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Abstract: In this study, La2O3 and CeO2 nanopowders were prepared using a simple and cost-effective
precipitation method. Wide-angle X-ray diffraction (WAXD), UV-Visible reflectance diffuses (UV-Vis
DRS), Raman spectroscopy, and specific surface area were used to characterize the photocatalysts,
evidencing that the used preparation method was effective in the generation of crystalline CeO2 and
La2O3. In particular, WAXD results showed that the average crystallite size of the achieved La2O3

and CeO2 samples were about 22 nm and 28 nm, respectively. The photocatalytic performances of the
prepared catalysts were investigated in the degradation of levofloxacin (LEV) and the inactivation of a
waterborne pathogen levofloxacin resistant (Enterococcus faecalis ATCC 29212) by using a photoreactor
equipped with a solar simulator (SS). After 120 min, the CeO2 and La2O3 photocatalytic treatments
allowed us to achieve between 75% and 83% of levofloxacin removal, respectively. A complete
removal of 106 CFU/mL Enterococcus faecalis ATCC 29212 was achieved after 5 and 60 min of La2O3

and CeO2 photocatalytic processes, respectively.

Keywords: rare earth oxide; levofloxacin; bacteria inactivation; photocatalysis; solar light

1. Introduction

To avert the global water crisis and the shortage of natural resources, the develop-
ment of sustainable and innovative strategies to treat and reuse wastewater is urgently
required. Wastewater contains a wide category of contaminants, both organic and inor-
ganic, including pathogens which could be released into the environment, threatening
human health directly or indirectly when they are not properly removed. Among several
contaminants of emerging concern (CECs), the occurrence of antibiotics in wastewater
is gaining growing attention due to the limit of conventional wastewater treatment to
remove such kinds of compounds [1].The chronic release of antibiotics into receiving water
bodies leads to direct and indirect effects in human beings by bioaccumulation and antibi-
otic resistance. Recently, multiple genetic and genomic studies proved that wastewater
treatment plants are sinks of resistant genes and organisms [2,3], increasing the spread
of resistant strains into the environment. Enterococcus faecalis is a familiar urinary tract
infection (UTI) pathogen of bacterial origin, recently recognized as an emerging concern
due to its increasing resistance to antimicrobials, mainly vancomycin and levofloxacin [4].
To date, several conventional disinfection methods have been used to remove pathogens in
wastewater, the most common being chlorination [5]. However, several potential ecological
risks have been associated with chlorine, including the production of toxic disinfection
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byproducts (DBPs) [6]. Thus, research is pushing towards alternative treatments, including
advanced oxidation processes (AOPs), which present excellent capability to degrade CECs
and to inactivate waterborne pathogens through highly reactive oxidizing species [7–9].
Heterogeneous photocatalysis, with the application of semiconductor materials as pho-
tocatalysts, is one of the most prominent approaches to remove several contaminants of
emerging concern, including waterborne pathogens from wastewater [10–12]. Titanium
oxide (TiO2) and zinc oxide (ZnO) are considered to be excellent photocatalysts due to their
high stability higher efficiency, low cost, easy availability, lower toxicity, eco-friendliness,
and highly oxidizing photo-generated holes [13]. However, there are several drawbacks
to utilizing metal oxide for photocatalytic degradation, such as incomplete mineralization
and a wide band gap [14], which limit their photocatalytic activity. Over the last few years,
substantial efforts have been made towards study of extremely effective photocatalysts for
the oxidative decomposition of organic pollutants to end products, such as carbon dioxide
(CO2) and water (H2O) [15]. Specifically, rare earth (REEs) metal oxides have generated
great interest as a practical way to hike the efficiency of photocatalytic processes. Studies
focused on the use of lanthanides have demonstrated an improvement in wastewater treat-
ments, as their use can produce, on average, 30% less sludge compared to other alternatives
such as iron and aluminum [16]. The use of REEs, such as lanthanum (La), cerium (Ce),
gadolinium, etc., could represent an alternative for reducing wastelands generated by
sludge [16] and could improve the removal of organic pollutants by enhancing photocat-
alytic activity [17]. Specifically, rare earth semiconductors have gained great attention for
their tunable band alignments, modulated atomic configurations, singular electronic states,
and efficient optoelectric properties. For example, the particular electronic band structure
of La2O3 allows for the formation of complexes with various Lewis bases, assuring an
improvement of optical collection, which consequently promotes photocatalytic efficiency
and stability [18,19]. On the other hand, the presence of crystal defects in the CeO2 lattice
due to the high amount of oxygen vacancies prevents the recombination of electron-hole
ions, thus improving the photocatalytic degradation performance. Various physical and
chemical processes can be used to produce REE nanoparticles; thermal decomposition,
mechanical milling, and fame spray are examples of physical processes, [20,21] whereas
hydrothermal, sol–gel, combustion methods, microemulsion, chemical co-precipitation,
and vapor deposition are chemical processes [22]. Among the synthetic methods, the
chemical precipitation process has several benefits, including low cost and the absence of
hazardous substances [23]. In this work, lanthanum oxide (La2O3) and cerium oxide (CeO2)
were synthesized using a simple precipitation method for the photocatalytic degradation
of levofloxacin (LEV) and the inactivation of a levofloxacin Enterococcus-resistant strain
(Enterococcus faecalis ATCC 29212). To the best of our knowledge, this is the first study inves-
tigating the LEV degradation and the inactivation of a levofloxacin Enterococcus-resistant
strain using pristine rare earths oxides.

