Fish Extract Fractionation by Solid Phase Extraction: Investigating Co-Occurring Ciguatoxins by LC-MS/MS and N2a-Bioassay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards, Reagents and Materials
2.2. Fish Samples
2.3. Sample Extraction
2.4. Fractionation
2.5. LC-MS/MS Analysis
2.6. N2a-Bioassay
3. Results and Discussion
3.1. Development of Fractionation Protocol
3.2. Application to Fish Fillet Containing CTX3C Group Analogues
3.3. Application to Fish Tissue Containing C-CTX-1
3.4. Fractionation of Fish Fillet and Viscera—Impact on Quantitation
3.5. Application for the Fractionation Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mudge, E.M.; Miles, C.O.; Ivanova, L.; Uhlig, S.; James, K.S.; Erdner, D.L.; Fæste, C.K.; McCarron, P.; Robertson, A. Algal ciguatoxin identified as source of ciguatera poisoning in the Caribbean. Chemosphere 2023, 330, 138659. [Google Scholar] [CrossRef]
- Murray, J.S.; Passfield, E.M.F.; Rhodes, L.L.; Puddick, J.; Finch, S.C.; Smith, K.F.; van Ginkel, R.; Mudge, E.M.; Nishimura, T.; Funaki, H.; et al. Targeted metabolite fingerprints of thirteen Gambierdiscus, five Coolia and two Fukuyoa species. Mar. Drugs 2024, 22, 119. [Google Scholar] [CrossRef]
- Satake, M.; Fukui, M.; Legrand, A.-M.; Cruchet, P.; Yasumoto, T. Isolation and structures of new ciguatoxin analogs, 2,3-dihydroxyCTX3C and 51-hydroxyCTX3C, accumulated in tropical reef fish. Tetrahedron Lett. 1998, 39, 1197–1198. [Google Scholar] [CrossRef]
- Satake, M.; Ishibashi, Y.; Legrand, A.-M.; Yasumoto, T. Isolation and structure of Ciguatoxin-4A, a new ciguatoxin precursor, from cultures of dinoflagellate Gambierdiscus toxicus and parrotfish Scarus gibbus. Biosci. Biotechnol. Biochem. 1996, 60, 2103–2105. [Google Scholar] [CrossRef]
- Tartaglione, L.; Loeffler, C.R.; Miele, V.; Varriale, F.; Varra, M.; Monti, M.; Varone, A.; Bodi, D.; Spielmeyer, A.; Capellacci, S.; et al. Dereplication of Gambierdiscus balechii extract by LC-HRMS and in vitro assay: First description of a putative ciguatoxin and confirmation of 44-methylgambierone. Chemosphere 2023, 319, 137940. [Google Scholar] [CrossRef] [PubMed]
- Gaiani, G.; Leonardo, S.; Tudó, À.; Toldrà, A.; Rey, M.; Andree, K.B.; Tsumuraya, T.; Hirama, M.; Diogène, J.; O’Sullivan, C.K.; et al. Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with immunosensing tools. Ecotoxicol. Environ. Saf. 2020, 204, 111004. [Google Scholar] [CrossRef] [PubMed]
- Chinain, M.; Gatti, C.M.I.; Darius, H.T.; Quod, J.P.; Tester, P.A. Ciguatera poisonings: A global review of occurrences and trends. Harmful Algae 2021, 102, 101873. [Google Scholar] [CrossRef]
- Vernoux, J.-P.; Lewis, R.J. Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus). Toxicon 1997, 35, 889–900. [Google Scholar] [CrossRef]
- FAO; WHO. Report of the Expert Meeting on Ciguatera Poisoning. Rome, 19–23 November 2018; Food Safety and Quality No. 9; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Liu, X.W.; Ma, Y.H.; Wu, J.J.; Wang, P.B.; Wang, Y.N.; Wang, A.L.; Yin, Q.Z.; Ma, H.Y.; Chan, L.L.; Wu, B. Characterizing the influence of a heterotrophic bicosoecid flagellate Pseudobodo sp. on the dinoflagellate Gambierdiscus balechii. Toxins 2023, 15, 657. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Loeffler, C.R.; Kappenstein, O. Identical Ciguatoxin-3C group profiles in Lutjanus bohar from the Pacific and Indian Oceans—Indicating the need to re-evaluate geographical CTX classifications. Front. Mar. Sci. 2022, 9, 937438. [Google Scholar] [CrossRef]
