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Abstract: A liquid–liquid extraction pretreatment method using n-hexane as the extractant was
developed for the analysis of volatile aroma substances in three flavors (six cola samples, six lemon
samples, and six orange samples) of carbonated beverages by gas chromatography–mass spectrometry
(GC-MS). Quantitative analysis was conducted using the external standard method. The spiked
recovery rate of α-terpineol was used as the evaluation criterion. Single-factor and response surface
experiments were conducted to investigate the effects of extraction temperature, extraction time, and
solvent-to-sample ratio. The results indicated that the maximum spiked recovery rate of α-terpineol,
81.00%, was achieved at an extraction temperature of 45 ◦C, extraction time of 30 min, and a solvent-
to-sample ratio of 1 mL:15 mL. Thirty-four components were identified by GC-MS on the pretreated
samples via the internal standard method. 1,4-Cineole, fenchyl alcohol, borneol, and α-terpineol are
covered aroma substances in cola beverages. Two aromatic substances, D-limonene and α-terpineol,
were detected in orange juices. α-Terpineol was detected in each lemon-flavor carbonated beverage
sample. Going a step further, α-terpineol was detected in all 18 carbonated beverage samples and
had high response values. The principal component analysis by functional group classification led to
the conclusion that acids, phenols, hydrocarbons, alcohols, and ethers played a major contribution to
the aroma of these 18 beverages. Increased separation of target compounds was found using the new
pre-treatment methods, resulting in improved analytical resolution and selectivity.

Keywords: n-hexane; carbonated beverage; volatilome profile; principal component analysis (PCA);
liquid–liquid extraction

1. Introduction

With the rapid development of the food field, food flavors and fragrances are increas-
ingly used in a variety of food products, and adding flavors and fragrances in food can
make the flavor of food more rich. The use of flavors and fragrances in food production can
improve the flavor diversity of food, and its aroma components can be used as an indicator
to determine the use of flavors and fragrances in food. Due to the complex composition
of flavors and fragrances, volatile and unstable, oxidation, polymerization, condensation,
and other reactions may occur during the extraction process. Also, because flavors and
fragrances are often loaded in complex food matrices, complex food matrices can have an
impact on the composition analysis of flavors and fragrances [1–3].

The fragrances of carbonated beverages is one of the most important parts of beverage
sensory indicators. Different flavors and fragrances can give different flavors to carbonated
beverages. The aroma components in carbonated beverages are the key components
that determine the composition of the beverage [4]. At present, the methods applied to
the detection of volatile aromatic substances include water vapor distillation [5], solvent
extraction [6], thermal desorption and supercritical fluid extraction [7], and headspace solid-
phase microextraction [8]. Hausch, B [9] used continuous liquid–liquid extraction (CLLE)
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with ether as the extraction solvent to separate the aroma components from carbonated
beverages. The use of ether as an extraction solvent may evaporate hazardous substances
and the CLLE technique may require longer processing time to complete the extraction and
treatment process than some other techniques, affecting the extraction efficiency. Ziming
Xie [10] used dichloromethane as the extraction solvent and liquid–liquid extraction to
extract the aroma substances in soy sauce. Dichloromethane also volatilizes harmful
substances. n-Hexane is an organic compound with the chemical formula C6H14 and
belongs to the straight-chain saturated aliphatic hydrocarbons. n-Hexane has low surface
tension and miscibility and is virtually insoluble in water. The n-hexane molecule has only
carbon–hydrogen bonds and does not contain polar groups; it has good non-polar solubility
and can interact quickly with weakly polar and non-polar substances. n-Hexane is used
as the extractant to extract the volatile aroma components in cola and fruity carbonated
beverages. The GC-MS method for the determination of volatile aroma components was
established. This approach minimizes costs and shortens analysis time [11–13].

There are few reports on volatile aroma components in carbonated beverages. In this
paper, n-hexane was used as the extraction solvent for liquid–liquid extraction of carbonated
beverage samples, and the beverages were analyzed by GC-MS. The principal factor
analysis of the main aroma components of commercially available carbonated beverages
with high usage of volatile aroma components was carried out.

