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Abstract: Desacetylmatricarin, a sesquiterpene lactone (SL), is the major component extracted from
the aerial parts of basin big sagebrush (Artemisia tridentata subsp. tridentata). The medicinal benefits
of desacetylmatricarin have not been fully exploited; thus, the current study is an exploratory study
to assess its biological activity as a potential source for anti-cancer properties. Herein, we have
synthesized desacetylmatricarin derivatives using reported methodologies and examined their anti-
cancer properties by submitting the synthesized compounds to the National Cancer Institute (NCI).
Our previous studies on the evaluation of the biological activity of the SLs isolated from the basin
big sagebrush against the NCI-60 cancer cell line screening expanded our work on derivatizing
desacetylmatricarin. All of the compounds synthesized from desacetylmatricarin, which was isolated
and purified from the basin big sagebrush, were obtained in high yields. The structures of the
synthesized desacetylmatricarin derivatives were confirmed by NMR experiments. These compounds
were then evaluated against the NCI-60 cancer cell line screening. NCI-60 cancer cell line screening
revealed that some of the chemically modified desacetylmatricarin derivatives showed greater
biological activity as compared to the natural precursor in a one-dose assay.

Keywords: 60 cell line study; anti-allergens; austricin; bioactive components; cytotoxicity; sesquiterpene
lactones

1. Introduction

Sesquiterpene lactones (SLs) are the most common type of secondary metabolite found
in the Asteraceae family. These components have a variety of biological effects, such as anti-
cancer [1], anti-inflammatory [2], analgesic [3], antiulcer [4], antibacterial [5], antifungal [6],
antiviral [7], antiparasitic [8], and insect repellent [9] properties. SLs are a rich source
of drugs, and their biological activity is mostly due to the α-methylene-γ-lactone group
(αMγL) in their structure [10]. Guaianolides, eudesmanolides, and germacranolides are
the three most common SLs found in Artemisia species [11]. Desacetylmatricarin (Austricin)
is a guaianolide sesquiterpenoid found in various plant species and has been reported to
be isolated from several Artemisia species [12–14], Taraxacum platycarpum [15], Cichorium
intybus [16], and Achillea millefolium [17]. Studies have shown that desacetylmatricarin
may have anti-allergic properties. It may inhibit the release of beta-hexosaminidase from
RBL-2H3 cells, which is a key marker of the allergic response, relieving allergic symp-
toms [15]. Nonetheless, more research is needed to confirm the anti-allergic properties of
desacetylmatricarin.
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Most of the plants representing the Artemisia genus have played a significant role
in drug discovery [18]. Notably, Artemisinin from Artemisia annua has revolutionized
the global treatment of malaria [19]. There is a huge potential for natural resources for
drug development, and there is a need to explore the chemical niches within the Artemisia
species. Thus, in an effort to search for new antioxidant and anti-tumor agents from natural
resources, we isolated and identified the active components from the leaves of Artemisia
tridentata subsp. tridentata, which is commonly known as basin big sagebrush. In addition
to desacetylmatricarin, we isolated matricarin, leucodin, and quercetagetin 3,6,4′-trimethyl
ether (QTE) and analyzed their biological activities. These isolated compounds displayed
promising results against various cancer cell lines when tested by the National Cancer
Institute (NCI). Notably, QTE exhibited potency against melanoma cells [14]. While this
research established a valuable foundation, our current investigation focuses specifically
on desacetylmatricarin, another sesquiterpene lactone (SL) present in big sagebrush. Our
interest in using SLs for taxonomic and phylogenetic studies within the Artemisia family
initially led us to desacetylmatricarin. Thus, this project aims to unlock the full potential of
desacetylmatricarin as an anti-cancer agent. By creating and analyzing derivatives of this
compound, we will explore whether modifications can enhance its efficacy and selectivity
against cancer cells.

The molecular structure of organic compounds influences both their physiochemical
properties and biological activities. Since a number of natural compounds in the family
of sesquiterpenoids are reported to be potentially biologically active, there has been a
huge interest in their chemical synthesis. By analyzing similar structures of potential
drugs, we can estimate how new derivatives might interact with the target cells and
affect their biological activities. This knowledge can pave the way for the development of
more powerful and targeted anti-cancer drugs derived from natural sources. Thus, with
the purpose of exploring the anti-tumor activity of sesquiterpene lactones isolated from
basin big sagebrush, we have chemically modified the structure of desacetylmatricarin
to investigate the structural activity relationships. We have synthesized a number of
derivatives (3a–3i) and studied their anti-cancer properties by conducting NCI-60 cell
line studies.