- Caillaud, A.; Eixarch, H.; de la Iglesia, P.; Rodriguez, M.; Dominguez, L.; Andree, K.B.; Diogene, J. Towards the standardisation of the neuroblastoma (neuro-2a) cell-based assay for ciguatoxin-like toxicity detection in fish: Application to fish caught in the Canary Islands. Food Addit. Contam. A 2012, 29, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Roué, M.; Darius, H.T.; Picot, S.; Ung, A.; Viallon, J.; Gaertner-Mazouni, N.; Sibat, M.; Amzil, Z.; Chinain, M. Evidence of the bioaccumulation of ciguatoxins in giant clams (Tridacna maxima) exposed to Gambierdiscus spp. cells. Harmful Algae 2016, 57, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Asencio, L.; Clausing, R.J.; Vandersea, M.; Chamero-Lago, D.; Gómez-Batista, M.; Hernández-Albernas, J.I.; Chomérat, N.; Rojas-Abrahantes, G.; Litaker, R.W.; Tester, P.; et al. Ciguatoxin occurrence in food-web components of a Cuban coral reef ecosystem: Risk-assessment implications. Toxins 2019, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, N.; Nagasawa, H.; Watanabe, M.; Nishimura, M.; Kuniyoshi, K.; Kobayashi, N.; Sugita-Konishi, Y.; Asakura, H.; Tachihara, K.; Yasumoto, T. An extensive survey of ciguatoxins on grouper Variola louti from the Ryukyu Islands, Japan, using liquid chromatography tandem mass spectrometry (LC-MS/MS). J. Mar. Sci. Eng. 2022, 10, 423. [Google Scholar] [CrossRef]
- Oshiro, N.; Tomikawa, T.; Kuniyoshi, K.; Ishikawa, A.; Toyofuku, H.; Kojima, T.; Asakura, H. LC–MS/MS analysis of ciguatoxins revealing the regional and species distinction of fish in the tropical Western Pacific. J. Mar. Sci. Eng. 2021, 9, 299. [Google Scholar] [CrossRef]
- Yogi, K.; Oshiro, N.; Inafuku, Y.; Hirama, M.; Yasumoto, T. Detailed LC-MS/MS analysis of ciguatoxins revealing distinct regional and species characteristics in fish and causative alga from the Pacific. Anal. Chem. 2011, 83, 8886–8891. [Google Scholar] [CrossRef] [PubMed]
- Ikehara, T.; Kuniyoshi, K.; Oshiro, N.; Yasumoto, T. Biooxidation of ciguatoxins leads to species-specific toxin profiles. Toxins 2017, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Yasumoto, T.; Igarashi, T.; Legrand, A.M.; Cruchet, P.; Chinain, M.; Fujita, T.; Naoki, H. Structural elucidation of ciguatoxin congeners by fast-atom bombardment tandem mass spectroscopy. J. Am. Chem. Soc. 2000, 122, 4988–4989. [Google Scholar] [CrossRef]
- Dickey, R.W. Ciguatera Toxins: Chemistry, Toxicology, and Detection. In Seafood and Freshwater Toxins, 2nd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 479–500. [Google Scholar] [CrossRef]
- Darius, H.T.; Revel, T.; Viallon, J.; Sibat, M.; Cruchet, P.; Longo, S.; Hardison, D.R.; Holland, W.C.; Tester, P.A.; Litaker, R.W.; et al. Comparative study on the performance of three detection methods for the quantification of Pacific ciguatoxins in french polynesian strains of Gambierdiscus polynesiensis. Mar. Drugs 2022, 20, 348. [Google Scholar] [CrossRef]
- Estevez, P.; Castro, D.; Pequeno-Valtierra, A.; Leao, J.M.; Vilarino, O.; Diogene, J.; Gago-Martinez, A. An attempt to characterize the ciguatoxin profile in Seriola fasciata causing ciguatera fish poisoning in Macaronesia. Toxins 2019, 11, 221. [Google Scholar] [CrossRef]