2. Materials and Methods
2.1. Materials and Instruments
2.1.1. Materials and Reagents

Different flavors and manufacturers of carbonated beverages (six cola carbonated
beverages, six lemon-flavor carbonated beverages, and six orange-flavor carbonated bever-
ages) were purchased from a retail market. n-Hexane (chromatographic purity, 95%) was
purchased from TEDIA Co., Ltd., Shanghai, China. The reference standards for α-terpineol,
D-limonene, fenchyl alcohol, and related compounds were purchased from Meryer Co.,
Ltd., Shanghai, China.

2.1.2. Instruments

Gas chromatography (5977)–mass spectrometry (7890) (GC-MS), Agilent USA, Inc.
(Santa Clara, CA, USA) was used.

2.2. Experimental Methods
2.2.1. Samples Preparation

Take 30 mL of carbonated beverage samples into a 200 mL flask, use a pipette gun to
suck 2 mL of n-hexane solvent into the flask (ratio of n-hexane solvent to sample volume:
15:1 mL), seal the flask with a rubber stopper, and keep it in a water bath at a controlled
temperature of 45 ◦C for 30 min. Allow it to come to room temperature, and transfer the
mixed liquid to a dispensing funnel for extractive separation. Pipette 1.5–1.7 mL of the
upper liquid layer with a pipette gun and transfer it directly into the injection bottle to
be measured.

2.2.2. Gas Chromatography Operation Conditions

GC was used 30 m × 0.25 mm J&W DB-5MS column. The program heating up
involved holding at 50 ◦C for 3 min and then, increasing to 250 ◦C at 20 ◦C/min for 2 min,
and heating to 280 ◦C at 15 ◦C/min for 2 min again. The carrier gas was helium (He),
purity ≥ 99.999%, which was used in all of the GC operation processes.

2.2.3. Mass Spectroscopy Conditions

The ionization mode was electron bombardment (EI). The carrier gas was helium (He).
The detecting power of 70 eV was used. The ion source temperature was 200 ◦C with a
mass scan range of 33–500 m/z.
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2.2.4. Experimental Factors

The effects of the extraction temperatures of 25, 35, 45, 55, and 65 ◦C; the extraction
times of 10, 20, 30, 40, and 50 min; and the solvent-to-sample ratios (mL:mL) of 1:5, 1:10,
1:15, 1:20, and 1:25 on the recovery of the labeled sample of α-terpineol were investigated
by gas chromatography–mass spectrometry (GC-MS) analysis.

2.2.5. OAV Analysis

OAV = C/T (1)

where OAV refers to the odor activity value coefficient, which is the ratio of the concentra-
tion (C) of a specific aromatic compound in the sample to its olfactory threshold (T). The
olfactory threshold is defined as the minimum concentration that can be detected by the
human nose. If the OAV exceeds 1, it means that the concentration of the compound is
sufficient to be perceived, indicating a significant impact on the overall aroma [14].

2.2.6. Principal Component Analysis

Principal component analysis (PCA) is a statistical method that employs orthogonal
transformations to convert a set of potentially correlated variables into a set of linearly
uncorrelated variables, known as principal components. It is a widely used technique in
multivariate data analysis, primarily for data dimensionality reduction, simplifying data
structures, and visualizing high-dimensional data [15].

3. Results and Discussion
3.1. Optimization of Extraction Conditions
3.1.1. Extraction Temperature

Samples were detected by GC-MS according to Sections 2.2.1 and 2.2.4. From Figure 1a,
it was shown that the recovery of α-terpineol increased gradually during the process of
increasing the extraction temperature from 25 to 45 ◦C. However, when the extraction
temperature was further increased to 55 ◦C, the recovery of α-terpineol showed a decreasing
trend. The volatility of aroma compounds increased with temperature, and α-terpineol
is more volatile at higher temperatures, which means that α-terpineol may be volatilized
from the extraction phase if the temperature is increased during the extraction operation,
thus reducing the amount actually extracted. At the same time, the weakening of van der
Waals forces induced with increasing temperature may affect the extraction performance.
Therefore, the optimal α-terpineol extraction temperature should be at 45 ◦C.
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3.1.2. Extraction Time

The recovery of α-terpineol showed an increasing trend when the extraction time was
increased from 10 to 30 min (Figure 1b). During a long extraction process, hexane as a
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low-boiling-point organic solvent may gradually evaporate, leading to a decrease in the
amount of solvent, ultimately affecting the extraction efficiency. The results showed that
the optimal extraction time should be 30 min.