2. Materials and Methods

The precursors for the design of the REE catalyst were cerium nitrate hexahydrate
(Ce(NO3)3·6H2O, 99%; Sigma Aldrich) and lanthanum nitrate hexahydrate (La(NO3)3·6H2O,
99.9%; Sigma Aldrich). For the preparation of the Enterococci-selective agars, Tryptic Soy
Broth (TSB, Difco, Becton-Dickenson Labs) and Slanetz and Bartley agar without TTC
(Biolife, Monza, Italy) were used. Levofloxacin (98.0%) was purchased from Sigma Aldrich
(Milan, Italy). All chemicals were analytical grade and were used as received without
further purification. Deionized water was used throughout the experiments.

2.1. Catalysts Preparation Procedure

The precipitation method was used to synthesized single cerium and lanthanum oxide
nanopowders (CeO2, La2O3) (Figure 1) [24]. Ce(NO3)3·6H2O or La(NO3)3·6H2O were
dissolved in Milli Q water up to the point where they reached a concentration of 0.2 M for
each salt. Then, to the obtained solutions were added dropwise ammonium solution up
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to pHs 8–8.5. The stirring was continued for 15 min after the completion of precipitation.
The obtained colloidal solutions were washed with Milli Q water followed by four cycles
of centrifugation at a speed of 3000 rpm (for 15 min). The resultant products were then
dried in an oven at 110 ◦C for 8 h and crushed to powders. The oven-dried precursors were
calcined at 850 ◦C for 2 h in air atmosphere to obtain CeO2 and La2O3 nanopowders.
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Figure 1. Schematic flow chart for the preparation of La2O3 andCeO2 nanopowders.

2.2. Characterization Techniques

An automatic Bruker D8 Advance diffractometer (Billerica, MA, USA) with reflection
geometry and nickel-filtered Cu-Kα radiation was used to obtain the wide-angle X-ray
diffraction (WAXD) patterns. The lattice parameter values were determined using the
following equations for the CeO2 cubic structure (Equation (1)) and for the La2O3 hexagonal
structure (Equation (2)), respectively:
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where the value of dhkl for a WAXD peak was determined using Bragg’s law (Equation (3)):

