The Volatile Compounds Composition of Different Parts of Wild Kazakhstan Sedum ewersii Ledeb.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Plant Extracts
2.3. GC-MS Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karahan, F.; Öz, I.; Demircan, N.; Stephenson, R.A.Y. Succulent Plant Diversity in Turkey I. Stonecrops (Crassulaceae). Haseltonia 2006, 12, 41–54. [Google Scholar] [CrossRef]
- Walker, C. An introduction to Mexican Sedums. N. Z. Cactus Succul. J. 2022, 75, 28–34. [Google Scholar]
- Mo, E.K.; Kim, S.M.; Yang, S.A.; Oh, C.J.; Sung, C.K. Assessment of antioxidant capacity of sedum (Sedum sarmentosum) as a valuable natural antioxidant source. Food Sci. Biotechnol. 2011, 20, 1061–1067. [Google Scholar] [CrossRef]
- Horvath, B. The Plant Lover’s Guide to Sedums; Timber Press: Portland, OR, USA, 2014; Volume 120. [Google Scholar]
- Berganayeva, G.; Kudaibergenova, B.; Litvinenko, Y.; Nazarova, I.; Sydykbayeva, S.; Vassilina, G.; Izdik, N.; Dyusebaeva, M. Medicinal Plants of the Flora of Kazakhstan Used in the Treatment of Skin Diseases. Molecules 2023, 28, 4192. [Google Scholar] [CrossRef] [PubMed]
- Cabahug, R.A.M.; Nam, S.Y.; Lim, K.B.; Jeon, J.K.; Hwang, Y.J. Propagation techniques for ornamental succulents. Flower Res. J. 2018, 26, 90–101. [Google Scholar] [CrossRef]
- Nagase, A.; Koyama, S. Attractiveness and preference of extensive green roofs depend on vegetation types and past experience with plants in Japan. Urban For. Urban Green. 2020, 51, 126658. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, S.; Luo, J.; Pan, M.; Du, Y.; Liang, Y.; Li, T. Integrated glycolysis and pyrolysis process for multiple utilization and cadmium collection of hyperaccumulator Sedum alfredii. J. Hazard. Mater. 2022, 422, 126859. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhou, X.; Shi, A.; Yu, Y.; Rensing, C.; Zhang, T.; Yang, W. Exogenous silicon promotes cadmium (Cd) accumulation in Sedum alfredii Hance by enhancing Cd uptake and alleviating Cd toxicity. Front. Plant Sci. 2023, 14, 1134370. [Google Scholar] [CrossRef]
- Parrotta, L.; Guerriero, G.; Sergeant, K.; Cai, G.; Hausman, J.F. Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Front. Plant Sci. 2015, 6, 133. [Google Scholar] [CrossRef]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers 2018, 10, 1407. [Google Scholar] [CrossRef]
- Odeh, A.A.; Al-Jaber, H.I.; Barhoumi, L.M.; Shakya, A.K.; Al-Qudah, M.A.; Al-Sanabra, O.M. Phytochemical and bioactivity evaluation of secondary metabolites and essential oils of Sedum rubens growing wild in Jordan. Arab. J. Chem. 2023, 16, 104712. [Google Scholar] [CrossRef]
- Akhmetova, A.; Mukhitdinov, N.; Ydyrys, A. Anatomical indicators of the leaf structure of Ferula iliensis, growing in the eastern part of Zailiyskiy Alatau (Big Boguty Mountains). Pak. J. Bot 2015, 47, 511–515. [Google Scholar]
- Gras, A.; Parada, M.; Rigat, M.; Valles, J.; Garnatje, T. Folk medicinal plant mixtures: Establishing a protocol for further studies. J. Ethnopharmacol. 2018, 214, 244–273. [Google Scholar] [CrossRef] [PubMed]
