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Abstract: A comprehensive understanding of the compositions and physicochemical
properties of coal-based liquids is conducive to the rapid development of multipurpose,
high-performance, and high-value functional chemicals. However, because of their com-
plex compositions, coal-based liquids generate two-dimensional gas chromatography
(GC × GC) chromatograms that are very complex and very time consuming to ana-
lyze. Therefore, the development of a method for accurately and rapidly analyzing
chromatograms is crucial for understanding the chemical compositions and structures
of coal-based liquids, such as direct coal liquefaction (DCL) oils and coal tar. In this
study, DCL oils were distilled and qualitatively analyzed using GC × GC chromatograms.
A deep-learning (DL) model was used to identify spectral features in GC × GC chro-
matograms and predominantly categorize the corresponding DCL oils as aliphatic alkanes,
cycloalkanes, mono-, bi-, tri-, and tetracyclic aromatics. Regional labels associated with
areas in the GC × GC chromatograms were fed into the mask-region-based convolutional
neural network’s (Mask R-CNN’s) algorithm. The Mask R-CNN accurately and rapidly
segmented the GC × GC chromatograms into regions representing different compounds,
thereby automatically qualitatively classifying the compounds according to their spots
in the chromatograms. Results show that the Mask R-CNN model’s accuracy, precision,
recall, F1 value, and Intersection over Union (IoU) value were 93.71%, 96.99%, 96.27%, 0.95,
and 0.93, respectively. DL is effective for visually comparing GC × GC chromatograms
to analyze the compositions of chemical mixtures, accelerating GC × GC chromatogram
interpretation and compound characterization and facilitating comparisons of the chemical
compositions of multiple coal-based liquids produced in the coal and petroleum indus-
try. Applying DL to analyze chromatograms improves analysis efficiency and provides
a new method for analyzing GC × GC chromatograms, which is important for fast and
accurate analysis.

Keywords: direct coal liquefaction oils; chemical composition; deep learning; pattern
recognition

1. Introduction
Coal-based liquids encompass a range of high-quality coal-derived raw materials,

including direct coal liquefaction (DCL) oils and coal tar, and processed products, such as
naphtha, white oil, diesel fuel, and aviation kerosene [1], and are produced by breaking the
chemical structure of coal macromolecules while retaining certain characteristic chemical
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structures, such as coal’s inherent ring structures, generating complex mixtures suitable
for further processing to high-performance products. This complexity presents challenges
for analyzing coal-based liquids. To improve product quality, optimize production, reduce
production costs, and ensure that products meet market demands, industrially produced
oils must be rapidly analyzed and verified. A comprehensive understanding of the com-
positions and physicochemical properties of coal-based liquids is essential for efficiently
utilizing their properties and swiftly developing multipurpose, high-performance, and
high-value products. Consequently, a convenient method must be developed for rapidly
analyzing components of coal-based liquids.

Coal-based liquids contain hundreds or even thousands of components. With the
development of two-dimensional (2D) gas chromatography (GC × GC) [2], researchers
have increasingly used it to analyze complex samples [3] because of its high resolution,
peak capacity, and sensitivity compared with those of traditional unidimensional (1D)
GC [4–10]. However, the GC × GC chromatograms of complex samples render qualitative
analysis and processing cumbersome and time-consuming, and analysts must rely on their
experience to interpret mass spectra and may overlook certain details, leading to subjective
results [11]. Pattern recognition and classification tools are essential for compliance with
industrial standards [12]. An appropriate method can effectively improve efficiency in ana-
lyzing GC × GC chromatograms, where spots corresponding to chemical compounds are
arranged according to specific patterns, enabling thousands of compounds to be classified
using Visual Basic Scripts [13–15], which can substantially shorten analysis times and im-
prove classification accuracy [16] for complex samples. One method involves constructing
spatial polygonal maps in GC × GC chromatograms, which classify structurally similar
compounds into the same group. Kehimkar [17] used comprehensive two-dimensional
gas chromatography–mass spectrometry (GC × GC–MS) to analyze jet fuels and catego-
rized the compounds in the GC × GC chromatogram into five groups. Liu [18] used the
Computer Language for Identifying Compounds, which applies an interactive template
function for matching mass fragmentation features and retention times, to construct spatial
polygons and classify coal tar into 10 categories; however, typically represented templates
must be pre-categorized based on experience. Furthermore, templates obtained using
these analysis methods are fixed and inflexible, leading to potential template failure when
testing conditions vary, and these methods lack versatility and are time consuming. There-
fore, a universal, effective, rapid, and accurate method must be developed for efficiently
processing and analyzing GC × GC chromatograms.