2dhklsinθ = λ (3)

h, k, and l are the crystal plane indices, dhkl is the spacing corresponding to the crystal plane
(h k l), while a and c are the lattice parameters (for pure hexagonal phase of La2O3: a = b ̸= c,
α = β = 90◦ and γ = 120◦; for pure cubic fluorite structure of CeO2: a = b = c, α = β = γ = 90◦).
To determine the lattice parameters’ values, all of the planes for the hexagonal phase of
La2O3 and for the cubic fluorite structure of CeO2 were considered. The average crystallite
size of CeO2 and La2O3 were calculated using the Scherrer equation [25] (Equation (4)):

D =
Kλ

βcosθ
(4)

where D is the average crystallite size (nm), K is the particle shape factor and taken as
0.89, λ is the X-ray wavelength corresponding to the Cu-Kα irradiation (1.5418 Å), β is
the full width at half maximum (FWHM) of the diffraction peaks (radiant), and θ is the
angle of Bragg diffraction [26]. The diffuse ultraviolet–visible reflectance (UV-Vis DRS)
spectra of the samples, recorded with an RSA-PE-20 reflectance spectroscopy accessory
(Labsphere Inc., North Sutton, NH, USA), were obtained using a Perkin Elmer Lambda
35 spectrophotometer (Waltham, MA, USA). The reflectance data were reported as the
F(R∞) values, from Kubelka–Munk theory, versus wavelength. To estimate the indirect (Egi)
and direct (Egd) band gap energies of the samples, [F(R∞) × hν] 1/2 versus photon energy
(hν) and [F(R∞) × hν]2 versus photon energy (hν) were calculated. From the intersection
of the straight line with the x-axis, the Egi and Egd values of the photocatalysts were
determined. Raman spectra were obtained using a Dispersive MicroRaman spectrometer
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(Invia, Renishaw, Wotton-under-Edge, UK) using a laser with a radiation emission with
a wavelength equal to 514 nm in the range of 100–1600 cm−1. Fourier-transform infrared
(FTIR) spectra were obtained with an FTIR (BRUKER Vertex70, Bruker, Karlsruhe, Germany)
spectrometer equipped with a deuterated triglycine sulfate (DTGS) detector and a KBr beam
splitter using KBr pellets. The spectra were obtained at a resolution of 2.0 cm−1 in the range
of 400–4000 cm−1. The BET specific surface area (SBET) of photocatalysts were measured
using dynamic N2 adsorption measurements at −196 ◦C using the Sorptometer KELVIN
1042 instrument (Milano, Italy). The pore volume and mean pore radius were obtained
by using a Nova Quantachrome 4200 e Instrument analyzer (Rome, Italy), applying the
Barrett–Joyner–Halenda (BJH) method. Before the analysis, the samples were pretreated in
He flow at 150 ◦C for 0.5 h.

2.3. Experimental Set-Up for Photocatalytic Tests

All of the photocatalytic tests were carried out in a jacketed custom-made photoreactor.
The reactor consisted of a 100 mL cylindrical pyrex glass reactor vessel equipped with solar
simulator (SS) (Xenon lamp) that provides illumination approximating natural sunlight
(light power of 250 W/m2, with a spectral wavelength range of 320–430 nm). The UV-A part
of the solar spectrum is responsible for the activation of REE nanopowders in photocatalytic
processes. The temperature was kept constant at 25 ◦C by circulating the cooling water
continuously into the modified double-hinge photoreactor. Furthermore, the solutions
were kept in constant magnetic mixing during the execution of the photocatalytic oxidation
experiments (60 min dark + 180 min light for E. faecalis inactivation, 60 min dark + 120 min
light for LEV removal). The photocatalytic tests were carried out by adding 0.5 g/L of
photocatalysts (CeO2 or La2O3) to a solution of the selected target, starting from an initial
concentration of 106 CFU/mL for E. faecalis ATCC 29212 and 1 mg/L for LEV. The stirred
mixture was left for 60 min in the dark to establish an equilibrium of adsorption between
drug/bacteria and the catalyst. At defined time intervals (dark: 0, 5, 10, 15, 30, 60, 120, and
180 min), aliquots were sampled and centrifuged at 3000 rpm for 20 min.