2. Materials and Methods
2.1. Materials

All chemicals and solvents were commercially available and used as received without
further purification. Analytical-grade reagents such as hexane, chloroform, ethyl acetate,
and methanol, required for the extraction and isolation of the components, were purchased
from Fisher Scientific (Sumner, WA, USA). Propionyl chloride, methanesulfonyl chloride, 1-
naphthoyl chloride, hydrocinnamoyl chloride, decanoyl chloride, 2-furoyl chloride, thionyl
chloride, and benzoyl chloride, used for the derivatization of desacetylmatricarin, were also
purchased from Fisher Scientific (Chelmsford, MA, USA). Water and acetonitrile (LC-MS
grade) were purchased from Honeywell (Muskegon, MI, USA).

2.2. Methods
2.2.1. Extraction and Purification of Desacetylmatricarin from Plant Materials

Foliage of Artemisia tridentata subsp. Tridentata was collected and shade-dried for
two weeks. The dried plant material was then frozen with liquid nitrogen and pulverized
to obtain the powdered sample. The powdered material was extracted with the Soxhlet
extraction technique with the use of 100% chloroform as the solvent. The chloroform
extract was then concentrated to yield a crude extract, which was then subjected to column
chromatography for further fractionation and isolation of the phytochemicals present in
the plant material. Desacetylmatricarin, isolated through column chromatography, was
recrystallized in benzene [14] and subsequently used for derivatization.
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2.2.2. General Procedure for the Preparation of Desacetylmatricarin Derivatives (3a–3i)

Desacetylmatricarin (1) was added to a clean, dry, round-bottom flask and dried
under vacuum. A 76 mg portion was then weighed out and diluted with 1 mL of pyridine.
After reacting for one hour, 0.2 mL of hexanoyl chloride (2i) was added dropwise under a
nitrogen atmosphere. The reaction mixture turned a dark yellow color after several hours
and was left to stir overnight under nitrogen. The same procedure was then applied to
modify desacetylmatricarin with propionyl chloride (2a), methanesulfonyl chloride (2b),
1-naphthoyl chloride (2c), hydrocinnamoyl chloride (2d), decanoyl chloride (2e), 2-furoyl
chloride (2f), thionyl chloride (2g), and benzoyl chloride (2h). Each reaction used 1 mL of
pyridine and 0.2 mL of the corresponding acyl chloride (Scheme 1).
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2.2.3. National Cancer Institute (NCI)-60 Cell Line Evaluation

All the synthesized derivatives of desacetylmatricarin were submitted to the NCI
to evaluate their anti-tumor properties. For the one-dose assay, the compounds were
solubilized in DMSO at 40 mg/mL and tested at a single high dose of 10−5 M against the
full NCI-60 cell panel [20]. The compounds that met an established threshold inhibition
criterion in a minimum number of cell lines were further screened in the full five-dose
assay, in which they were evaluated against the 60-cell panel at five concentration levels.
For more details on the methodology used, please visit https://dtp.cancer.gov/discovery_
development/nci-60/methodology.htm (accessed on 23 June 2024).

3. Results and Discussion

Sagebrush, a well-known shrub, harbors a promising compound called desacetylma-
tricarin. We successfully isolated and purified this compound in high yields. To explore its
potential as an anti-cancer agent, we further modified the purified desacetylmatricarin by

https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm
https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm
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reacting with propionyl chloride (2a), methanesulfonyl chloride (2b), 1-naphthoyl chloride
(2c), hydrocinnamoyl chloride (2d), decanoyl chloride (2e), 2-furoyl chloride (2f), thionyl
chloride (2g), benzoyl chloride (2h), and hexanoyl chloride (2i) (as shown in Scheme 1).
The goal of this derivatization was to create new ester derivatives and assess their potential
for fighting cancer. By replacing the hydroxyl group in desacetylmatricarin with different
functional groups, we investigated whether the resulting compounds could retain or even
enhance the original anti-cancer properties. All the derivatives were obtained in good yield,
and their structures were confirmed by 1H NMR and 13C NMR spectroscopy. These newly
synthesized derivatives were then put to the test against a panel of 60 different cancer cell
lines. The results were encouraging, as several derivatives, particularly those containing
1-naphthoyl (3c), hydrocinnamoyl (3d), decanoyl (3e), p-toluene sulfonyl (3g), benzoyl
(3h), and hexanoyl (3i), displayed significantly higher activity compared to the unmodified
desacetylmatricarin (1). This finding suggests that strategically modifying the molecule
can indeed boost its anti-cancer potential. However, the impact of the modifications was
not uniform. Derivatives containing propionyl (3a), methanesulfonyl (3b), and 2-furoyl (3f)
exhibited lower activity. The detailed results, including graphs illustrating the extent of
cancer cell growth inhibition and death (lethality), are provided in the Supplementary Data
(S2 and S3).

