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Abstract: Cyanide leaching technology was studied for low-grade oxidized gold ores in Guangxi
Province. The gold grade of the raw ores was 1.32 g/t. The gold leaching rate was 90.91% under
the optimal conditions for the following conventional leaching process: using steel forging as the
grinding medium, a grinding fineness of −0.074 mm accounting for 92.53%, a stirring speed of
1500 r/min, a pulp leaching concentration of 28.57%, a pH value of 10.5, a temperature of 25 ◦C,
a leaching time of 24 h, and a potassium cyanide consumption of 4 kg/t. A new type of mixed
aid-leaching agent (0.6 kg/t) was used, with a dosage of potassium cyanide of 2 kg/t. All else being
equal, the gold leaching rate increased by 2.17% to 93.20% after 18 h of aid leaching compared to that
of conventional leaching for 28 h. Meanwhile, the amount of potassium cyanide used was reduced by
50%. The aid-leaching agents restored the surface activity of passivated gold particles and depressed
the adsorption of gold and its complexes by gangue minerals. This approach could shorten the
leaching time and increase the gold leaching rate.

Keywords: gold ores; leaching behavior; cyanidation; adsorption; separations

1. Introduction

Gold has good corrosion resistance, heat resistance, and ductility. The demand for gold
has gradually increased with the progress of science and technology [1]. Cyanide leaching
in gold technology occupies an important position in gold extraction, having the advantages
of low production costs, high stability, and good adaptability to ores [2]. Cyanide leaching
of gold has been a concern for researchers [3]. Cyanide leaching is a chemical reaction in an
aqueous cyanide solution under aerobic conditions. Elsner [4] thought that the reaction
process is a one-step reaction (Equation (1)); however, Bodländer [5] and Kameda [6]
believed that it involves a two-step reaction (Equations (2) and (3)). At present, the presence
of hydrogen peroxide in the cyanide leaching of gold has been proven. A small amount of
hydrogen peroxide can accelerate the leaching efficiency of gold [7].

Many factors affect the cyanidation leaching of gold, including cyanide concentration,
oxygen concentration, pH value, temperature, pressure, size and shape of gold in ores,
grinding fineness, ore pulp concentration, slime content, stirring strength, films formed on
the surface of gold particles, cyanidation leaching time, and associated minerals [8]. The
cyanide concentration and oxygen concentration are mutually restricted in gold cyanide
leaching. The mechanical and chemical losses of cyanide should be increased in the
production process. The cyanides used in cyanidation leaching are mainly KCN or NaCN.
When the pH value of the solution is acidic or neutral, cyanide decomposes according to
Equation (4) to produce the highly toxic gas HCN, which pollutes the environment [9].
NaOH, KOH, Ca(OH)2, or CaO should be added to the cyanide solution as a “protective
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base” to avoid the production of HCN. When CaO or Ca(OH)2 is used as a “protective
base”, hydrogen peroxide is generated during the cyanidation reactions (Equation (5)). The
CaO2 films generated on the surface of gold particles hinder the dissolution of gold.

4Au + 8CN− + O2 + 2H2O = 4[Au(CN)2]− + 4OH− (1)

2Au + 4NaCN + 2H2O + O2 = 2NaAu(CN)2 + H2O2 + 2NaOH (2)

2Au + 4NaCN + H2O2 = 2NaAu(CN)2 + 2NaOH (3)

CN− + H2O = OH− + HCN↑ (4)

Ca(OH)2 + H2O2 = CaO2 + 2H2O (5)

High temperatures reduce the dissolved oxygen content in the system as well as the
gold reaction speed. When ores are treated with the same gold content and the gold particles
are of different sizes, the larger the gold particle size, the lower the leaching efficiency.
Therefore, pre-separating coarse gold particles before cyanidation can significantly shorten
the cyanidation leaching time and improve the gold leaching rate.