- Leporatti, M.L.; Ivancheva, S. Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J. Ethnopharmacol. 2003, 87, 123–142. [Google Scholar] [CrossRef]
- Akhmetova, A.B.; Mukhitdinov, N.M.; Ydyrys, A.; Ametov, A.A.; Inelova, Z.A.; Öztürk, M. Studies on the root anatomy of rubber producing endemic of Kazakhstan, Taraxacum kok-saghyz LE Rodin. JAPS J. Anim. Plant Sci. 2018, 28, 1400. [Google Scholar]
- Szőke, A. Complex Assesment of Green Roofs and of Applied Sedum Species. Doctoral Dissertation, Corvinus University of Budapest, Budapest, Hungary, 2015. [Google Scholar]
- Angeliev, V.; Cesmedziev, I. On the ornamental qualities and reproductive characteristics of some Bulgarian Sedum species. Nauc. Trudove Viss Sel. Stop. Inst. “V. Kolarov” Plovdiv. 1970, 19, 47–53. [Google Scholar]
- Kubentayev, S.A.; Kotukhov, Y.A.; Danilova, A.N.; Suleimenov, A.N.; Sumbembayev, A.A. Phytocoenotic structure and stocks of main medical plants in southern part of Altai Mountain System (East Kazakhstan). J. Comput. Theor. Nanosci. 2019, 16, 2822–2834. [Google Scholar] [CrossRef]
- Ydyrys, A.; Zhaparkulova, N.; Aralbaeva, A.; Mamataeva, A.; Seilkhan, A.; Syraiyl, S.; Murzakhmetova, M. Systematic analysis of combined antioxidant and membrane-stabilizing properties of several Lamiaceae family Kazakhstani plants for potential production of tea beverages. Plants 2021, 10, 666. [Google Scholar] [CrossRef]
- Ydyrys, A.; Zhamanbayeva, G.; Zhaparkulova, N.; Aralbaeva, A.; Askerbay, G.; Kenzheyeva, Z.; Tussupbekova, G.; Syraiyl, S.; Kaparbay, R.; Murzakhmetova, M. The Systematic Assessment of the Membrane-Stabilizing and Antioxidant Activities of Several Kazakhstani Plants in the Asteraceae Family. Plants 2024, 13, 96. [Google Scholar] [CrossRef]
- Leong, F.; Hua, X.; Wang, M.; Chen, T.; Song, Y.; Tu, P.; Chen, X.J. Quality standard of traditional Chinese medicines: Comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chin. Med. 2020, 15, 76. [Google Scholar] [CrossRef]
- Kirimura, K.; Cao, W.; Onda, Y.; Yoshioka, I.; Ishii, Y. Selective and high-yield production of ethyl α-d-glucopyranoside by the α-glucosyl transfer enzyme of Xanthomonas campestris WU-9701 and glucose isomerase. J. Biosci. Bioeng. 2022, 134, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, Z.; Arshad, M.S.; Ali, A.; Aziz, A.; Khalid, W.; Afzal, M.F.; Lorenzo, J.M. Potential role of phytochemical extract from saffron in development of functional foods and protection of brain-related disorders. Oxid. Med. Cell. Longev. 2022, 2022, 6480590. [Google Scholar] [CrossRef] [PubMed]
- Metlyaeva, S.A.; Rodygin, K.S.; Lotsman, K.A.; Samoylenko, D.E.; Ananikov, V.P. Biomass-and calcium carbide-based recyclable polymers. Green Chem. 2021, 23, 2487–2495. [Google Scholar] [CrossRef]