3.1.3. The Ratio of n-Hexane Solvent to Sample Volume

According Figure 1c, in practice, the spiked recovery rate of α-terpineol samples were
significantly higher when the extraction reagent to sample volume ratio (mL:mL) was
in the gradient range of 1:5 to 1:15. Because the amount of hexane is not sufficient to
dissolve α-terpineol in the aqueous phase, then the problem of limited solubility restricts
the migration of α-terpineol, leading to a decrease in the extraction effect. So, when
extracting the reagent to sample volume ratio of 1 mL:15 mL, the spiked recovery rate of
α-terpineol was 81.00 ± 0.21%.

3.2. Responsive Surface Design

The design was optimized by response surface design using Design Experts 13. The
spiked recovery of α-terpineol samples (Y) was used as the response variable. Three factors,
extraction temperature (A), extraction time (B), and solvent-to-sample volume ratio (C),
had a great influence on the spiked recoveries of α-terpineol, and the experimental data
were designed and processed. The equation II was obtained.

Y = 81 + 6.6625A + 3.975B + 0.7325C − 4.325AB − 0.5AC + 1.075BC − 10.45A2 − 11.475B2 − 11.05C2 (2)

A larger value of f indicates a more significant fit, with a p-value < 0.05 indicating the
goodness of fit of the model. This model is appropriate, as can be seen from Table 1. From
Equation (1) and Figure 2, it is shown that A, B, C, AB, and BC had a synergistic effect
on the spiked recovery of α-terpineol samples. Extraction time (A) and solvent-to-sample
volume ratio (C) had a significant effect on the spiked recovery of α-terpineol.

Table 1. ANOVA response for addition recovery of α-terpineol.

Source Sum of Squares df Mean Square F-Value p-Value

Model 2284.56 9 253.84 8.71 0.0141 significant
A—Extraction temperature 355.11 1 355.11 12.19 0.0174

B—Extraction time 114.00 1 114.00 3.91 0.1048
C—Solvent to sample volume ratio 5.95 1 5.95 0.2043 0.6702

AB 74.82 1 74.82 2.57 0.1699
AC 1.0000 1 1.0000 0.0343 0.8603
BC 2.40 1 2.40 0.0825 0.7855
A2 628.81 1 628.81 21.58 0.0056
B2 700.62 1 700.62 24.05 0.0045
C2 667.95 1 667.95 22.92 0.0049

Residual 145.68 5 29.14
Lack of Fit 145.68 3 48.56

After practical experiments, the optimum operating conditions for extraction with
hexane were determined as follows: an extraction temperature of 45 ◦C, an extraction
time of 30 min, and a solvent-to-sample ratio (mL:mL) of 1:15. The average recovery
of α-terpineol achieved under these conditions was 81.00%, which closely matched the
theoretically optimized result of 81.00 ± 0.21%.
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3.3. Chromatographic of GC-MS
3.3.1. Analysis of Volatile Aroma Components of Cola Carbonated Beverages

Six samples of cola carbonated beverages from different manufacturers were selected
from supermarkets. Twenty-four components were identified in cola carbonated beverages
by GC-MS after pretreatment with Section 2.2.1. According to Figure 3 and Table 2, four
shared substances were detected, 1,4-cineole, fenchyl alcohol, borneol, and α-terpineol
(Figure 3). 1,4-Cineole has a light, mild camphor-like odor and a cool, soft spice flavor [16].
Fenchyl alcohol has a medium strength camphor, lobster pine aroma with a sweet, mellow
citrus, lemon flavor [17]. Borneol is also called lobster colorless flake crystals, having a
cool camphor odor [18]. α-Terpineol can be used as an intermediate in organic synthesis
and fine chemical production, has a low price, is one of the synthetic fragrances in the
production of large varieties, and is widely used in the preparation of edible flavors and
deodorants [19].
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Table 2. Results of component identification in cola beverages samples.