Deep learning (DL), a branch of machine learning (ML), is known for its ability to
automatically extract complex features and replicate human visual capabilities in image
processing [19]. DL is essential for image processing tasks, including restoration, en-
hancement, segmentation, and feature extraction [20–24]. Because numerous GC × GC
chromatograms contain regular information, such as the “tile effect”, DL can be utilized to
fully extract this information, enabling automatic learning and pattern recognition through
advanced algorithms. A mask-region-based convolution neural network (Mask R-CNN)
is a DL model specifically designed for detection and instance segmentation tasks, and it
can detects objects in an image while simultaneously generating a high-quality segmenta-
tion mask for each instance [25,26]. Furthermore, in computer vision, Mask R-CNN is an
important DL application utilizing deep CNNs to precisely localize and segment objects
in images. This approach can reduce manual intervention and enhance both efficiency
and accuracy in chromatogram analysis. ML techniques have been applied to analyze
the distributions and compositions of the products of co-pyrolyzed biomass and coal [27].
Additionally, researchers have developed comparative visualization methods, such as using
differential images, to analyze chemical compositional differences [28]. However, these
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methods require consistent sample testing conditions, are limited to comparing substances’
chromatograms, and are not conducive for rapidly analyzing different chromatograms.
Because of the wide variety of oils and products derived from coal-based liquids, Mask
R-CNN has been used to analyze chromatograms and improve the efficiency of compound
spot identification. Because their chemical compositions vary substantially, coal-based
liquids must be accurately and rapidly analyzed for further processing. However, in the
coal chemical industry, the current development of Mask R-CNN for application to image
pattern recognition is insufficient. Moreover, to the best of our knowledge, few reports on
the combination of GC × GC chromatogram analysis with Mask R-CNN are available in
the literature.

Therefore, in this study, the composition of DCL oils was analyzed using Mask R-
CNN for recognizing patterns in GC × GC chromatogram spots corresponding to different
compounds. By combining established patterns and analysts’ experience, unknown spots
can be identified, and the analysis accuracy can be enhanced. Mask R-CNN provides a
fast and convenient method for analyzing coal-based liquids. The performance of the
Mask R-CNN model in the task of identifying the GC-GC chromatograms of DCL oils and
classifying their different compositions is excellent. The Mask R-CNN model’s accuracy,
precision, recall, F1 value, and IoU value were 93.71%, 96.99%, 96.27%, 0.95, and 0.93,
respectively. By using Mask R-CNN to recognize the GC × GC chromatograms of DCL, the
components in the chromatograms are classified into six categories, which can compare the
compositional differences and content differences of different oils. Overall, DL offers a new
perspective for analyzing GC × GC chromatograms, enabling more efficient and accurate
data processing in chemical analysis through automated feature learning and pattern recog-
nition. DL solves the problem of long analysis time in GC × GC chromatograms, improves
analyze efficiency, and makes spectral chromatograms analysis more comprehensive and
systematic. DL technological convergence promotes multidisciplinary cross-collaboration
among chemistry, computer science, artificial intelligence, and other disciplines to drive
innovation in analytical chemistry research.

2. Materials and Methods
2.1. Reagents and Materials

A distillation column unit (Tianjin Aozhan Chemical Technology Company, Tianjin,
China) was used to separate the DCL oils. This study involved 36 DCL oil samples,
comprising 6 light-fraction oils, 2 naphthas, 1 white oil, and 27 distillates, derived from
2 distinct oils, which can be categorized into 16 and 11 groups, respectively. Details are
shown in Table 1.

Table 1. 36 sample oils investigated in this study.