- Jovanović, S.Č.; Jovanović, O.P.; Mitić, Z.S.; Golubović, T.D.; Zlatković, B.K.; Stojanović, G.S. Volatile profiles of the orpines roots: Hylotelephium telephium (L.) H. Ohba, H. maximum (L.) Holub and H. spectabile (Boreau) H. Ohba x telephium (L.) H. Ohba. Flavour Fragr. J. 2017, 32, 446–450. [Google Scholar] [CrossRef]
- Miller, A.A.; Lawton, E.J.; Balwit, J.S. The Radiation Chemistry of Hydrocarbon Polymers: I. Polyethylene, Polymethylene and Octacosane. J. Phys. Chem. 1956, 60, 599–604. [Google Scholar] [CrossRef]
- Okechukwu, P.N. Evaluation of anti-inflammatory, analgesic, antipyretic effect of eicosane, pentadecane, octacosane, and heneicosane. Asian J. Pharamath. Clin. Res. 2020, 13. [Google Scholar] [CrossRef]
- Lei, Y.; Fu, P.; Jun, X.; Cheng, P. Pharmacological properties of geraniol—A review. Planta Medica 2019, 85, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Dawood, K.M. Benzofuran derivatives: A patent review. Expert Opin. Ther. Pat. 2013, 23, 1133–1156. [Google Scholar] [CrossRef] [PubMed]
- Zahra, N.; Iqbal, J.; Arif, M.; Abbasi, B.A.; Sher, H.; Nawaz, A.F.; Calina, D. A comprehensive review on traditional uses, phytochemistry and pharmacological properties of Paeonia emodi Wall. ex Royle: Current landscape and future perspectives. Chin. Med. 2023, 18, 23. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives; World Health Organization. Evaluation of Certain Food Additives and Contaminants: Fifty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2000. Available online: https://iris.who.int/handle/10665/42378 (accessed on 1 July 2024).
- Noriega, P. Terpenes in essential oils: Bioactivity and applications. In Terpenes and Terpenoids—Recent Advances; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Couper, F.J.; Marinetti, L.J. gamma-Hydroxybutyrate(GHB)—Effects on Human Performance and Behavior. Forensic Sci. Rev. 2002, 14, 101–121. [Google Scholar]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives—Recent development in biological and medical applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef] [PubMed]
- Devappa, R.K.; Makkar, H.P.; Becker, K. Jatropha diterpenes: A review. J. Am. Oil Chem. Soc. 2011, 88, 301–322. [Google Scholar] [CrossRef]
- Lanzotti, V. Diterpenes for therapeutic use. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3173–3191. [Google Scholar]
- de Oliveira, A.M.; Tirapelli, C.R.; Ambrosio, S.R.; da Costa, F.B. Diterpenes: A therapeutic promise for cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov. (Discontin.) 2008, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bartikova, H.; Hanusova, V.; Skalova, L.; Ambroz, M.; Bousova, I. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr. Top. Med. Chem. 2014, 14, 2478–2494. [Google Scholar] [CrossRef] [PubMed]
- Doores, S. Organic acids. In Food Science and Technology-New York-Marcel Dekker; CRC Press: Boca Raton, FL, USA, 2005; Volume 145, p. 91. [Google Scholar]
- Godara, P.; Dulara, B.K.; Barwer, N.; Chaudhary, N.S. Comparative GC-MS Analysis of Bioactive Phytochemicals from Different Plant Parts and Callus of Leptadenia reticulata Wight and Arn. Pharmacogn. J. 2019, 11, 129–140. [Google Scholar] [CrossRef]