Gold often appears in microscopic/submicroscopic form or as lattice gold in fine-
grained gold ores, which can form a solid solution with sulfide. It is wrapped by pyrite,
arsenic pyrite, chalcopyrite, and other sulfide minerals, or by quartz, carbonate and silicate
gangue minerals. Gold ores need to be oxidized in advance, or aid-leaching agents are
added to destroy the inclusions before cyanide leaching. The effect of gold leaching time
on the leaching efficiency is determined by the change in the gold particle area covered
by passivation films. A reasonable cyanide-leaching time should be selected according to
the technological process and economic benefits to achieve the optimal cyanide leaching
efficiency and leaching rate. Increased stirring intensity is beneficial for breaking the
saturated solution layer on the gold surface and strengthening the diffusion of the leaching
agent in the leaching system. The diffusion rate increases with the stirring speed. Ore pulp
viscosity depends on slime content and pulp concentration.

A higher ore pulp viscosity leads to a smaller contact area and a lower diffusion
coefficient and diffusion speed for CN− and O2 molecules. It reduces the gold dissolving
speed [10]. Minerals containing iron [11], copper [12], silver [13], lead [14], arsenic [15],
antimony [16], mercury [17], sulfur [18], carbon [19], and silicon [20] have different effects
on the cyanidation leaching of gold within the cyanidation leaching system of gold ores,
which changes the cyanidation leaching environment [21]. Different leaching conditions
and different aid-leaching agents have been investigated to enhance the cyanidation leach-
ing process for gold ores with different ore properties [22]. Yang et al. [23] performed alkali
preprocessing and conventional leaching. The aid-leaching agents enhance leaching on
a high-arsenic gold concentrate based on mineralogy research. The enhanced leaching
of heavy metal salts can improve the gold leaching rate and accelerate the process, with
obvious enhancements. Oraby et al. [24] accelerated the leaching efficiency of Au, Ag, and
Cu by using glycine co-cyanidation leaching for copper-gold ores. The formation of glycine
complexes inhibits the decomposition of cyanide under weak acids. Eksteen et al. [25]
used amino acids and hydrogen peroxide to improve the leaching efficiency of gold under
alkaline conditions for low-grade gold ores. Raphulu et al. [26] used titanium dioxide as
a catalyst to improve the activity of oxygen as well as the interaction between cyanide
ions and gold. Guzman et al. [27] used potassium persulfate as an oxidizer under alkaline
conditions. Thallium ions were added to improve the gold-dissolving speed.

Cyanidation leaching was tested on low-grade gold ores in Guangxi Province to reduce
the influence of gangue minerals containing silicon on the cyanide leaching of gold. This
work investigated the effects of grinding time, grinding fineness, cyanide dosage, pH,
temperature, stirring speed, and leaching time on gold leaching. The gold leaching rate was
calculated by measuring the change in gold concentration in the leaching solution and the
gold content in the leaching residue before and after leaching. The leaching efficiency and
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rate of gold were increased to reduce the interaction between silicon-containing minerals
and gold. Additionally, new aid-leaching agents were studied.

2. Materials and Methods
2.1. Materials

The mill used in the test was an XMQ-φ240 × 90, with a filling rate of 35.83%. Steel
forgings with diameters of 3 cm, 2.5 cm, and 2 cm were used as the grinding media. The
specific parameters are shown in Table 1.

Table 1. Mill-specific parameters.

Name Conical Ball Mill

Model XMQ Φ-240 × 90

Feeding size/mm ≤3

Discharge/mesh 200

Reference grinding capacity/kg ≤1

Cylinder volume/L 6.25

Motor power/kW 0.55

Oxidized gold ores were extracted from Guangxi Province. Leaching test samples,
spectral analysis samples, and chemical multiple analysis samples were obtained through
a series of operations, including crushing, screening, agitation, and division. The chemical
composition and content of the raw ores were determined using X-ray fluorescence spec-
trometry (XRF) and chemical multi-element analysis. X-ray diffraction (XRD) was used to
analyze the mineral composition of samples (Figure 1).
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Figure 1. XRD analysis of gold ores.