Sample Number Main Composition

light-fraction oils 6 cycloalkanes, polycyclic aromatics

naphtha 2 polycyclic aromatics

white oil 1 cycloalkanes

distillates 27 complex chemical composition

For subsequent use, an oil solution (0.01 mol/L) was prepared using analytically pure
methylene chloride (Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai China)
as the solvent, which was employed as received without further treatment or purification.
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2.2. GC × GC–MS Analytical Methods

GC × GC coupled with MS and a flame ionization detector (FID) is an advanced
analytical technique that allows for simultaneous qualitative analysis by MS and quan-
titative analysis by FID. A Shimadzu QP2020 instrument (Shimadzu, Kyoto, Japan)
was used for this purpose. The GC × GC–MS/FID conditions were as follows: Uni-
dimensional and two-dimensional separations were performed using a DB-1 column
(15 m × 0.25 mm × 0.25 µm) and a BPX-50 column (2.75 m × 0.1 mm × 0.1 µm), respec-
tively. The initial column temperature was set at 60 ◦C and programmed to increase at
3 ◦C/min to 280 ◦C and held there for 5 min. The injection port temperature was main-
tained at 280 ◦C, and the carrier gas was high-purity helium (99.99% vol). The modulation
period was set at 6 s.

The MS conditions included a solvent delay of 6 min, an electron ionization (EI) source
at 250 ◦C, and electron bombardment at 70 eV. The mass spectrometer scanned a range
of m/z values from 45 to 400 amu at 50 Hz. The shunt ratio was set at 30:1. The injection
volume was 0.6 mL. Data acquisition and analysis were performed using Mass Insight and
GC Image 2.7 software (GC Image Limited Liability Company (LLC) Lincoln, NE, USA).

2.3. Mask R-CNN

The training hardware environment comprised a 15.5 GB memory, an Intel i7-9700K
processor, an Nvidia Quadro P620 graphics card, and an Ubuntu 18.04.6 long-term support
(LTS) operating system, and Python was utilized as the programming language. An
environment was created using the Conda package manager, within which the LabelMe
and Mask R-CNN packages were installed. LabelMe was used to annotate each region in
the GC × GC chromatograms of the DCL oils with polygons, supplying the labels required
for model training.

2.3.1. Architecture of the Mask R-CNN Model

In the GC × GC chromatograms recognition, the Mask R-CNN’s architecture as shown
in Figure 1. The initial image processing and analysis step is the input of images, which
are preprocessed to ensure they are suitable for network model processing. This includes
operations, such as resizing images and normalizing pixel values, to maintain consistency
in the input data. Next, the model extracts feature at different levels from the images.
These features are then merged to form a feature map that contains rich information about
various targets in the images. The feature map is crucial for the model’s detection and
segmentation tasks. Finally, the model uses a segmentation layer to identify the targets
in the image and precisely segments each target. See Appendix A for more details on the
construction of the Mask R-CNN’s architecture.
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In the recognition of GC × GC chromatograms, the architecture of the Mask R-CNN
is depicted in Figure 1. The process commences with the input of chromatogram images,
which undergo initial preprocessing to align with the network model’s requirements.
This preprocessing encompasses resizing the images and normalizing the pixel values,
ensuring uniformity in the input dataset. Subsequently, the model delves into multi-level
feature extraction from these images. The extracted features are amalgamated to construct
a comprehensive feature map, replete with detailed information on the diverse targets
within the images. This feature map is pivotal for the model’s proficiency in detection and
segmentation tasks. Concluding the process, a segmentation layer is employed to pinpoint
and accurately demarcate each target within the image. For an in-depth exploration of the
Mask R-CNN’s architectural framework, refer to Appendix A.

2.3.2. Algorithm of the Mask R-CNN Model

The Mask R-CNN’s algorithm is utilized for recognizing patterns, preprocessing
chromatograms by normalizing their sizes, and generating segmentation masks through
bounding box regression and region of interest (ROI) evaluation. The Mask R-CNN’s
algorithm was primarily trained using the 36 previously analyzed chromatograms of the
DCL oil, which were categorized into six main regions labeled from A to F.

For model testing, 1 chromatogram was randomly selected, while the remaining 35
were used for model training. The Mask R-CNN algorithm’s parameters, which were
optimized for segmenting the GC × GC chromatogram’s spots (corresponding to the DCL
oils’ components) into regions, included a ResNet101 backbone network and an image
size of 384 × 384; the learning rate was set at 0.001, and a total of 150 training rounds
were conducted. Each iteration cycle involved 100 training and 30 validation steps, with
bounding box sizes configured at 8 × 6, 16 × 6, 32 × 6, 64 × 6, and 128 × 6. The training
hardware environment included 15.5 GB of memory, an Intel i7-9700K processor, an Nvidia
Quadro P620 graphics card, and an Ubuntu 18.04.6 LTS operating system, and Python was
used as the programming language.

