40%, 50%, v/v). The leaching efficiency increased with the acid
concentration, reaching a plateau at 40% (v/v) for all three acids (Figure 4).
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3.3. Partial Extraction of Li-Bearing Clay Minerals

Although the maximum recovery efficiency of H2SO4 leaching is nearly 98% after
roasting, using a furnace and high concentration of strong acids is inconvenient and
hazardous in a batch analysis. To avoid using a furnace and to reduce the concentration of
strong acids, a partial extraction approach was established using (NH4)HF2, which offers
advantages such as efficiency, safety, simple operation, and low blanks [12]. In this study,
a combination of (NH4)HF2 and H2SO4 was employed to establish a partial extraction
method for Li-bearing clay minerals.

A mixture of (NH4)HF2 and H2SO4 was compared with the separate use of (NH4)HF2
and H2SO4 for partially extracting Li from minerals. In total, 5 g of clay minerals was
agitated (160 rpm) with 25 mL of an extracting solution (10%, w/v) at 25 ◦C for 2 h. The
results found that the recovery efficiency of the combined (NH4)HF2 and H2SO4 solution
was significantly higher than when using (NH4)HF2 and H2SO4 separately (Figure 5A). Due
to the higher boiling point (239.5 ◦C) of (NH4)HF2 compared to conventional acids such as
HF, HNO3, and HCl, an elevated digestion temperature in open vessels is possible, enabling
the decomposition of refractory phases [15]. The extracting solution was then heated to
240 ◦C on a hotplate for 3 h until the acid vapor was completely removed. With heating,
the acid concentration was further optimized using two different strong inorganic acids
(HCl and H2SO4) at three levels (5%, 10%, 20%, v/v). The extraction efficiency significantly
increased 3.42-fold after heating and also increased with the acid concentration (Figure 5B).
However, due to the dangers associated with using high concentrations of strong acids,
further increasing the acid concentration would cause toxic and environmental pollution
in a batch analysis. Moreover, the amount of (NH4)HF2 in the extraction solution was
optimized from 1 g to 10 g. The recovery efficiency increased with the amount of (NH4)HF2,
reaching a plateau at 8 g, where the maximum extraction efficiency was 98.61% (Figure 5C).
However, due to the production of insoluble fluoride, further increasing the amount of
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(NH4)HF2 caused a certain degree of recovery reduction. The vibrating or extracting time
was also evaluated, but the results showed no significant difference between varied times
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3.4. Extraction Efficiency of Multi-Elements

Collectively, the optimized conditions for partial extraction were as follows: 2 g of clay
mineral samples was accurately weighed with 8 g of (NH4)HF2 in 10 mL of H2SO4 (20%,
v/v), then agitated under 25 ◦C for 1 h. The extraction solution was heated at 240 ◦C on a
hotplate for 3 h until the acid vapor was completely removed. The residue was extracted
with 1 mL of HCl to obtain a sample solution. The sample solution was then diluted with
water to achieve a dilution factor of 250 for ICP-OES measurement and 2500 for ICP-MS
measurement. Under the optimized conditions, the extraction efficiency of multi-elements,
including 4 major elements (Al, Ca, Fe, Mg) and 12 trace elements (Be, Co, Cr, Cs, Cu,
Ga, Mn, Ni, P, Rb, Sr, V), was higher than 60%, except Al and Cs, which were 50.47 and
51.03, respectively (Table 4). This indicates the effective capability of this partial extraction
approach for multi-elements in Li-bearing clay minerals.

Table 4. Extraction efficiency of major and trace elements in Li-bearing clay minerals by partial
extraction approach.

Elements Extraction Efficiency (%) Elements Extraction Efficiency (%)

Al 50.47 Ga 62.89
Be 86.86 Mg 75.94
Ca 90.43 Mn 91.32
Co 78.82 Ni 77.06
Cr 65.01 P 88.73
Cs 51.03 Rb 64.78
Cu 62.68 Sr 73.81

3.5. The Reproducibility of Partial Extraction

Owing to only quantifying part of the element content, but this shall reflect the
total level of mineral ores, the reproducibility of a partial extraction approach should
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stay consistent. For industrial application potential evaluation, the reproducibility of the
proposed method was thoroughly evaluated by assessing the relative standard deviation
(RSD). As depicted in Table 5, the calculated RSDs were consistently below 7.34%, which
underscored the attained precision of the proposed method for the extraction of Li and
multi-elements.

Table 5. Reproducibility for partial extraction of multi-elements in Li-bearing clay minerals.

Elements Li Al Be Ca Co Cr Cs Cu Fe
Precision

(RSD, %; n = 6) 2.12 5.53 7.34 1.97 4.73 3.12 6.49 5.00 2.40

Elements Ga Mg Mn Ni P Rb Sr V
Precision

(RSD, %; n = 6) 4.42 2.27 2.08 3.73 1.63 5.67 2.69 3.72

4. Conclusions

This study established a partial extraction approach using (NH4)HF2 to elucidate
a range of elements involved in Li, major elements, and trace elements. The utilization
of (NH4)HF2 has significantly enhanced the extraction of Li in Li-bearing clay minerals
without the need for roasting and the use of high-concentration strong acids. This approach
exhibits favorable precision, with an RSD below 7.34%. Overall, this method demonstrates
broad application and holds promising potential for widespread adoption in batch analyses
of Li-bearing clay minerals.
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