In the case of the photocatalytic tests with LEV, a phosphate buffer with sodium
dihydrogen phosphate/disodium hydrogen phosphate (NaH2PO4/Na2HPO4) was used to
keep the pH constant at 7.00. For LEV detection, MeOH:10 mM CH3COONH4 (70:30 v/v)
mixture was used for the mobile phase in the HPLC column, flowing at 1 mL/min through
a Luna Phenomenex® C18 (250 4.6 mm; 5 m) column. Per run, a volume of 20 µL of the
sample was injected and disclosed with a UV detector set at 295 nm.

2.4. Bacterial Count and Inactivation Test

LEV resistance phenotypes were tested using the Kirby–Bauer method according to
standard recommendations [27]. The test allowed for the selection of the Enterococcus
faecalis ATCC 29212 strain as resistant to levofloxacin. Briefly, the colonies, before the
treatment, were transferred to appropriate culture broth for growing. Bacterial strains were
grown to the exponential phase in Tryptic Soy Broth at 37 ◦C overnight. After 24 h, via
spectrophotometric method at 590 nm, the density was adjusted to obtain a suspension of
0.5 McFarland (standard turbidity), corresponding approximately to 1–2 × 108 CFU/mL
suspension. The inactivation experiment was conducted by spiking an aliquot of bacterial
suspension with an initial density of 108 CFU/mL to the reaction solution, already added
with the catalyst, in order to dilute it up to a concentration of 106 CFU/mL. The stirred
mixture was then sampled after 60 min in the dark and then at time intervals of 0, 5, 10,
15, 30, 60, and 180 min. Subsequently, through the technique for inclusion of the inoculum
in a solidifiable substrate (“Pour Plate”), the sample to be analyzed was inoculated into
an empty sterile 90 mm Petri dish, then, adding the agarized substrate (12–15 mL), was
kept in fusion at 45–46 ◦C. For this procedure, a selective medium for the isolation and
enumeration of fecal streptococci (Slanetz and Bartley agar) was used. The inactivation
of total (initial concentration 1.0 × 106 CFU/mL) Enterococci was evaluated after 24 h of
incubation on this substrate. Bacterial count was performed in triplicate.
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3. Results
3.1. Photocatalytic Materials Characterization

WAXD patterns of La2O3 and CeO2 are shown in Figure 2.
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Figure 2. WAXD patterns of La2O3 and CeO2 photocatalysts.

The main diffraction peaks for La2O3 at 2θ equal to 25.42◦, 28.42◦, 29.26◦, 38.87◦,
45.40◦, 51.49◦, 54.77◦, 59.81◦, 66.00◦, 74.74◦, and 78.60◦, which refer to the crystalline planes
(100), (002), (101), (102), (110), (103), (112), (004), (104), (211), and (114), respectively, are
detectable. All of these signals are indicative of a hexagonal crystalline and correspond
to the ICDD Card No. 01–083-1349 [26,28,29]. The diffraction peaks at 27.58◦, 32.09◦,
46.54◦, 55.40◦, 58.17◦, 68.53◦, 75.83◦, and 78.22◦ are typical of CeO2 cubic fluorite, and
all diffraction signals are referred to (111), (200), (220), (311), (222), (400), (331), and (420)
crystalline planes according to ICDD Card No (00-004-0593) [30,31]. Table 1 reports the
average crystallite size, the cell parameters, the specific surface area evaluated using the
BET method (SBET), the direct energy of band gap (Egd), and the indirect energy of band
gap (Egi) for the two oxides. The lattice parameter for CeO2 is about 5.51 Å (Table 1) [32].
The average crystallite size of the CeO2 is about 28 nm, in agreement with the literature,
in which the CeO2 sample prepared with the co-precipitation method reported a similar
value of crystallite size of 20 nm [30]. On the other hand, the average crystallite size of
La2O3 is equal to 22 nm, a value lower than that reported in the literature (41 nm). a and
c lattice parameters for La2O3 are about 4.04 Å and 6.17 Å, respectively (Table 1). The
SBET value of La2O3 is 12 m2 g−1 [33], while CeO2 exhibits a very low SBET value of about
2.4 m2 g−1 [34].