2.3.3. Training of the Mask R-CNN Model

The ResNet neural network was first pretrained using training set samples to extract
features from GC × GC chromatograms. Then, mask and classifier branches were added
to train the network model’s parameters using the optimized training set samples. After
multiple training and transfer-learning adjustment iterations, the model was optimized.
Finally, validation set samples were used to verify and further adjust the model’s accuracy.
Model training focused on loss function convergence and training set recognition as well
as key parameters.

2.3.4. Loss Function of the Mask R-CNN Model

A non-negative real-valued loss function, which measures the difference between the
model-predicted and actual values, plays a crucial role in the Mask R-CNN model. During
model training, the loss function is typically minimized to improve the model’s prediction
accuracy. An appropriate loss function is essential for improving the model’s prediction
accuracy because the loss function determines how the model learns from the data.

3. Results and Discussion
3.1. Qualitative Analysis of the DCL Oils

The analysis of the DCL oils revealed notable compositional shifts with rising boiling
points. With increasing boiling point, the carbon count of the compounds in the fractions
gradually increased. The compound categories evolved from initially comprising shorter-
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chain and monocyclic alkanes, benzene, and some monocyclic aromatic hydrocarbons, to
comprising longer-chain and tetracyclic alkanes, tricyclic aromatics, tetracyclic aromatics,
and other similar compounds. The structurally similar compounds were arranged in
orderly rows, resulting in the formation of a tiling effect.

Figure 2 shows the GC × GC chromatogram of the DCL oil and clearly reveals the
complexity of the DCL oil’ composition, and GC × GC can separate the substances in
the DCL oil. The spots of the compounds are arranged in an orderly manner in the
chromatogram. In GC × GC, the nonpolar column is connected to a second polar column;
this setup can generate structured chromatograms, where spots corresponding to the
different compounds are arranged according to their chemical groups and the number of
carbon atoms they contain [29] and where the substances with similar chemical properties
are distributed in bands. In GC × GC chromatograms, the spots corresponding to all the
compounds in a sample are arranged in a certain pattern; therefore, the compounds can be
classified as aliphatic alkanes, cycloalkanes, mono- and polycyclic aromatic compounds
according to the spot arrangement from bottom to top. Thus, in the contour map, the spots
corresponding to the different substances are categorized into distinct regions. Because the
content of N- and S-containing compounds in the DCL oil is low at 0.82%, these compounds
were excluded from the regional segmentation.
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Figure 2. The six elution regions in the GC × GC chromatogram of the DCL oil’ component (A:
aliphatic alkanes, B: cycloalkanes, C: monocyclic aromatics, D: bicyclic aromatics, E: tricyclic aromatics,
F: tetracyclic aromatics).

To ensure that the recognition model’s accuracy was not compromised by the data
quantity, the categorization of the DCL oils’ substances was designed to avoid using too
much data. These compounds can be classified into six categories comprising aliphatic
alkanes, cycloalkanes (including monocyclic, bicyclic, tricyclic, and tetracyclic), monocyclic
(including oxygen-containing substances, such as phenolics, esters, and carboxylic acids),
bicyclic, tricyclic, and tetracyclic aromatics. These six elution regions, labeled from A to F
and shown in Figure 2, were established to provide data for pattern recognition across the
various zones in the DCL oils’ GC × GC chromatograms.

In Figure 2, spots corresponding to aliphatic alkanes are at the base of the chro-
matogram. Spots corresponding to cycloalkanes, which are more polar than their acyclic
counterparts bearing the equivalent number of carbon atoms, are above the spots corre-
sponding to the aliphatic alkanes. Spots corresponding to aromatic compounds appear
at the top of the chromatogram because aromatic compounds are more polar than both
aliphatic alkanes and cycloalkanes. The aromatics substances are ordered from left to
right, according to increasing boiling points and longer elution times from the 1D column,
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as follows: benzene, naphthalene, anthracene, phenanthrene, and pyrene. Clearly, this
sample contains many hundreds of components, rendering the manual analysis of each
chromatographic spot extremely laborious for analysts.