- Shukla, R.; Chauhan, N.; Rajak, C.; Flora, S.J.S. Flavors and Fragrances: Natural and Food-Grade Ingredients for Nutraceuticals Applications. In Flavor Development for Functional Foods and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2019; pp. 141–165. [Google Scholar]
- Gheibi, N.; Saboury, A.A.; Haghbeen, K.; Rajaei, F.; Pahlevan, A.A. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase. J. Enzym. Inhib. Med. Chem. 2009, 24, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, C.; Jeganathan, K. Phytochemical profiling of cat whisker’s (Orthosiphon stamineus) tea leaves extract. J. Pharmacogn. Phytochem. 2018, 7, 1396–1402. [Google Scholar]
- Urquilla, A.; Merrer, D.C.; Sumner, R.; Denton, R.W. Synthesis and Biological Activity of 2-(2-Amino-2-phenylethyl)-5-oxotetrahydrofuran-2-carboxylic Acid: A Microwave-Assisted 1, 3-Dipolar Cycloaddition Approach. Synlett 2021, 32, 1735–1740. [Google Scholar]
- Malo de Molina, P.; Gradzielski, M. Gels Obtained by Colloidal Self-Assembly of Amphiphilic Molecules. Gels 2017, 3, 30. [Google Scholar] [CrossRef]
- Silva, C.L.; Pereira, J.C.; Ramalho, A.; Pais, A.A.; Sousa, J.J. Films based on chitosan polyelectrolyte complexes for skin drug delivery: Development and characterization. J. Membr. Sci. 2008, 320, 268–279. [Google Scholar] [CrossRef]
- Wittgenstein, E.; Berry, H.K. Reaction of dihydroxyacetone (DHA) with human skin callus and amino compounds. J. Investig. Dermatol. 1961, 36, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Seidel, V.; Izabela, M.; Monserrat-Mequida, M.; Sureda, A.; Ormazabal, V.; Cho, W.C. Phenolic compounds as Nrf2 inhibitors: Potential applications in cancer therapy. Cell Commun. Signal. 2023, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Albers, R.; Antoine, J.M.; Blum, S.; Bourdet-Sicard, R.; Ferns, G.A.; Zhao, J. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 2009, 101, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Posadino, A.M.; Giordo, R.; Pintus, G.; Mohammed, S.A.; Orhan, I.E.; Fokou, P.V.T.; Sharopov, F.; Adetunji, C.O.; Gulsunoglu-Konuskan, Z.; Ydyrys, A.; et al. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed Pharmacother. 2023, 163, 114866. [Google Scholar] [CrossRef] [PubMed]
- Pezzani, R.; Jiménez-Garcia, M.; Capó, X.; Gürer, E.S.; Sharopov, F.; Rachel, T.Y.L.; Woutouoba, D.N.; Rescigno, A.; Peddio, S.; Zucca, P.; et al. Anticancer properties of bromelain: State-of-the-art and recent trends. Front. Oncol. 2023, 12, 1068778. [Google Scholar] [CrossRef] [PubMed]
- Batool, Z.; Xu, D.; Zhang, X.; Li, X.; Li, Y.; Chen, Z.; Li, L. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit. Rev. Food Sci. Nutr. 2021, 61, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Wierzchowski, J.; Stachelska-Wierzchowska, A.; Wielgus-Kutrowska, B.; Bzowska, A. 1,N6-ethenoadenine and other fluorescent nucleobase analogs as substrates for purine-nucleoside phosphorylases: Spectroscopic and kinetic studies. Curr. Pharm. Des. 2017, 23, 6948–6966. [Google Scholar] [CrossRef] [PubMed]