- Ramos-Sosa, M.J.; García-Álvarez, N.; Sanchez-Henao, A.; Padilla, D.; Sergent, F.S.; Gago-Martínez, A.; Diogène, J.; Caballero, M.J.; Fernández, A.; Real, F. Ciguatoxin-like toxicity distribution in flesh of amberjack (Seriola spp.) and dusky grouper (Epinephelus marginatus). Environ. Res. 2023, 228, 115869. [Google Scholar] [CrossRef] [PubMed]
- Harwood, D.T.; Murray, S.; Boundy, M.J. Chapter Three—Sample Preparation Prior to Marine Toxin Analysis. In Comprehensive Analytical Chemistry, Recent Advances in the Analysis of Marine Toxins; Diogène, J., Campàs, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 78, pp. 89–136. [Google Scholar] [CrossRef]
- Pottier, I.; Lewis, R.J.; Vernoux, J.-P. Ciguatera fish poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the multiplicity of ciguatoxins and analytical chemistry approach for public health safety. Toxins 2023, 15, 453. [Google Scholar] [CrossRef] [PubMed]
- Estevez, P.; Castro, D.; Manuel Leao, J.; Yasumoto, T.; Dickey, R.; Gago-Martinez, A. Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts. Food Chem. 2019, 280, 8–14. [Google Scholar] [CrossRef]
- Sibat, M.; Herrenknecht, C.; Darius, H.T.; Roué, M.; Chinain, M.; Hess, P. Detection of pacific ciguatoxins using liquid chromatography coupled to either low or high resolution mass spectrometry (LC-MS/MS). J. Chromatogr. A 2018, 1571, 16–28. [Google Scholar] [CrossRef]
- Diogène, J.; Reverté, L.; Rambla-Alegre, M.; del Río, V.; de la Iglesia, P.; Campàs, M.; Palacios, O.; Flores, C.; Caixach, J.; Ralijaona, C.; et al. Identification of ciguatoxins in a shark involved in a fatal food poisoning in the Indian Ocean. Sci. Rep. 2017, 7, 8240. [Google Scholar] [CrossRef]
- Hamilton, B.; Hurbungs, M.; Vernoux, J.-P.; Jones, A.; Lewis, R.J. Isolation and characterisation of Indian Ocean ciguatoxin. Toxicon 2002, 40, 685–693. [Google Scholar] [CrossRef]
- Abraham, A.; Jester, E.L.E.; Granade, H.R.; Plakas, S.M.; Dickey, R.W. Caribbean ciguatoxin profile in raw and cooked fish implicated in ciguatera. Food Chem. 2012, 131, 192–198. [Google Scholar] [CrossRef]
- Estevez, P.; Castro, D.; Leão-Martins, J.M.; Sibat, M.; Tudó, A.; Dickey, R.; Diogene, J.; Hess, P.; Gago-Martinez, A. Toxicity screening of a Gambierdiscus australes strain from the western mediterranean sea and identification of a novel maitotoxin analogue. Mar. Drugs 2021, 19, 460. [Google Scholar] [CrossRef]
- Loeffler, C.R.; Spielmeyer, A.; Friedemann, M.; Kapp, K.; Schwank, U.; Kappenstein, O.; Bodi, D. Food safety risk in Germany from mislabeled imported fish: Ciguatera outbreak trace-back, toxin elucidation, and public health implications. Front. Mar. Sci. 2022, 9, 849857. [Google Scholar] [CrossRef]
- Loeffler, C.R.; Abraham, A.; Stopa, J.E.; Flores Quintana, H.A.; Jester, E.L.E.; La Pinta, J.; Deeds, J.; Benner, R.A.; Adolf, J. Ciguatoxin in Hawai’i: Fisheries forecasting using geospatial and environmental analyses for the invasive Cephalopholis argus (Epinephelidae). Environ. Res. 2022, 207, 112164. [Google Scholar] [CrossRef]
- Loeffler, C.R.; Spielmeyer, A.; Blaschke, V.; Bodi, D.; Kappenstein, O. Ciguatera poisoning in Europe: A traceback to Indian Ocean sourced snapper fish (Lutjanus bohar). Food Control 2023, 151, 109799. [Google Scholar] [CrossRef]
- DIN EN ISO 21571:2013-08; Foodstuffs—Methods of Analysis for the Detection of Genetically Modified Organisms and Derived Products—Nucleic Acid Extraction. German Institute for Standardisation: Berlin, German, 2013.