3.2. Pattern Recognition GC × GC Chromatograms of the DCL Oils

GC × GC chromatograms represent compounds as spots in three-dimensional(3D)
space, with retention times on the x- and y-axis and the signal intensity on the z-axis.
Figure 3 shows the 3D GC × GC chromatogram of components of DCL oil: the x-axis
represents the retention time of the first dimensional column, the y-axis represents the
retention time of the second dimensional column, and the z-axis represents the signal
intensity. Each compound corresponds to a point in the chromatogram, the position of
which is determined by the retention time on both columns, while the signal intensity is
indicated by the color of the point, with darker colors indicating greater signal intensity. In
the 2D chromatogram, these compounds with the same retention time in the 1D dimensional
column are further separated in the second dimensional column, so that their points in the
2D chromatogram will have different positions in the y-axis direction, and the color of the
points with different signal intensities is also different, so that these compounds, which are
originally difficult to be distinguished in 1D chromatogram, can be distinguished, and at
the same time can be distinguished from the background noise. The signal intensities of
the compounds are usually different because the signal strength of the background noise
is usually weak, and its corresponding points are lighter in color, which is significantly
different from the point colors of the compounds. The blue is the background and the
color of each spot indicates its signal intensity, forming an image comprising pixel dots of
various colors representing different signal intensities. This visual representation aids in
distinguishing between compounds and background noise [11,30,31].
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GC × GC orthogonally separates oil components by distributing substances possessing
similar structural properties into distinct bands. The DL model learns and extracts key
information in a manner like that of its capacity to discriminate between the minute
differences in various human facial features, and this information is combined for effective
recognition and classification.

In the GC × GC chromatograms, the retention time is directly related to a compound’s
boiling point and polarity. Chromatogram data are organized in a pixelated format, with
1D and GC × GC separation times along the horizontal and vertical axes, respectively.
Compounds are further arranged according to their carbon atom counts and chemical
groups, generating a structured chromatogram. Spots corresponding to similar substances
are regularly distributed, and their spectral positions are interrelated, which facilitates
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the classification of complex samples into distinct families. Furthermore, the positional
information of the different spots enables the identification of distinct regions using DL.
This approach facilitates the recognition of areas where spots corresponding to various
compounds are located. The pattern recognition model utilizes the algorithm of Mask
R-CNN to automatically divide the DCL oils’ GC × GC chromatograms into different
regions corresponding to their different components.

3.2.1. Positions of Compound-Related Spots in Chromatograms

GC × GC chromatograms can be treated as multichannel digital images, where each
data point corresponds to a single pixel. The DCL oils’ chromatogram utilized in DL image
recognition does not inherently contain the structural information of compounds corre-
sponding to individual spots. The correlation between the MS data of the individual peaks
and the data in the INST MS library facilitates MS-based compound identification. The
positions of the different compounds’ spots are interrelated, enhancing the identification.
Parameters of the GC × GC method can shift the spots of the same compounds in the
chromatograms of different DCL oils.

Even for the same compound, the position, shape, and other spot characteristics can
vary across different GC × GC chromatograms. As shown in Figure 4, spots corresponding
to substances a, b, c, and d are identified as belonging to 1-propenyl-4-methylbenzene;
1-ethylene-2,4-dimethylbenzene; 1,2,3,4-tetrahydronaphthalene (THN); and naphthalene,
respectively. Although these compounds’ spots are represented in different styles in both
chromatograms, they all appear as pixels that are more intense than the background because
of the rasterization of the peak signals into pixelated dots. In a chromatogram, each peak
represents the elution signal of a compound. To more accurately calculate the peak area, the
peak can be divided into multiple subsections or slices. The signal intensity of each slice is
measured individually, and then the signal intensities of these slices are summed to obtain
the total area of the entire peak. This method helps to improve the accuracy of peak area
measurements, especially in cases of peak overlap or baseline drift [28,32,33]. The analysis
of GC × GC chromatograms is primarily focused on the elimination of background noise
and the normalization of retention time shifts. These preprocessing steps can diminish
the influences of extraneous variables (including background noise and the normalization
of retention time shifts), thereby facilitating pixel-based analysis that does not require
data integration or peak deconvolution. The initial compound identification and peak
annotation are conventionally accomplished by referencing NIST MS library, and numerous
algorithms can query extensive MS libraries, e.g., NIST MS database, MassBank, Wiley MS
database, Sadlter MS database. However, although such algorithms may also generate error
messages during searches, this likelihood can be substantially diminished by implementing
DL-enhanced library search methods [34].
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Variations in spot morphology do not necessarily indicate differences in compound
structure. The GC × GC dataset often shows inconsistencies in spot retention times
and shapes, which may stem from uncontrolled chromatographic variations unrelated
to the chemical compositions of the samples. These data inconsistencies and inherent
complexities present key challenges to the computer-based visualization and analysis of
GC × GC chromatograms. As shown in Figure 4, spots corresponding to THN are adjacent
to those corresponding to naphthalene, indicating a correlation between their spot positions
in the chromatogram. The structured chromatograms contain rich information, enabling
the analysis of spot positions to deduce the distributions of specific compounds across
various oils.