Samples 1 2 3 4 5 6

Retention
Time/min CAS Compnents Odor

Thresholds
Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV

6.368 470-67-7 1,4-Cineole 1 [20] 1.37 1.37 0.88 <1 1.69 1.69 7.94 7.94 1.35 1.35 7.15 7.15
6.379 3913-02-8 1-Octanol,2-butyl- - 1.58 <1
6.45 99-87-6 P-Cymene 0.00501 [21] 0.98 196 0.90 180 1.88 376 1.86 372 5.97 1194

6.468 5989-27-5 D-limonene 0.034 [22] 24.88 731.7 37.31 1097.3 2.96 87 23.09 679.1 34.48 1014.1
6.55 470-82-6 1,8-Cineole 0.0011 [23] 8.08 7345.4 6.19 5627.2 76.88 69,818

6.769 99-85-4 G-Terpinene 1 [24] 4.72 4.72 0.81 <1 4.49 4.49 7.37 7.37
7.105 586-62-9 Terpinolene 0.2 [24] 0.48 2.4 1.99 9.95
7.129 78-70-6 Linalool 0.1 [25] 0.64 6.4 1.60 1600 2.25 22.50 3.00 30.00
7.345 1632-73-1 Fenchylalcohol 0.0032 [26] 2.29 715.6 1.13 353.1 2.28 712.5 4.38 1368.7 1.27 396.8 4.79 1496.8

7.460 586-82-3 3-Cyclohexen-1-ol,1-methyl-
4-(1-Methylethyl)- - 0.63 1.89 1.81

7.584 464-49-3 (+)-2-Bornanone - 20.86

7.602 138-87-4 Cyclohexanol,1-methyl-4-(1-
methylethenyl)- 6 [27] 1.95 <1 0.87 <1 1.72 <1 3.98 <1 6.52 1.08

7.672 465-31-6 Bicyclo[2.2.1]heptan-2-
ol,2,3,3-trimethyl- - 0.68 <1 0.31 <1 1.16 <1 1.16 <1

7.714 1200-67-5 2-Formate,(1R,2R,4R)-rel- - 0.74 <1
7.771 124-76-5 ISoborneo 0.016 [28] 1.13 70.6
7.81 507-70-0 Borneol 0.18 [29] 1.67 9.27 0.84 4.66 1.72 9.55 3.13 17.3 1.67 9.27 3.84 21.3

7.883 562-74-3 Terpinen-4-ol 1.2 [30] 5.52 4.6 3.32 2.7 1.95 1.62 4.67 3.89 6.42 5.35
7.967 98-55-5 α-Terpinol 1.2 [22] 31.90 26.58 17.33 14.4 28.67 23.89 71.55 59.62 37.99 31.5 104.80 87.3

8.662 1014-60-4 Benzene,1,3-bis(1,1-
dimethylethyl)- - 2.01 <1

8.64 14371-10-9 trans-Cinnamaldehyde - 0.68 <1 1.19 <1
9.437 97-53-0 Eugenol 0.0025 [23] 5.64 2256
10.03 607-91-0 Myristicin 0.088 [31] 1.51 17.1 1.10 12.5

10.063 121-00-6 3-Tertbutyl-4-
hydroxyanisole - 1.84 <1
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In addition to these common substances, each brand of cola also adds different aroma
substances to adjust the odor of the product. Terpinen-4-ol is a monoterpene compound, a
naturally occurring organic compound. It is one of the principal components in the essential
oil of tea tree, renowned for its antimicrobial properties. It possesses a mild yet slightly
woody fragrance [32]. D-Limonene, which gives cola beverages orange and citrus aromas,
was detected in samples of five brands of cola beverages [33]. Linalool gives cola beverages
a tea-like woody aroma. Eucalyptol has a camphor-like aroma and a refreshing flavor [34].
Isoborneol is similar in nature to 2-bornyl camphene and can increase the odor of camphor
in cola beverages [35]. Eugenol has a strong caryophyllous musk smell, which is the basis
for the blending of Kang and Chuan flavors. It is used in the blending of flavors such as
make-up, soap, and food [36]. Trans-cinnamaldehyde not only has good antimicrobial
properties but also provides a special cinnamon aromatic odor to cola beverages [37]. P-
Cymene exhibits an odor reminiscent of a damp cloth and, in the natural environment,
primarily emanates from sources such as thyme, frankincense, zedoary, sweet marjoram,
and spearmint [38]. 1,8-Cineole, an organic compound, manifests as a colorless to pale
yellow liquid, renowned for its refreshing fragrance, which is frequently characterized as
cool with a subtle woody undertone. Predominantly found in nature, it boasts the highest
concentration in eucalyptus oil, and is also detected in rosemary, thyme, and mint, among
other plants. This compound is esteemed not solely for its distinctive aroma but also for
its varied biological activities, thereby enjoying extensive applications in the realms of
medicine and pharmacology [39].