A large number of SLs have been reported as a potential source of anti-cancer agents [21].
Specifically, the effects of these bioactive components have been studied for various types of
cancer, such as pancreatic ductal adenocarcinoma [22], breast cancer [23], colon cancer [24],
and leukemia [25], among others. Parthenolide, Artemisin, Bigelovin, Isodeoxyelephan-
topin, and Cynaropicrin are some of the sesquiterpenoids that have been studied for their
anti-cancer properties [21,22]. The ability of SLs to target various aspects of cancer cell
growth and survival makes them attractive candidates for future cancer therapies. Thus,
given the importance of SLs in cancer research, it is highly crucial to screen and conduct
extensive research work on novel medicinal plants to explore their anti-cancer potentials.
In this regard, we have attempted to study the structure–activity relationship of desacetyl-
matricarin in order to explore and unlock its potential anti-cancer properties. While some
of the derivatives of desacetylmatricarin (3c–3e, 3g–3i) displayed higher biological activity
in a single-dose assay as compared to the parent natural compound (1) (Supplementary
Data S2 and S3), their effects were not sustained in the five-dose assay.

4. Conclusions

This study highlights the potential of chemical modification of desacetylmatricarin to
yield novel bioactive molecules that are not found in nature. These chemical transforma-
tions, involving the formation of new bonds and the introduction of additional functional
groups, demonstrate that the biological activity of natural metabolites can be enhanced by
strategically incorporating suitable groups and atoms into the natural precursor. Therefore,
the choice of functional groups for modification becomes crucial in optimizing the biological
activity of natural compounds. In this study, the results were particularly encouraging for
several derivatives. Notably, those containing 1-naphthoyl, hydrocinnamoyl, benzoyl, tosyl
chloride, hexanoyl, and decanoyl groups exhibited significantly higher activity against can-
cer cell lines compared to the unmodified desacetylmatricarin. This finding demonstrates
that strategic modifications can indeed enhance the anti-cancer properties of desacetylma-
tricarin and highlights the importance of studying the relationship between a molecule’s
structure and its biological activity (structure–activity relationship) in drug discovery. By
understanding how modifications influence a molecule’s properties, we can design more
effective drugs. Incorporating functional groups consisting of heteroatoms such as chlorine,
fluorine, sulfur, nitrogen ring, and epoxide groups into desacetylmatricarin might be an
effective strategy for tailoring its biological activity, and as such, it opens exciting avenues
for further research.
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Characterization data of synthesized compounds
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40.6, 38.8, 21.4, 19.8, 15.1.
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[4,5-b]furan-4-yl methanesulfonate (3b) 
1H NMR (300 MHz, CDCl3): δ 6.16–6.09 (m, 1H), 4.71–4.57 (m, 1H), 3.71 (t, J = 10.1 Hz, 