3.2.2. Mask R-CNN Segmentation Results

DL can be used to recognize spots in GC × GC chromatograms to rapidly analyze
chemical compositions. In image recognition, segmentation is an important task [35]. Fully
convolutional network enables the Mask R-CNN to identify the location and category of
objects in images when processing multiple targets and precisely segment the contours
of each object. For all the oil samples, the substance compositions and distributions were
clarified through the detailed analysis of the chromatograms. In order to compare the
differences between Mask R-CNN image recognition and manual analysis of GC × GC
spectrograms of DCL oil, and to assess the effectiveness of GC × GC chromatogram
segmentations in Mask R-CNN, Figure 2 was selected for image segmentation. The result
is shown in Figure 5.
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Figure 5. Mask R-CNN segmented regions of GC × GC chromatogram (A: aliphatic alkanes, B:
cycloalkanes, D: bicyclic aromatics, E: tricyclic aromatics, F: tetracyclic aromatics).

The results show that the Mask R-CNN accurately identified and outlined regions A, E,
and F. Regions A and F, which contain more discernible chromatographic spots, correspond
to simpler substance compositions, whereas regions B and D, although corresponding
to more complex substance compositions than regions A and F, still exhibit relatively
distinct peaks, allowing for improved segmentation, especially considering the smoother
edges of region E, as observed during model training. However, in regions B and D,
pattern recognition was slightly less effective, mainly because of the high density of peak
spots and rugged edges of region labels during model training, which compromised
the segmentation quality in these regions compared with that in regions A, E, and F.
During image segmentation, regions may be incompletely segmented due to image quality,
noise, or algorithm limitations, leading to blocked or unclear areas. Overlapping regions
can occur, where a pixel or area belongs to multiple objects simultaneously, affecting
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segmentation accuracy and subsequent analysis. Additionally, segmented regions may
be incomplete with incorrectly recognized and cut boundaries, causing segmentation
results to mismatch actual objects. Although the model recognizes patterns in all the
regions except for monocyclic aromatics (region C), it still encounters issues, such as local
blocking, overlapping, and incomplete cutting, at the edges of some regions. The failure
to identify and segment region C is primarily attributed to the low content of phenolic
compounds in the DCL oils and the limited number of training chromatograms featuring
region C. In region F, the peak spots are more regular, enabling the model to learn this
region’s features more effectively than those of region C. To enhance the Mask R-CNN’s
identification accuracy and prediction precision, the dataset should be expanded to include
additional chromatograms. The Mask R-CNN’s learning rate, number of training epochs,
and architecture were fine-tuned to optimize the model’s recognition accuracy for features
in the GC × GC chromatograms of diverse DCL oils, enabling the model to accurately
discern unique features.

3.2.3. Expanded Chromatogram Segmentation Results

The performance of the DL model depends on the quality and quantity of the training
data. The existing dataset comprising 35 GC × GC chromatograms falls short of the train-
ing requirements, necessitating the expansion of the dataset by increasing the number of
available chromatograms. Because of the limited availability of oil samples, image process-
ing techniques, such as rotation, cropping, and shifting, were employed to augment the
dataset. Utilizing GC Image 2.7 software, the chromatograms were adjusted and resampled
multiple times. The training dataset was expanded to 143 chromatograms through color,
saturation, spot size, and position modifications. The steps of chromatography processing,
including import, pre-processing, and generation, were documented in detail. This ensured
transparent and reproducible chromatography processing. The same chromatography set
was processed several times to ensure that the results of each generated chromatogram were
consistent and to achieve reproducible analysis of the chromatography. The generated chro-
matograms were compared with known standard chromatograms to ensure the accuracy of
the results. Statistical analysis was performed on the generated chromatograms, including
calculation of the mean and standard deviation, to assess the stability and reliability of the
chromatography.