- Pires, S.M.; Reis, R.S.; Cardoso, S.M.; Pezzani, R.; Paredes-Osses, E.; Seilkhan, A. Sharifi-Rad, Phytates as a natural source for health promotion: A critical evaluation of clinical trials. Front. Chem. 2023, 11, 1174109. [Google Scholar] [CrossRef] [PubMed]
- Rajkovic, J.; Novakovic, R.; Grujic-Milanovic, J.; Ydyrys, A.; Ablaikhanova, N.; Calina, D.; Al-Omari, B. An updated pharmacological insight into calotropin as a potential therapeutic agent in cancer. Front. Pharmacol. 2023, 14, 1160616. [Google Scholar] [CrossRef]
- Ydyrys, A.; Abdolla, N.; Seilkhan, A.; Masimzhan, M.; Karasholakova, L. Importance of the geobotanical studying in agriculture (with the example of the Sugaty region). In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 222, p. 04003. [Google Scholar]
- Ydyrys, A.; Mukhitdinov, N.; Ametov, A.A.; Tynybekov, B.M.; Akhmetova, A.B.; Abidkulova, K.T. The States of coenpopulations of endemic, relict and rare species of plant Limonium michelsonii and their protection. World Appl. Sci. J. 2013, 26, 934–940. [Google Scholar]
- Ydyrys, A.; Serbayeva, A.; Dossymbetova, S.; Akhmetova, A.; Zhuystay, A. The effect of anthropogenic factors on rare, endemic plant species in the Ile Alatau. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 222, p. 05021. [Google Scholar]
- Bukenova, E.A.; Bassygarayev, Z.M.; Akhmetova, A.B.; Altybaeva, N.A.; Zhunusbayeva, Z.K.; Ydyrys, A. Development of the method of obtaining the endogenic biostimulator from wheat green spike glumes. Res. Crops 2019, 20, 210–214. [Google Scholar]
- Yeszhanov, B.; Baymurzaev, N.; Sharakhmetov, S.; Mautenbaev, A.; Tynybekov, B.; Baidaulet, T. Technology of landscaping in arid zones by using biohumus from sheep wool. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 169, p. 02012. [Google Scholar]
- Ydyrys, A. An Overview of Medical Uses and Chemical Composition of Arctium tomentosum mill. Eng. Sci. 2023, 26, 984. [Google Scholar] [CrossRef]
- Cao, X.; Tsukamoto, T.; Seki, T.; Tanaka, H.; Morimura, S.; Cao, L.; Tatematsu, M. 4-Vinyl-2, 6-dimethoxyphenol (canolol) suppresses oxidative stress and gastric carcinogenesis in Helicobacter pylori-infected carcinogen-treated Mongolian gerbils. Int. J. Cancer 2008, 122, 1445–1454. [Google Scholar] [CrossRef]
№ | Compounds | Molecular Formula | Percentage Content, % | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
1 | 4-Cyclopentene-1,3-dione | C5H4O2 | 0.78 | 1.34 | 0.94 | 0.70 |
2 | Butanoic acid, 4-hydroxy- | C4H8O3 | 0.77 | - | 0.82 | - |
3 | 2-Furanmethanol | C5H6O2 | 1.33 | 1.58 | 2.15 | 1.54 |
4 | 2(5H)-Furanone | C4H4O2 | 0.83 | 1.64 | 0.66 | - |
5 | 2-Cyclopenten-1-one, 2-hydroxy- | C5H6O2 | 1.16 | 2.23 | 1.48 | 0.84 |
6 | Urea, 1-methylcyclopropyl- | C5H10 H2O | 2.86 | - | - | - |
7 | (-)-Myrtenol | C10H16O | 19.82 | - | 1.64 | - |
8 | 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)- | C10H18O | 0.44 | 0.39 | - | 1.31 |