- DIN CEN/TS 17303:2019; Foodstuffs—DNA Barcoding of Fish and Fish Products Using Defined Mitochondrial Cytochrome b and Cytochrome c Oxidase I Gene Segments. German Institute for Standardisation: Berlin, German, 2019.
- Spielmeyer, A.; Loeffler, C.R.; Bodi, D. Extraction and LC-MS/MS analysis of ciguatoxins: A semi-targeted approach designed for fish of unknown origin. Toxins 2021, 13, 630. [Google Scholar] [CrossRef] [PubMed]
- Manger, R.L.; Leja, L.S.; Lee, S.Y.; Hungerford, J.M.; Hokama, Y.; Dickey, R.W.; Granade, H.R.; Lewis, R.; Yasumoto, T.; Wekell, M.M. Detection of sodium channel toxins: Directed cytotoxicity assays of purified ciguatoxins, brevetoxins, saxitoxins, and seafood extracts. J. AOAC Int. 1995, 78, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Manger, R.L.; Leja, L.S.; Lee, S.Y.; Hungerford, J.M.; Wekell, M.M. Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive sodium channels: Semiautomated assay for saxitoxins, brevetoxins, and ciguatoxins. Anal. Biochem. 1993, 214, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, C.R.; Bodi, D.; Tartaglione, L.; Dell’Aversano, C.; Preiss-Weigert, A. Improving in vitro ciguatoxin and brevetoxin detection: Selecting neuroblastoma (Neuro-2a) cells with lower sensitivity to ouabain and veratridine (OV-LS). Harmful Algae 2021, 103, 101994. [Google Scholar] [CrossRef] [PubMed]
- Nagae, M.; Igarashi, T.; Mizukoshi, K.; Kuniyoshi, K.; Oshiro, N.; Yasumoto, T. Development and validation of an LC-MS/MS method for the ultra-trace analysis of Pacific ciguatoxins in fish. J. AOAC Int. 2021, 104, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yasumoto, T. Quantification of representative ciguatoxins in the Pacific using quantitative Nuclear Magnetic Resonance Spectroscopy. Mar. Drugs 2017, 15, 309. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkov, F.; Robertson, A.; Miles, C.O.; Mudge, E.M.; Uhlig, S. LC–HRMS and chemical derivatization strategies for the structure elucidation of Caribbean ciguatoxins: Identification of C-CTX-3 and -4. Mar. Drugs 2020, 18, 182. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkov, F.; Robertson, A.; Mudge, E.M.; Miles, C.O.; Van Gothem, S.; Uhlig, S. Reductive amination for LC-MS Signal enhancement and confirmation of the presence of Caribbean ciguatoxin-1 in fish. Toxins 2022, 14, 399. [Google Scholar] [CrossRef]
- Tudó, À.; Rambla-Alegre, M.; Flores, C.; Sagristà, N.; Aguayo, P.; Reverté, L.; Campàs, M.; Gouveia, N.; Santos, C.; Andree, K.B.; et al. Identification of new CTX analogues in fish from the Madeira and Selvagens Archipelagos by Neuro-2a CBA and LC-HRMS. Mar. Drugs 2022, 20, 236. [Google Scholar] [CrossRef]