Tables 2 and 3 and Figure 1 show that the gold grade is 1.32 g/t, and the main useful
element of gold ores is gold, with low contents of harmful elements such as arsenic. The
main gangue minerals are quartz, albite, talc, and magnesite, and gold mainly occurs
in quartz gangue. Si, Ca, Mg, and Al are the dominant elements, with a SiO2 content
above 90% and an Al2O3 content above 6%. These gold ores were deemed suitable for
cyanidation leaching.
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Table 2. XRF analysis of raw ore.

Composition Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O

content/% 0.035 0.193 6.872 90.222 0.022 0.194 0.683

Composition CaO TiO2 Cr2O3 MnO Fe2O3 CuO ZnO

content/% 0.195 0.085 0.019 0.013 1.356 0.008 0.021

Composition As2O3 Rb2O SrO ZrO2 BaO Ag PbO

content/% 0.003 0.005 0.004 0.003 0.023 0.028 0.016

Table 3. Chemical analysis of raw ore.

Composition Au * Zn TFe MgO Al2O3 CaO S SiO2

content/% 1.32 0.008 1.597 0.185 6.876 0.172 0.112 91.050
* Unit g/t.

2.2. Methods

Cyanidation leaching was tested using a single factor to investigate the effects of
grinding time, grinding fineness, KCN dosage, pH value of ore pulp, temperature, stirring
speed, and aid-leaching agents on leaching. Each grinding and agitation process utilized
400 g of sample, aid-leaching agent, alkali, and leaching agents. The gold leaching rate
was calculated through centrifugation, filtration, sampling, and testing after reaching the
leaching time. Each experiment was performed three times. Figure 2 shows the process of
cyanide leaching.
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3. Results
3.1. Grinding Time Test

The size of gold ores significantly affects cyanidation leaching. The optimal grinding
fineness is due to the minimum fineness of dissociation of gold particles and the economic
benefit [28]. The grinding concentration was set at 66.67%. The relationship between
grinding time and grinding fineness was investigated (Figure 3). Various hues symbolize
distinct outcomes in varying circumstances (same as below).

Figure 3 shows that the −0.074 mm content in the grinding curve increases with time.
The fineness of the raw ore of −0.074 mm accounts for 18.77%. This increases to 92.53% after
grinding for 6.5 min because of the different mechanical properties of gold ores. Coarser
grain sizes means more microcracks, lower mechanical strength, and easier milling. Smaller
particle sizes indicate higher ore strength, which hinders milling [29]. The macroscopic and
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microscopic cracks in the ore decrease with a uniformly finer grain size. The probability of
steel forging collision and grinding coarse particles is greater than that for fine particles,
which reduces the production of fine particles [30]. Therefore, it is essential to select an
appropriate grinding time, energy consumption, and optimal value to achieve the desired
the gold leaching effect.
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3.2. Effect of Grinding Fineness on Gold Leaching

Grinding fineness determines the degree of dissociation or exposure of gold ores [31].
The finer the grinding fineness, the more conducive it is to the dissociation of gold ores and
the enhancement in the contact area between gold and the leaching liquid. However, finer
grinding fineness means higher ore pulp viscosity, which is not conducive to the diffusion
of cyanide ions and gold cyanide complexes. Moreover, it hinders solid–liquid separation
and wastes energy. Therefore, proper grinding fineness is important to ensure a leaching
effect and a reasonable production cost.

For the leaching tests, 400 g of gold ore was used, with a pulp leaching concentration of
28.57%, a potassium cyanide dosage of 5 kg/t, and a NaOH dosage of 1.25 kg/t (pH 10.5).
The stirring speed was set at 1500 r/min, with an ore pulp temperature of 25 ◦C and
a leaching time of 24 h. This work investigated the impact of different particle contents
(70.66%, 81.16%, 92.53%, and 98.99%) on gold leaching, with a −0.074 mm grinding fineness
for each sample (Figure 4).