3.3.2. Analysis of Volatile Aroma Components of Orange-Flavor Carbonated Beverages

Six carbonated beverages samples with orange flavor from four different manufactur-
ers were pretreated with Section 2.2.1, and it was shown that eleven volatile components
were identified in the assay of the treated samples using GC-MS. Two co-existing ingre-
dients were detected, namely, α-terpineol and D-limonene, shown in Figure 4. Other
important components were detected as well. This compound is known for its potential
anti-inflammatory, analgesic, and sedative effects and contributes significantly to the aro-
matic and therapeutic properties of many essential oils. Octanol has a strong citrus aroma
and imparts a tangy orange flavor to orange juice drinks.
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3.3.3. Analysis of Volatile Aroma Components of Lemon Flavor Beverages Samples

Six lemon-flavor carbonated beverages from different manufacturers were pretreated
with Section 2.2.1, and it was shown that seventeen volatile components were identified in
the six samples using GC-MS. α-Terpinol was detected in all six samples shown in Figure 5.
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3.4. OAV Analyse

Combining Tables 2–4 with Figure 4, it is observable that the compounds contributing
significantly to the aroma profile in orange-flavor carbonated beverages are myrcene
and D-limonene. In cola flavor carbonated beverages, the substances with a substantial
contribution to the aroma includes p-cymene, d-limonene, 1,8-cineole, and fenchyl alcohol.
For lemon-flavor beverages, the major contributors to the aroma profile are octanal, d-
limonene, and fenchyl alcohol. In summary, D-limonene exhibits a high contribution to the
aroma profile across all three types of carbonated beverages.
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Table 3. Results of component identification in orange-flavor carbonated beverage samples.

Samples 7 8 9 10 11 12

Retention
Time/min CAS Compnents Odor

Thresholds
Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV

6.08 123-35-3 Myrcene 0.0012 [23] 3.13 2608.3 1.22 1016.6 0.43 358.3 0.12 100 5.61 4675

6.208 124-13-0 Octanal 0.23 [40] 4.08 17.7 1.25 5.43 21.14 91.91 4.44 19.13

6.468 5989-27-5 D-Limonene 0.034 [22] 151.67 4460.8 110.52 3250.8 31.14 923.52 0.37 10.88 33.12 974.1 393.28 11,567

6.769 99-85-4 G-Terpinene 1 [24] 1.85 1.85 4.63 4.63

7.105 586-62-9 Terpinolene 0.2 [24] 1.59 7.95

7.155 78-70-6 Linalool 0.1 [25] 7.41 74.1 5.50 55 11.47 114.7 1.02 10.2 4.61 46.1

7.165 124-19-6 Nonanal 0.0031 [31] 2.68 1072

7.602 138-87-4 Cyclohexanol,1-methyl-4-(1-
methylethenyl)- 6 [27] 4.38 <1 1.25 <1 0.63 <1 3.86 <1 7.84 1.3

7.690 65-85-0 Benzoic acid - 7.18 <1

7.834 20126-76-5 3-Cyclohexen-1-ol,4-methyl-
1-(1-methylethyl)-, (1R)- - 1.10 <1 4.57 <1

7.849 562-74-3 Terpinen-4-ol 1.2 [30] 0.22 <1

7.967 98-55-5 α-Terpinol 1.2 [22] 36.78 30.65 13.26 11.05 5.41 4.5 8.35 6.95 49.51 41 71.84 59.1

8.04 112-31-2 Decyl aldehyde 0.2 [40] 7.22 36.1 2.87 14.35 1.15 5.75 0.17 <1 9.77 48.85

8.651 2111-75-3
4-(1-Methylethenyl)-1-

cyclohexene-1-
carboxaldehyde

0.03 [41] 1.93 64.3

10.522 142-50-7 Cis-nerolidol - 0.63 <1
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Table 4. Results of component identification in lemon-flavor carbonated beverage samples.