- Bennett, C.T.; Robertson, A. Depuration kinetics and growth dilution of Caribbean ciguatoxin in the omnivore Lagodon rhomboides: Implications for trophic transfer and ciguatera risk. Toxins 2021, 13, 774. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Sosa, M.J.; García-Álvarez, N.; Sanchez-Henao, A.; Silva Sergent, F.; Padilla, D.; Estévez, P.; Caballero, M.J.; Martín-Barrasa, J.L.; Gago-Martínez, A.; Diogène, J.; et al. Ciguatoxin detection in flesh and liver of relevant fish species from the Canary Islands. Toxins 2022, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.; Manger, R.; Vilariño, O.; Gago-Martínez, A. Evaluation of matrix issues in the applicability of the Neuro-2a cell based assay on the detection of CTX in fish samples. Toxins 2020, 12, 308. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mak, Y.L.; Chang, Y.-H.; Xiao, C.; Chen, Y.-M.; Shen, J.; Wang, Q.; Ruan, Y.; Lam, P.K.S. Uptake and depuration kinetics of Pacific ciguatoxins in orange-spotted grouper (Epinephelus coioides). Environ. Sci. Technol. 2020, 54, 4475–4483. [Google Scholar] [CrossRef] [PubMed]
LC-MS/MS | N2a-Bioassay | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analogue Sample | 2,3,51-TrihydroxyCTX3C (10) a | 49-epi-2,3-DihydroxyCTX3C (8) a | 2,3-DihydroxyCTX3C (9) a | 49-epi-MonohydroxyCTX3C #1 (4) a | MonohydroxyCTX3C #1 (5) a | 49-epi-MonohydroxyCTX3C #2 (6) a | MonohydroxyCTX3C #2 (7) a | 51-HydroxyCTX3C (3) a | 49-epiCTX3C (2) a | CTX3C (1) a | Total b | µg CTX3C eq. per kg WTE c |
Fraction 1 | ||||||||||||
Fraction 2 | 0.33 | 0.33 | 0.10 | |||||||||
Fraction 3 | 0.79 | 0.82 | 1.60 | 1.58 | ||||||||
Fraction 4 | 0.55 | 0.38 | (0.04) | 0.98 | 2.14 | |||||||
Fraction 5 | (0.02) | 0.27 | 0.04 | 0.41 | 0.62 | (0.07) | 1.44 | 2.00 | ||||
Fraction 6 | (0.01) | 0.26 | 1.03 | 0.29 | 0.13 | 0.20 | 0.07 | (0.02) | 2.02 | 5.00 | ||
Fraction 7 | 0.44 | 0.05 | (0.04) | 0.52 | 0.68 | |||||||
Fraction 8 | ||||||||||||
sum in all fractions | 0.45 | 0.31 | 1.07 | 0.31 | 0.40 | 0.24 | 0.47 | 1.20 | 1.24 | 1.19 | 6.88 | 11.50 |
sum in non-fractionated filtrate and eluate | 0.49 | 0.35 | 0.84 | 0.33 | 0.42 | 0.28 | 0.53 | 1.00 | 1.39 | 1.40 | 7.02 | 9.68 |
Formula | MS/MS of [M+NH4]+ a | Full Scan a | MS/MS of [M+Na]+ b | Full Scan b | |||||
---|---|---|---|---|---|---|---|---|---|
[M+H-3H2O]+ | [M+H-2H2O]+ | [M+H-H2O]+ | [M+H]+ | [M+NH4]+ | [M+Na]+ | [M+Na]+ | |||
CTX1B c | C60H86O19 | calculated | 1057.5519 | 1075.5625 | 1093.5730 | 1111.5836 | 1128.6102 | 1133.5656 | 1133.5656 |
found (Δ ppm) | 1057.5592 (6.9) | 1075.5605 (−1.8) | 1093.5835 (9.6) | 1128.6102 (0.0) | 1133.5669 (1.2) | 1133.5636 (−1.7) | |||
54-deoxyCTX1B c | C60H86O18 | calculated | 1041.5570 | 1059.5676 | 1077.5781 | 1095.5887 | 1112.6152 | 1117.5706 | 1117.5706 |
found (Δ ppm) | 1059.5781 (9.9) | 1077.5821 (3.7) | 1095.5931 (4.0) | 1112.6199 (4.2) | 1117.5723 (1.5) | 1117.5695 (−2.0) | |||