Figure 4 shows that the gold leaching rate increases with grinding fineness. Detailed
grinding is beneficial to the gold leaching rate. When the −0.074 mm grinding fineness
content increases from 70.66% to 92.53%, the gold leaching rate increases from 74.84% to
91.82%. Meanwhile, the leaching rate of gold increases linearly with grinding fineness.
When grain content with −0.074 mm grinding fineness is 98.99%, the gold leaching rate is
92.92%. The gold leaching rate decreases, but the grinding time increases. Moreover, the
grinding fineness determines the ore pulp viscosity under the same conditions, such as
slurry temperature.

A hydration film forms on the surface after particles dissolve in water. It is difficult to
produce the relative flow between the hydration membrane and particles due to adsorption
and hydration. The arrangement of water bodies is dense, with a large number of particles
and smaller particle sizes. In particular, a large number of fine particles of slime are highly
dispersed in the ore pulp due to the high fineness of grinding. The composition of ore pulp
close to the colloids significantly increases the viscosity of the ore pulp, which affects the
leaching effect of gold [32].



Separations 2024, 11, 228 6 of 12
Separations 2024, 11, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 4. Effect of grinding fineness on the gold leaching rate. 

Figure 4 shows that the gold leaching rate increases with grinding fineness. Detailed 
grinding is beneficial to the gold leaching rate. When the −0.074 mm grinding fineness 
content increases from 70.66% to 92.53%, the gold leaching rate increases from 74.84% to 
91.82%. Meanwhile, the leaching rate of gold increases linearly with grinding fineness. 
When grain content with −0.074 mm grinding fineness is 98.99%, the gold leaching rate is 
92.92%. The gold leaching rate decreases, but the grinding time increases. Moreover, the 
grinding fineness determines the ore pulp viscosity under the same conditions, such as 
slurry temperature. 

A hydration film forms on the surface after particles dissolve in water. It is difficult 
to produce the relative flow between the hydration membrane and particles due to ad-
sorption and hydration. The arrangement of water bodies is dense, with a large number 
of particles and smaller particle sizes. In particular, a large number of fine particles of 
slime are highly dispersed in the ore pulp due to the high fineness of grinding. The com-
position of ore pulp close to the colloids significantly increases the viscosity of the ore 
pulp, which affects the leaching effect of gold [32]. 

More secondary slime is generated in suspension for a long time with increased 
grinding fineness, which makes it difficult to precipitate the gelatinous material. It reduces 
the gold dissolving speed and causes difficulties in the slurry washing process. Thus, dis-
solved gold is lost in the tailing slurry. Meanwhile, the fine particle size is increased to 
activate silicon-containing minerals, produce silica gel components to adsorb gold and its 
complex, and reduce the gold rate. Based on the factors of grinding cost and leaching ef-
fect, the −0.074 mm grinding fineness proportion was determined to be 92.53%. 

3.3. Effect of Potassium Cyanide Dosage on Gold Leaching 
Cyanide concentration in the solution significantly affects the gold leaching rate. The 

test used 400 g of gold ore, a granule content of 92.53%, a grinding fineness of −0.074 mm, 
a stirring speed of 1500 r/min, a pulp leaching concentration of 28.57%, a pH of 10.5 ad-
justed with NaOH, an ore pulp temperature of 25 °C, and a leaching time of 24 h. The 
influence of potassium cyanide dosage within 1–5 kg/t on gold leaching effectiveness was 
studied (Figure 5). 

Figure 4. Effect of grinding fineness on the gold leaching rate.

More secondary slime is generated in suspension for a long time with increased
grinding fineness, which makes it difficult to precipitate the gelatinous material. It reduces
the gold dissolving speed and causes difficulties in the slurry washing process. Thus,
dissolved gold is lost in the tailing slurry. Meanwhile, the fine particle size is increased to
activate silicon-containing minerals, produce silica gel components to adsorb gold and its
complex, and reduce the gold rate. Based on the factors of grinding cost and leaching effect,
the −0.074 mm grinding fineness proportion was determined to be 92.53%.