9 | Geraniol | C10H18O | 1.90 | 3.32 | 1.54 | - |
10 | (-)-cis-Myrtanol | C10H18O | 3.67 | 0.71 | - | - |
11 | Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester | C12H24O3 | 0.94 | - | - | - |
12 | Phenylethyl Alcohol | C8H10O | 0.43 | 0.99 | 0.42 | 0.41 |
13 | 1-Cyclohexene-1-methanol, 4-(1-methylethenyl)- | C10H16O | 0.57 | 0.56 | - | 0.48 |
14 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | C6H8O3 | 0.43 | 0.65 | 1.07 | 2.89 |
15 | 1,4-Cyclohexadiene-1-methanol, 4-(1-methylethyl)- | C10H16O | 1.11 | - | 2.03 | - |
16 | Cyclopropyl carbinol | C4H8O | 1.11 | 1.96 | - | 0.76 |
17 | 1,3-Cyclohexadiene-1-methanol, 4-(1-methylethyl)- | C10H16O | 1.64 | 0.78 | - | - |
18 | p-Cymen-7-ol | C10H14O | 0.76 | 0.73 | - | - |
19 | 1,3-Dioxol-2-one,4,5-dimethyl- | C5H6O3 | 2.44 | 5.66 | 5.13 | 2.75 |
20 | 2-Hydroxy-gamma-butyrolactone | C4H6O3 | 3.60 | 6.50 | 4.52 | 2.21 |
21 | 2-Methoxy-4-vinylphenol | C9H10O2 | 1.41 | - | 1.13 | 0.58 |
22 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | C6H8O4 | 1.91 | 3.66 | 4.95 | 5.26 |
23 | Phenol, 2,6-dimethoxy- | C8H10O3 | 0.80 | 0.51 | 0.45 | 1.19 |
24 | 2-Propen-1-ol, 3-phenyl- | C9H10O | 1.56 | 6.71 | 0.51 | 2.90 |
25 | Glycerin | C3H8O3 | 1.81 | 1.96 | 1.86 | - |
26 | Benzofuran, 2,3-dihydro- | C8H8O | 1.42 | 4.60 | 12.43 | 14.77 |
27 | (2,2,6-Trimethyl-bicyclo[4,1,0]hept-1-yl)-methanol | C11H20O | 0.88 | - | - | - |
28 | 5-Oxotetrahydrofuran-2-carboxylic acid, ethyl ester | C7H10O4 | 0.48 | - | - | - |
29 | 9,12-Octadecadienoic acid, ethyl ester | C20H36O2 | 1.63 | - | 1.95 | 2.94 |
30 | 1,2-Ethanediol, 1-(2-furanyl)- | C6H8O3 | 0.80 | 1.90 | - | - |
31 | 2(3H)-Furanone, dihydro-4-hydroxy- | 0.67 | 1.06 | 1.14 | - | |
32 | Ethyl 9,12,15-octadecatrienoate | C20H34O2 | 0.92 | 2.07 | 3.10 | - |
33 | 1,4-Benzenedimethanol, α,α’-dimethyl- | C10H16O2 | 0.84 | - | - | - |
34 | Ethyl β-d-riboside | C7H14O5 | 1.39 | 1.88 | 0.98 | 2.12 |
35 | 1,4-Dimethoxy-2,3-dimethylbenzene | C10H14O2 | 0.30 | - | - | - |
36 | Octacosane | C28H58 | 5.94 | 4.45 | - | - |
37 | Ethyl (2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate | C12H14O4 | 0.71 | - | - | - |
38 | 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol | C10H12O3 | 0.38 | 0.84 | 0.38 | - |
39 | p-Hydroxycinnamic acid, ethyl ester | C11H12O3 | 0.74 | 1.20 | - | - |
40 | Ethyl α-d-glucopyranoside | C8H16O6 | 28.79 | 20.36 | 12.95 | 22.04 |
41 | Butyrolactone | C4H6O2 | - | 0.89 | 1.39 | 0.39 |
42 | n-Amyl ether | C10H22O | - | 2.53 | - | - |
43 | Bicyclo[3,1,1]hept-2-ene-2-methanol, 6,6-dimethyl- | C10H16O | - | 5.60 | - | 5.95 |
44 | Benzyl alcohol | C7H8O | - | 0.97 | - | - |
45 | Dihydroxyacetone | C3H6O3 | - | 1.62 | 1.89 | - |
46 | (S)-(+)-2′,3′-Dideoxyribonolactone | C5H8O3 | - | 0.89 | 0.63 | - |
47 | 5-Hydroxymethylfurfural | C6H6O3 | - | 0.82 | 0.66 | 0.63 |
48 | Phytol | C20H40O | - | 1.56 | 5.56 | 8.98 |
49 | o-Methoxy-α,α-dimethylbenzyl alcohol | C9H12O2 | - | 0.46 | - | - |