Table 1. Crystallite size, lattice parameter, specific surface area (SBET), direct band gap (Egd), and
indirect band gap (Egi) of the samples.

Sample D, nm
Lattice Parameters, A◦

SBET, m2 g−1 Egd, eV Egi, eV
a = b c

La2O3 22 ± 5 4.04 ± 0.05 6.17 ± 0.04 12 5.46 5.32
CeO2 28 ± 5 5.51 ± 0.05 − 2.4 2.81 2.59



Separations 2024, 11, 272 6 of 12

The evaluation of band gap energy (Figure 3) showed that the Egi and Egd values of
the La2O3 sample are 5.32 eV and 5.46 eV (Table 1), respectively. On the other hand, CeO2
sample exhibits lower Egi and Egd values, equal to 2.59 and 2.81 eV, respectively, indicating
that both the catalysts are able to absorb only UV light [35].
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La2O3.

Raman spectra in the range of 100–1600 cm−1 for CeO2 and La2O3 photocatalysts are
displayed in Figure 4.

The CeO2 spectrum exhibited a strong band at about 465 cm−1, corresponding to
the symmetrical stretching mode of the Ce-O8 units, typical of CeO2 with fluorite type
structures [36]. It is worthwhile to note the appearance of a red shift of the main peak from
461 cm−1 (reported in the Raman spectrum of bulk CeO2 nanoparticles [37]) to 465 cm−1

detected in the CeO2 Raman spectrum of Figure 4. This effect can be attributed to oxygen
vacancies in the CeO2 lattice leading to defective structures, inducing an enhancement of
the photocatalytic activity. The La2O3 spectrum evidenced bands located at 101, 192, 407,
1087, 1205, and 1481 cm−1. The most intense Raman signal located at 407 cm−1 corresponds
to the La–O vibration [38].
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The FTIR spectra in the range of 400–4000 cm−1 for CeO2 and La2O3 photocatalysts
are shown in Figure 5.
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The spectrum of the La2O3 photocatalyst shows a band at 645 cm−1 associated with
the La-O stretching vibration [39]. The bands at about 1462 and 1387 cm−1 are linked to
COO− functional groups [28]. Another sharp band sharp band at about 856 cm−1 could
be associated with associated with C–O bending vibrations [28]. The band observed at
about 3600 cm−1 evidences the presence of O–H stretching vibrations associated with water
adsorbed on the La2O3 surface [40]. The spectrum of CeO2 shows a broad band extending
in the range of 3000–3610 cm−1 due to the O-H stretching vibration of OH–groups. The
signal at around 1579 cm−1 is ascribed to the bending vibration of C-H stretching. Moreover,
the stretching vibration of the Ce—O bond was observed at about 555 cm−1 [30,41,42].

BET plots of La2O3 and CeO2 are shown in Figure S1 in the Supplementary Materials
and the obtained SBET are reported in Table 1. It is possible to observe that the SBET of
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La2O3 (12 m2 g−1) was significantly higher than of CeO2 (2.4 m2 g−1). The pore volume
and mean pore radius are reported in Table S1 in the Supplementary Materials. These
results were in agreement with SBET values. Indeed, the La2O3 pore volume and mean pore
radius were higher than CeO2.