3.3. Effect of Potassium Cyanide Dosage on Gold Leaching

Cyanide concentration in the solution significantly affects the gold leaching rate. The
test used 400 g of gold ore, a granule content of 92.53%, a grinding fineness of −0.074 mm, a
stirring speed of 1500 r/min, a pulp leaching concentration of 28.57%, a pH of 10.5 adjusted
with NaOH, an ore pulp temperature of 25 ◦C, and a leaching time of 24 h. The influence
of potassium cyanide dosage within 1–5 kg/t on gold leaching effectiveness was studied
(Figure 5).
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Figure 5 shows that the gold leaching rate increases significantly with potassium
cyanide dosage. When the amount of leaching agent ranges from 1 to 4 kg/t, the gold
leaching rate increases significantly from 57.27% to 90.91%. When the amount of the leach-
ing agent is 5 kg/t, the gold leaching rate increases to 91.82%. The amount of potassium
cyanide has reached an effective level of gold leaching. On the other hand, the saturation
concentration of oxygen in water is about 8 mg/L at room temperature and pressure. When
the cyanide concentration is low, the diffusion speed of cyanide in the solution is faster.
The dissolution speed of gold increases rapidly with cyanide concentration. As the cyanide
dosage continues to increase, the dissolution speed of gold increases slowly. Cyanide con-
centration is low, and the leaching rate of gold depends on cyanide concentration. When
the cyanide concentration increases to a certain level, the cyanide leaching rate and speed
of gold have little effect. Meanwhile, excess cyanide affects the subsequent processing cost.
Thus, a dosage of 4 kg/t of the leaching agent was taken.

3.4. Effect of pH Value on Gold Leaching

When the pH of the solution is low, cyanide is hydrolyzed to produce hydrocyanic
acid. Therefore, the pH value of the ore pulp is adjusted to make the ore pulp alkaline.
This prevents the consumption of agents generated by the hydrolysis of cyanide during the
cyanide leaching process as well as environmental pollution. The test involved 400 g of
gold ores with a −0.074 mm grinding fineness of 92.53%, a KCN dosage of 4 kg/t, a stirring
speed of 1500 r/min, an ore pulp temperature of 25 ◦C, a pulp leaching concentration of
28.57%, and a leaching time of 24 h. We slowly added the sodium hydroxide solution until
the pH value was reached.

Figure 6 shows that the gold leaching rate is in a downward trend at pH 9.5–11.5.
The gold leaching rate decreases from 91.64% to 90.91% at pH 9.5–10.5, which has little
influence on the gold leaching rate. When the pH is greater than 10.5, the gold leaching rate
significantly decreases, reaching 82.27% at pH 11.5. The concentration of hydroxide ions is
high under a strong base. The existing competitive adsorption with cyanide ions reduces
the contact between cyanide and gold. [HCN]/[CN−] = 1 in the solution at pH 9.4, having
the highest cyanide speed. When the pH is greater than 9.4, the cyanide ions are stable in
aqueous solution. When the pH is lower than 9.4, some cyanide ions react with hydrogen
ions to produce hydrocyanic acid, which increases the consumption of cyanide. The gold
leaching rate should be increased, and the hydrolysis of cyanide should be avoided as
much as possible at pH 10.5.

Separations 2024, 11, x FOR PEER REVIEW 8 of 13 
 

 

The gold leaching rate should be increased, and the hydrolysis of cyanide should be 
avoided as much as possible at pH 10.5. 

 
Figure 6. Effect of pH value on the gold leaching rate. 

3.5. Effect of Temperature on Gold Dissolution 
The temperature of the cyanide leaching system significantly affects gold leaching. 

The test used 400 g of gold ores with a grinding fineness of −0.074 mm (92.53%), a stirring 
speed of 1500 r/min, a pulp leaching concentration of 28.57%, a KCN dosage of 4 kg/t, a 
leaching time of 24 h, and a pH of 10.5. Figure 7 shows the gold leaching effect within 15–
35 °C. 

 
Figure 7. Effect of the temperature on gold leaching rate. 