50 | 2-Furanmethanol, 5-ethenyltetrahydro-α,α,5-trimethyl-, cis- | C10H18O2 | - | 1.11 | - | - |
51 | 1,6-Anhydro-2,3-dideoxy-β-D-threo-hexopyranose | C6H10O3 | - | 0.88 | - | - |
52 | β-d-Lyxofuranoside, methyl | - | 1.12 | 1.90 | - | |
53 | 9-Octadecenamide, (Z)- | C18H35NO | - | 1.30 | - | - |
54 | Propanoic acid | C3H6O2 | - | - | 0.47 | - |
55 | Butanoic acid, 2-methyl- | C5H10O2 | - | - | 0.84 | 1.63 |
56 | Butanoic acid, 3-methylbutyl ester | C9H18O2 | - | - | 2.60 | - |
57 | 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- | C6H8O2 | - | - | 0.32 | - |
58 | 1,2,3-Propanetriol, 1-acetate | C5H10O4 | - | - | 0.32 | - |
59 | 2-Furancarboxylic acid | C5H4O3 | - | - | 0.38 | - |
60 | Phenol | C6H6O | - | - | 0.14 | 0.46 |
61 | 1-Deoxy-d-arabitol | C5H12O4 | - | - | 11.83 | - |
62 | β-D-Ribopyranoside, methyl | C6H12O5 | - | - | 2.47 | - |
63 | 1,3-Cyclopentanediol, cis- | C5H10O2 | - | - | 2.71 | - |
64 | Butanoic acid, 2-oxo- | C4H6O3 | - | - | 1.71 | - |
65 | 1-Octanol | C8H18O3 | - | - | - | 0.69 |
66 | Phenol, 2,4-bis(1,1-dimethylethyl)- | C14H22O | - | - | - | 1.35 |
67 | 7-Oxabicyclo[4,1,0]heptane, 1-methyl-4-(2-methyloxiranyl)- | C02H16O2 | - | - | - | 1.08 |
68 | 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | C20H34O2 | - | - | - | 9.41 |
69 | 3,4-Dihydroxy-5-methyl-dihydrofuran-2-one | C5H8O4 | - | - | - | 0.98 |
70 | Ethyl 2,3-epoxybutyrate | C6H10O3 | - | - | - | 1.71 |
71 | 4-(p-Acetoxyphenyl)-2-butanone | C12H14O3 | - | - | - | 1.08 |
72 | Aliphatic monoterpenes | 28.58% | 1.34% | 3.06% | 8.20% | |
73 | Oxygenated monoterpenoids | 54.41% | 31.28% | 21.49% | 53.18% | |
74 | Diterpenoids | 1.42% | 6.16% | 17.99% | 23.75% | |
75 | Others | 15.59% | 61.22% | 57.46% | 14.87% | |
76 | The common compounds | 100% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobylina, T.; Novikov, A.; Sadyrova, G.; Kyrbassova, E.; Nazarbekova, S.; Imanova, E.; Parmanbekova, M.; Tynybekov, B. The Volatile Compounds Composition of Different Parts of Wild Kazakhstan Sedum ewersii Ledeb. Separations 2024, 11, 208. https://doi.org/10.3390/separations11070208
Kobylina T, Novikov A, Sadyrova G, Kyrbassova E, Nazarbekova S, Imanova E, Parmanbekova M, Tynybekov B. The Volatile Compounds Composition of Different Parts of Wild Kazakhstan Sedum ewersii Ledeb. Separations. 2024; 11(7):208. https://doi.org/10.3390/separations11070208
Chicago/Turabian StyleKobylina, Tatyana, Andriy Novikov, Gulbanu Sadyrova, Elzira Kyrbassova, Saltanat Nazarbekova, Elmira Imanova, Meruyert Parmanbekova, and Bekzat Tynybekov. 2024. "The Volatile Compounds Composition of Different Parts of Wild Kazakhstan Sedum ewersii Ledeb." Separations 11, no. 7: 208. https://doi.org/10.3390/separations11070208
APA StyleKobylina, T., Novikov, A., Sadyrova, G., Kyrbassova, E., Nazarbekova, S., Imanova, E., Parmanbekova, M., & Tynybekov, B. (2024). The Volatile Compounds Composition of Different Parts of Wild Kazakhstan Sedum ewersii Ledeb. Separations, 11(7), 208. https://doi.org/10.3390/separations11070208