3.2. Levofloxacin Photodegradation Results

Preliminary experiments were carried out under dark conditions to evaluate the
possible extent of the adsorption process. Under these conditions, 19% of LEV removal was
observed in the presence of CeO2 (Figure 6A), whereas no removal was observed in the
presence of La2O3 (Figure 6B).
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Figure 6. Reduction in LEV as a function of time during photocatalytic treatment at pH 7 in the pres-
ence of the catalysts CeO2 (A) and La2O3 (B). Average results of duplicate measurements are shown.

After the dark step, the SS light was turn on and the photocatalytic process was
brought ahead for 120 min with regular sampling at a determined interval time. The
collected sample was then analyzed using HPLC-UV showing a gradual decrease in LEV
concentration using both CeO2 and La2O3.

In detail, after 120 min of irradiation time, the CeO2 and La2O3 processes allowed us
to achieve between 75% and 83% of LEV removal, respectively. The better photocatalytic
performance observed in the presence of La2O3 can be ascribed to its higher BET surface
area and pore volume.

It is worth noting that LEV photodegradation utilizing pure CeO2 and La2O3 was
never studied in the literature. Indeed, only papers dealing with the coupling of CeO2 with
other compounds for photocatalytic removal of this drug have been reported [43–46].

3.3. Photocatalytic Inactivation Results

The removal of the levofloxacin-resistant E. faecalis ATCC 29212 strain starting from
an initial concentration of 1.0 × 106 CFU/mL is shown in Figure 7. Preliminary tests were
carried out in dark to assess the natural decay of the target bacteria. No significant effects
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could be observed. The CeO2 system yielded a complete inactivation (2.5 log bacterial
decrease) after 60 min. The La2O3 system showed a higher degradation rate given that the
Enterococci inactivation occurs only after 5 min through a drastic decrease of approximately
2.1 log unit enterococci starting from the dark phase. Similarly, to the tests conducted on
the photodegradation of LEV, this analysis on bacterial inactivation showed that the most
effective system was the La2O3.
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of levofloxacin-resistant Enterococcus faecalis ATCC 29212 strain. (A) CeO2 and (B) La2O3. Results are
shown as the logarithm of CFU mL−1.

Based on these preliminary results, the combination of rare earth elements (REEs)
with catalysts in AOPs is a promising treatment for the removal of both chemical and
microbiological CECs, due to the exceptional properties of rare earth elements. Moreover,
the possibility to use REE-combined catalysts deserve to be investigated in order to further
improve the process behaviors.

4. Conclusions

Pure La2O3 and CeO2 photocatalysts were synthesized by using a co-precipitation
process, and the physical, chemical, and optical properties were studied with several
characterization techniques. WAXD analysis confirmed the crystalline structure for both
samples, showing the presence of all diffraction peaks related to the cubic fluorite and
hexagonal crystalline structure for CeO2 and La2O3, respectively, while UV–vis DRS spectra
showed that both of the samples had a higher absorption contribution in the UV region.
This optical feature of the samples was confirmed using Egi (2.59 eV) and Egd (2.81 eV)
values for CeO2 and Egi (5.32 eV) and Egd (5.46 eV) values for La2O3.
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The preliminary study on the degradation of the drug levofloxacin highlights how
REE-based catalysts can play an important role in the removal of CECs. After 120 min, the
SS/ La2O3 process allowed for a removal (83%) higher than the SS/CeO2 process (75%).
Overall, the La2O3 system showed the best degradation performance in kinetic terms
both with regard to the chemical and biological target. Moreover, the CeO2 and La2O3
processes allowed us to achieve a complete inactivation of Enterococcus faecalis ATCC 29212
after 60 min and 5 min, respectively. The use of powder nano-catalysts represents one of
the main limitations to full-scale applications of these processes, due to the difficulty to
recover the catalysts at the end of the treatment. To overcome this drawback and optimize
process behaviors, the immobilization of nanoparticles on macroscopic supports should
be attempted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations11090272/s1, Figure S1: BET plots of (a) La2O3 and
(b) CeO2; Table S1: BJH method parameters.
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