1H), 3.41–3.31 (m, 1H), 3.07 (s, 3H), 2.88 (dd, J = 13.9, 11.1 Hz, 1H), 2.71–2.54 (m, 2H), 2.38–
2.25 (m, 1H), 2.25 (t, J = 1.1 Hz, 3H), 1.37 (d, J = 6.9 Hz, 3H). 13C NMR (76 MHz, CDCl3): δ 
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(d, J = 5.3 Hz, 2H), 2.32 (t, J = 1.1 Hz, 3H), 1.30 (d, J = 6.6 Hz, 3H). 13C NMR (76 MHz, CDCl3): 
δ 195.3, 176.9, 169.7, 165.9, 145.1, 136.0, 134.5, 134.0, 133.4, 131.6, 130.6, 128.9, 128.4, 126.6, 
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1H NMR (300 MHz, CDCl3): δ 9.01 (dq, J = 8.7, 1.0 Hz, 1H), 8.23 (dd, J = 7.3, 1.3 Hz,
1H), 8.09 (dt, J = 8.3, 1.1 Hz, 1H), 7.96–7.87 (m, 1H), 7.66 (dd, J = 8.6, 6.9, 1.5 Hz, 1H),
7.61–7.45 (m, 2H), 6.21 (p, J = 1.4 Hz, 1H), 5.20 (td, J = 10.5, 2.0 Hz, 1H), 3.80 (t, J = 9.9 Hz,
1H), 3.52–3.42 (m, 1H), 2.92 (dd, J = 13.6, 10.8 Hz, 1H), 2.71–2.54 (m, 2H), 2.59–2.48 (m, 2H),
2.50 (d, J = 5.3 Hz, 2H), 2.32 (t, J = 1.1 Hz, 3H), 1.30 (d, J = 6.6 Hz, 3H). 13C NMR (76 MHz,
CDCl3): δ 195.3, 176.9, 169.7, 165.9, 145.1, 136.0, 134.5, 134.0, 133.4, 131.6, 130.6, 128.9, 128.4,
126.6, 125.6, 125.5, 124.5, 81.2, 77.5, 77.1, 76.7, 70.7, 59.4, 51.6, 44.9, 40.7, 21.4, 20.0, 15.23.
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(s, 3H), 1.36 (d, J = 6.4 Hz, 3H). 13C NMR (76 MHz, CDCl3): δ 194.2, 175.8, 168.7, 156.4, 146.2, 
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(3R,3aR,9aS,9bR)-3,6,9-trimethyl-2,7-dioxo-2,3,3a,4,5,7,9a,9b-octahydroazuleno [4,5-
b]furan-4-yl 3-phenylpropanoate (3d)

1H NMR (300 MHz, CDCl3): δ 7.35–7.15 (m, 5H), 6.19–6.12 (m, 1H), 4.78 (td, J= 10.6, 2.0
Hz, 1H), 3.66 (t, J = 9.9 Hz, 1H), 3.36 (d, J = 10.1 Hz, 1H), 2.97 (t, J = 7.2 Hz, 2H), 2.69–2.53 (m,
3H), 2.40 (s, 3H), 2.36 (d, J = 6.7Hz, 1H), 2.27 (s, 3H), 2.28–2.16 (m, 1H), 1.20 (d, J = 6.7 Hz,
3H). 13C NMR (76 MHz, CDCl3): δ 195.4, 177.0, 171.9, 169.8, 145.7, 140.1, 136.1, 133.4, 128.8,
128.6, 126.8, 81.2, 70.6, 59.1, 51.7, 44.8, 40.8, 36.2, 31.0, 21.5, 20.1, 15.2.
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[4,5-b]furan-4-yl furan-2-carboxylate (3f) 
1H NMR (300 MHz, CDCl3): δ 7.66–7.57 (m, 1H), 7.29–7.19 (m, 1H), 6.55 (dd, J= 3.6, 

1.7 Hz, 1H), 6.19 (m, J = 1.5 Hz, 1H), 5.04 (td, J = 10.5, 2.0 Hz, 1H), 3.77 (t, J = 9.8 Hz, 1H), 
3.43 (d, J = 10.1 Hz, 1H), 2.82 (dd, J = 13.6, 10.8 Hz, 1H), 2.63–2.55 (m, 2H), 2.46 (s, 3H), 2.3 
(s, 3H), 1.36 (d, J = 6.4 Hz, 3H). 13C NMR (76 MHz, CDCl3): δ 194.2, 175.8, 168.7, 156.4, 146.2, 
143.9, 142.9, 134.9, 132.3, 118.1, 111.3, 80.0, 76.5, 76.1, 75.7, 69.9, 58.1, 50.6, 43.6, 39.8, 20.4, 
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(3R,3aR,9aS,9bR)-3,6,9-trimethyl-2,7-dioxo-2,3,3a,4,5,7,9a,9b-octahydroazuleno [4,5-
b]furan-4-yl decanoate (3e)