CTX3C c | C57H82O16 | calculated | 969.5359 | 987.5464 | 1005.5570 | 1023.5676 | 1040.5941 | 1045.5495 | 1045.5495 |
found (Δ ppm) | 987.5500 (3.9) | 1005.5591 (2.1) | 1023.5723 (4.6) | 1040.5940 (−0.1) | 1045.551 (1.4) | 1045.5487 (−0.8) | |||
C-CTX-1 | C62H92O19 | calculated | 1087.5989 | 1105.6094 | 1123.6200 | 1141.6306 | 1158.6571 | 1163.6125 | 1163.6125 |
non-fractionated eluate | found (Δ ppm) | 1087.5947 (−3.8) | 1105.6106 (1.1) | 1123.6195 (−0.4) | 1158.6541 (−2.6) | 1163.6119 (−0.5) | 1163.6088 (−3.2) | ||
fraction 5 | found (Δ ppm) | 1087.6000 (1.0) | 1105.6136 (3.8) | 1123.6233 (2.9) | 1141.6261 (−3.9) | 1158.6563 (−0.7) | 1163.6118 (−0.6) | 1163.6096 (−2.5) |
LC-MS/MS | N2a-Bioassay | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Analogue Sample | CTX1B (8) a | 52-epi-54-deoxyCTX1B (5) a | 54-deoxy-CTX1B (4) a | 2,3,51-trihydroxyCTX3C (9) a | 49-epi-2,3-dihydroxyCTX3C (7) a | 2,3-dihydroxyCTX3C (6) a | 51-hydroxyCTX3C (3) a | 49-epiCTX3C (2) a | CTX3C (1) a | Total | µg CTX3C eq. per kg DTE b |
non-fractionated c (fillet) | 0.09 | 0.10 | 0.09 | ND | 0.13 | 0.10 | 0.19 | 0.63 | 0.39 | 1.7 | 3.3 |
Fractions d (fillet) | 0.11 | 0.13 | 0.11 | ND | 0.15 | 0.14 | 0.25 | 0.75 | 0.56 | 2.2 | 3.1 |
Increase e [%] | 31 | 29 | 18 | 16 | 33 | 32 | 18 | 44 | 28 | ||
non-fractionated c (viscera) | 0.43 | 0.55 | 0.35 | 0.26 | 1.33 | 1.23 | 0.61 | 2.14 | 1.36 | 8.3 | 34.1 |
Fractions d (viscera) | 0.95 | 0.76 | 0.69 | 0.37 | 1.70 | 1.77 | 1.51 | 2.79 | 2.14 | 12.7 | 15.5 |
Increase e [%] | 123 | 39 | 96 | 43 | 28 | 44 | 147 | 31 | 58 | 53 | |
ratio viscera:fillet (non-fractionated c) | 4.9 | 5.6 | 3.8 | 10.5 | 11.7 | 3.3 | 3.4 | 3.5 | 4.8 | 10.2 | |
ratio viscera:fillet (fractions) | 8.4 | 6.0 | 6.2 | 11.5 | 12.8 | 6.1 | 3.7 | 3.9 | 5.8 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spielmeyer, A.; Blaschke, V.; Loeffler, C.R. Fish Extract Fractionation by Solid Phase Extraction: Investigating Co-Occurring Ciguatoxins by LC-MS/MS and N2a-Bioassay. Separations 2024, 11, 238. https://doi.org/10.3390/separations11080238
Spielmeyer A, Blaschke V, Loeffler CR. Fish Extract Fractionation by Solid Phase Extraction: Investigating Co-Occurring Ciguatoxins by LC-MS/MS and N2a-Bioassay. Separations. 2024; 11(8):238. https://doi.org/10.3390/separations11080238
Chicago/Turabian StyleSpielmeyer, Astrid, Vincent Blaschke, and Christopher R. Loeffler. 2024. "Fish Extract Fractionation by Solid Phase Extraction: Investigating Co-Occurring Ciguatoxins by LC-MS/MS and N2a-Bioassay" Separations 11, no. 8: 238. https://doi.org/10.3390/separations11080238
APA StyleSpielmeyer, A., Blaschke, V., & Loeffler, C. R. (2024). Fish Extract Fractionation by Solid Phase Extraction: Investigating Co-Occurring Ciguatoxins by LC-MS/MS and N2a-Bioassay. Separations, 11(8), 238. https://doi.org/10.3390/separations11080238