Samples 15 16 17 18 19 20

Retention
Time/min CAS Compnents Odor

Thresholds
Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV Concentration

(µg/mL) OAV Concentration
(µg/mL) OAV

6.208 124-13-0 Octanal 0.23 [40] 1.03 274.6 1.30 346.6

6.221 691-37-2 1-Pentene, 4-methyl- - 0.91 <1

6.368 470-67-7 1,4-Cineole 1 [20] 2.94 2.94

6.45 99-87-6 P-Cymene 0.00501 [21] 0.39 77.84

6.52 5989-27-5 D-Limonene 0.034 [22] 4.02 118.23 2.43 71.7 0.35 10.29 1.39 40.82 4.63 136.1

6.551 470-82-6 1,8 Cineole 0.0011 [23] 3.36

7.155 78-70-6 Linalool 0.1 [25] 3.48 34.8 3.32 33.2 1.41 14.1 3.26 32.6 0.75 7.5

7.345 1632-73-1 Fenchyl alcohol 0.0032 [6] 2.49 778.12 0.57 178.12 0.58 181.25 1.04 325 0.33 103.125

7.507 586-82-3 3-Cyclohexen-1-ol,1-methyl-
4-(1-methylethyl)- - 7.16 <1 1.03 <1 1.28 <1

7.602 138-87-4 Cyclohexanol,1-methyl-4-(1-
methylethenyl)- 6 [27] 6.47 1.07 0.51 <1 0.98 <1

7.714 124-76-5 Isoborneol 0.016 [28] 1.27 79.38 0.97 60.62

7.808 507-70-0 Borneol 0.18 [29] 7.37 40.94

7.895 562-74-3 Terpinen-4-ol 1.2 [30] 11.10 9.25 1.80 1.5 2.51 2.09 1.23 1.02

7.967 98-55-5 α-Terpinol 1.2 [22] 120.41 100 15.08 12.56 16.26 13.55 29.63 24.69 8.77 7.31 1.66 1.38

8.04 112-31-2 Decyl aldehyde 0.2 [40] 12.50 4.17

8.316 106-26-3 (z)-3,7-Dimethylocta-2,6-
dienal 0.053 [41] 2.66 50.19

8.534 141-27-5 Alpha-citral 0.0032 [24] 1.63 50.94
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3.5. Principal Components Analysis

According to functional groups analysis, 34 volatile substances detected were classified
in 18 carbonated beverages. It was shown that there were 7 aldehydes, 10 alcohols, 1 acid,
1 ester, 8 hydrocarbons, 2 ketones, 2 phenols, and 3 ethers from Tables 2–4. The percentages
of each kind of functional group can be seen in Figure 6. Principal component statistical
analysis was performed on the processed data by SPSS 26.0.
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The characteristic roots (total) and contribution (cumulative) of the principal com-
ponents in the 18 carbonated beverage samples were used as the basis for selecting the
principal components. In combination, it can be found that the contribution percentage
of the characteristic root greater than 1 came from the first three factors. The contribution
percentage shows that the total variance of the three factors reached 77.153%, and the
three-factor model can explain 77.153% of the entire analyzed data. Continuing the analysis
through the results of the load matrix in Figure 6, the functional group categories with high
positive correlations in the first principal factors (PC1) were acids and phenols. The second
principal factors (PC2) had a high positive correlation for hydrocarbons and alcohols. The
third principal factors (PC3) had a high positive correlation for ethers.

4. Conclusions

For the analysis of volatile aroma compounds, a pretreatment method for liquid–
liquid extraction using n-hexane as extraction solvent was developed. The volatile aroma
compounds in 18 carbonated beverage samples (carbonated beverage, orange-flavored
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carbonated beverage, and lemon-flavored carbonated beverage) were extracted using n-
hexane as an extractant. The volatile substances were detected by GC-MS, which contained
34 volatile aroma components. From the qualitative analysis, it can be concluded that α-
terpineol was detected in all carbonated beverages. Quantitative analysis and evaluation of
odor activity values (OAV) revealed that myrcene and D-limonene are the main odorants in
orange-flavored beverages. In cola-flavored carbonated beverages, p-cymene, D-limonene,
1,8-cineole, and fenchyl alcohol contribute significantly to the aroma. In lemon-flavored
beverages, octanal, D-limonene and fenchyl alcohol contribute the most to the flavor profile.
Principal component analysis revealed that acids, phenols, hydrocarbons, alcohols, and
ethers contributed the most to the flavor of these 18 beverages. The data can be used for
quality control of carbonated beverages and serve as a theoretical basis for the research and
development of carbonated beverages. They have a guiding function in the addition of
volatile flavor components in the food industry.
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