Figure 7 shows that the gold leaching rate gradually increases with temperature. The 
leaching rate of gold rapidly increases from 85.45% to 90.91% at 15–25°C because the in-
creased diffusion coefficient and the thinning of the diffusion layer are conducive to gold 

Figure 6. Effect of pH value on the gold leaching rate.



Separations 2024, 11, 228 8 of 12

3.5. Effect of Temperature on Gold Dissolution

The temperature of the cyanide leaching system significantly affects gold leaching.
The test used 400 g of gold ores with a grinding fineness of −0.074 mm (92.53%), a stirring
speed of 1500 r/min, a pulp leaching concentration of 28.57%, a KCN dosage of 4 kg/t,
a leaching time of 24 h, and a pH of 10.5. Figure 7 shows the gold leaching effect within
15–35 ◦C.
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Figure 7 shows that the gold leaching rate gradually increases with temperature. The
leaching rate of gold rapidly increases from 85.45% to 90.91% at 15–25 ◦C because the
increased diffusion coefficient and the thinning of the diffusion layer are conducive to gold
leaching. The gold leaching rate rises to 91.36%, and the increase significantly slows at 35 ◦C.
The oxygen solubility decreases due to the increased ore pulp temperature. Other metals
dissolved in the solution have harmful effects on the hydrolysis of cyanide. Unfavorable
factors, such as increases in cyanide dosage, solution evaporation, and energy consumption,
increase the cost of mineral processing [33]. Meanwhile, it pollutes the environment and
reduces the purity of the leaching solution. Therefore, the leaching temperature was set to
25 ◦C.

3.6. Effect of Stirring Speed on Gold Dissolution

The interaction between gold and cyanide solution occurs at the solid–liquid interface.
Agitation significantly affects the gold leaching efficiency. The test used 400 g of gold ore
with a grinding fineness of −0.074 mm and a content of 92.53%, a KCN dosage of 4 kg/t, a
pulp leaching concentration of 28.57%, a temperature of 25 ◦C, a leaching time of 24 h, and
a pH of 10.5. The effect of the stirring speed within 1000–2000 r/min on gold leaching was
tested (Figure 8).

Figure 8 shows that the leaching rate of gold increases linearly with the stirring speed.
As the stirring speed increases from 1000 to 2000 r/min, the gold leaching rate increases
from 87.14% to 92.86%. This is because the oxygen molecules and CN− on the gold surface
are consumed during the dissolution of gold. The concentration difference between the gold
surface and solution occurs, and the oxygen molecules and CN− diffuse from the solution
to the gold surface [34]. AuCN gradually dissolves and diffuses from the gold particle
surface to the solution, and gold continues to dissolve. The resistance of the leaching agent
to the gold surface of the solution comes from the diffusion layer adjacent to the gold
surface. Stirring has the following functions: destroying the saturated solution layer on
the gold surface, generating the surface adsorbents of gold cyanide, and accelerating the
diffusion speed of CN−, O2, AuCN, and [Au(CN)2]−. Thus, stirring intensity is increased
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to improve the gold leaching effect, but it causes the wear of equipment and higher energy
consumption. The stirring speed is optimal at 1500 r/min.
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3.7. Effect of Aid-Leaching Agents on Gold Dissolution

Under optimal leaching conditions, the content of −0.074 mm grinding fineness was
92.53%, with a stirring speed of 1500 r/min, a pulp leaching concentration of 28.57%, a pH
of 10.5, and a conventional KCN leaching dosage of 4 kg/t. The aid-leaching agent amount
was 0.6 kg/t, and the KCN amount was 2 kg/t under the leaching-aid condition. Figure 2
shows the cyanide leaching process, and Figure 9 shows the results of examining the effect
of leaching time on the gold leaching effect with the aid-leaching agents.
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Figure 9 shows that the gold leaching rate gradually increases with leaching time, and
the aid-leaching agents improve the leaching effect of gold ores. The leaching rate is 60.86%
with conventional cyanide leaching for 8 h. The leaching rate is 74.42% with the additive
for 6 h. The gold leaching rate gradually increases with leaching time, but the leaching



Separations 2024, 11, 228 10 of 12

efficiency slows down. The leaching rate of gold is 91% after aid leaching for 14 h, which
is close to the conventional gold leaching rate after 28 h. The gold leaching rate is 93.20%
after aid leaching for 18 h, which is 2.29% higher than that of conventional leaching for
24 h. Therefore, the aid-leaching agents of gold can increase the reaction speed and gold
leaching rate of cyanide leaching and reduce the cyanide by half.