1H NMR (300 MHz, CDCl3): δ 6.18 (t, J = 1.4 Hz, 1H), 4.82 (td, J = 10.6, 2.0 Hz, 1H),
3.71 (t, J = 10.0 Hz, 1H), 3.39 (d, J = 10.1 Hz, 1H), 2.70 (dd, J = 13.6, 10.8 Hz, 1H), 2.56–2.46
(m, 1H), 2.46–2.41 (s, 3H), 2.38–2.31 (m, 3H), 2.30 (s, 3H), 1.72–1.59 (m, 2H), 1.35 (d, 3H),
1.28-1.78 (m, 12H), 0.92–0.82 (m, 3H). 13C NMR (76 MHz, CDCl3): δ 195.3, 176.9, 172.7,
169.6, 145.2, 136.0, 133.3, 81.2, 77.5, 77.1, 76.7, 70.2, 59.1, 51.6, 44.8, 40.8, 34.4, 31.9, 29.5, 29.37,
29.25, 24.8, 22.7, 21.4, 20.0, 15.1, 14.2.
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1.7 Hz, 1H), 6.19 (m, J = 1.5 Hz, 1H), 5.04 (td, J = 10.5, 2.0 Hz, 1H), 3.77 (t, J = 9.8 Hz, 1H), 
3.43 (d, J = 10.1 Hz, 1H), 2.82 (dd, J = 13.6, 10.8 Hz, 1H), 2.63–2.55 (m, 2H), 2.46 (s, 3H), 2.3 
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(3R,3aR,9aS,9bR)-3,6,9-trimethyl-2,7-dioxo-2,3,3a,4,5,7,9a,9b-octahydroazuleno [4,5-
b]furan-4-yl furan-2-carboxylate (3f)

1H NMR (300 MHz, CDCl3): δ 7.66–7.57 (m, 1H), 7.29–7.19 (m, 1H), 6.55 (dd, J= 3.6,
1.7 Hz, 1H), 6.19 (m, J = 1.5 Hz, 1H), 5.04 (td, J = 10.5, 2.0 Hz, 1H), 3.77 (t, J = 9.8 Hz, 1H),
3.43 (d, J = 10.1 Hz, 1H), 2.82 (dd, J = 13.6, 10.8 Hz, 1H), 2.63–2.55 (m, 2H), 2.46 (s, 3H),
2.3 (s, 3H), 1.36 (d, J = 6.4 Hz, 3H). 13C NMR (76 MHz, CDCl3): δ 194.2, 175.8, 168.7, 156.4,
146.2, 143.9, 142.9, 134.9, 132.3, 118.1, 111.3, 80.0, 76.5, 76.1, 75.7, 69.9, 58.1, 50.6, 43.6, 39.8,
20.4, 19.0, 14.0.
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1H NMR (300 MHz, CDCl3): δ 7.66–7.57 (m, 1H), 7.29–7.19 (m, 1H), 6.55 (dd, J= 3.6, 

1.7 Hz, 1H), 6.19 (m, J = 1.5 Hz, 1H), 5.04 (td, J = 10.5, 2.0 Hz, 1H), 3.77 (t, J = 9.8 Hz, 1H), 
3.43 (d, J = 10.1 Hz, 1H), 2.82 (dd, J = 13.6, 10.8 Hz, 1H), 2.63–2.55 (m, 2H), 2.46 (s, 3H), 2.3 
(s, 3H), 1.36 (d, J = 6.4 Hz, 3H). 13C NMR (76 MHz, CDCl3): δ 194.2, 175.8, 168.7, 156.4, 146.2, 
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(3R,3aS,9aS,9bR)-3,6,9-trimethyl-2,7-dioxo-2,3,3a,4,5,7,9a,9b-octahydroazuleno [4,5-

b]furan-4-yl 4-methylbenzenesulfonate (3g)
1H NMR (300 MHz, CDCl3): δ 7.81 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 6.15 (m,

1H), 4.46–4.32 (m, 1H), 3.63 (t, J = 9.9 Hz, 1H), 3.32 (d, J = 10.1 Hz, 1H), 2.74 (dd, J = 13.9,
11.2 Hz, 1H), 2.47 (s, 3H), 2.44–2.30 (m, 2H), 2.20–2.25 (s, 3H), 2.15 (s, 3H), 1.35 (d, J = 6.5 Hz,
3H). 13C NMR (76 MHz, CDCl3): δ 195.0, 176.5, 169.7, 146.0, 143.7, 135.9, 133.7, 133.4, 130.3,
128.0, 80.7, 77.5, 77.1, 76.7, 59.6, 51.5, 45.1, 40.7, 21.8, 21.1, 19.9, 15.3.
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