4. Discussion

In the cyanidation leaching system of oxidized gold ores, the solution is rich in con-
densed SiOH2

+, condensed SiOH, and condensed SiO− as well as gold and its complexes,
surfactant ions, peroxides, oxygen molecules, and cyanide ions.

Quartz and silicate minerals undergo chemical or mechanochemical reactions during
wet treatment to form silica compounds in active semi-crystalline or amorphous phases,
such as alkali metal (aluminum) silicates, short-chain silicates, and polymerized silicon [35].
Quartz and silicate minerals generate part of the silica components in the grinding process
of gold ores, with strong activity and adsorbing gold and its complex in the solution.
Han et al. [36] used electrochemical tests, showing that a finer size of quartz particles means
a faster dissolving speed of cyanide leaching of gold and a higher adsorption rate of the
gold solution on quartz. The adsorption mechanism of AuCN and [Au(CN)2]− to quartz is
explained using density functional theory.

The main components of the aid-leaching agents are trisodium citrate, sodium dodecyl
sulfate, and magnesium peroxide in the system of the cyanide leaching of gold system.
Trisodium citrate in aid-leaching agents can ionize the COO− functional group in the
solution. It can be adsorbed on the surface of quartz and silicate minerals containing
≡SiOH2

+, ≡SiOH, and ≡SiO−. The gold leaching rate is improved, reducing the interac-
tion between silicate minerals and gold complexes. Magnesium peroxide in aid-leaching
agents can improve the oxidation potential of the solution, accelerating the oxidation of
dissolved gold.

Oxygen is used as a leaching reactant to increase the dissolved oxygen content and
accelerate the cyanide leaching efficiency of gold. Dodecyl sulfate is used to wrap the
quartz and other silicon-containing minerals, which inhibits the adsorption of gangue
minerals into gold complexes. Moreover, it avoids the “prog-robbing gold” effect of silicon-
containing minerals on gold ores. The contact area between gold and cyanogen ions is
increased to reduce the cyanide consumption and increase the gold leaching rate.

5. Conclusions

(1) The gold grade of the oxidized gold deposit in Guangxi Province was 1.32 g/t, and
the main gangue minerals were quartz, feldspar, talc, and magnesite. Furthermore, the
gold mainly occurred in quartz gangues.

(2) The gold leaching rate was 90.91% under the optimal conditions for the following
conventional leaching process: steel forging was used as a grinding medium, a −0.074 mm
grinding fineness content of 92.53%, a stirring speed of 1500 r/min, a pulp leaching
concentration of 28.57%, pH 10.5, an ore pulp temperature of 25 ◦C, a leaching time of 24 h,
and a potassium cyanide dosage of 4 kg/t.

(3) The new aid-leaching agents (0.6 kg/t) were adopted, and the potassium cyanide
dosage was 2 kg/t. The gold leaching rate was 88.25%, with other conditions unchanged
after aid leaching for 10 h. This is close to the conventional leaching rate of 88.86% for 20 h.
The gold leaching rate was 93.20% after aid-leaching for 18 h, and the amount of potassium
cyanide used was reduced by 50%. Meanwhile, the cyanide leaching time of gold was
significantly shortened.

(4) The aid-leaching agents could restore the surface activity of passivated gold parti-
cles and inhibit the adsorption of gangue minerals to gold and its complexes. Therefore,
the gold leaching efficiency and rate were improved.
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6. Patents
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