This enhancement strategy was implemented by generating new images from multiple
sampling iterations, thereby improving the model’s accuracy. The same parameters were
used to retrain the Mask R-CNN model with the expanded dataset. Then, the model
was tested using the expanded dataset, including the DCL oils’ chromatograms from the
original dataset, and the results are shown in Figure 6.

The Mask R-CNN model of DL rapidly analyzed multiple chromatograms, enabling
spectral analysis within 10 s and eliminating the need to manually analyze the chro-
matograms of individual compounds. It shows enhanced performance in chromatogram
segmentation and compound identification, notably by identifying region C compounds
that were not identified in Figure 5. This enhances the ability of Mask R-CNN to recognize
compounds in chromatograms by utilizing the extended database. This enhancement is
attributed to the expanded database, which allows the model to reach a more diverse set of
compound features, thus improving the accuracy and comprehensiveness of recognition.
This expansion of the database significantly enhances the model’s ability to discriminate
between different compounds in the chromatogram.

Furthermore, the results in Figure 6 are highly comparable to the data obtained from
manual analysis (Figure 2). This close correlation indicates that the Mask R-CNN model,
with an expanded database, has high accuracy in analyzing chromatograms. The validity
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and reliability of the model is further confirmed by the small difference between the
segmentation results in Figures 2 and 6. The Mask R-CNN model performs excellently in
analyzing different regions in the chromatogram after the database has been expanded.
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Figure 6. GC × GC chromatograms segmented using the Mask R-CNN model trained using more
expanded chromatograms (A: aliphatic alkanes, B: cycloalkanes, C: monocyclic aromatics, D: bicyclic
aromatics, E: tricyclic aromatics, F: tetracyclic aromatics).

By using Mask R-CNN to recognize the GC × GC chromatograms of DCL oils, the
components in the chromatograms are classified into six categories. This method can com-
pare compositional differences between oils and roughly compare their content differences.
Mask R-CNN is a deep learning-based instance segmentation algorithm that accurately
identifies and segments different chromatographic peaks in complex chromatograms. In
this way, researchers can more accurately analyze the individual components in the chro-
matograms to gain insight into the chemical composition and content variations of different
oils. Mask R-CNN can assist researchers in the field of chemical analysis to quickly and
accurately resolve complex chromatograms. The application of this technique provides a
new and more efficient method for analyzing coal-based liquid oils.

3.2.4. Evaluation Indicators of the Mask R-CNN

Loss function is a metric used to measure the difference between the model-predicted
and actual values and can quantitatively measure the model’s accuracy. The loss function
curve for the Mask R-CNN model trained using the expanded dataset is shown in Figure 7.
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Figure 7. Loss function curve for the Mask R-CNN model trained using the expanded dataset.

The results reveal that the loss exponentially decreases with increasing number of
training epochs and that the loss reduction rate begins to plateau at 150 epochs. A loss
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value of approximately 0 usually indicates that the model’s predictions are very close to the
true values, suggesting that the model is nearing its optimal performance and the model
parameters are well calibrated. The Mask R-CNN typically analyzes data much more
quickly (10 s) than manual analysis. It can complete the preprocessing, peak identification,
and qualitative analysis of coal-based liquids’ chromatograms in just a few seconds to
minutes, whereas manual analysis may take several hours or even days, depending on
the complexity of the sample and the experience of the analyst. When dealing with large
amounts of data, the Mask R-CNN can reduce human errors and provide more consistent
and reliable results.

The performance of the Mask R-CNN model in the task of identifying the GC-GC
chromatograms of DCL oils and classifying their different compositions is excellent. The
model achieves an accuracy of 93.71%, indicating that it gives correct predictions in most
cases and has good overall classification capabilities. The precision rate of 96.99% reflects
the high reliability of the model in predicting positive classes and shows that there are very
few cases in which a negative class is mistakenly predicted to be positive. The recall is
96.27% shows that the model is able to identify the actual positive class samples well, with
very few omissions, and has a high degree of coverage of the actual positive classes. The
F1 value, which is the harmonic mean of the precision rate and the recall, has a value of
0.95 indicating that both precision and recall are at a high level and relatively balanced,
and the model performs well in terms of precision and completeness. Additionally, IoU is
used to evaluate the localization accuracy of target detection by calculating the ratio of the
overlap between the real target frame and the actual detected target frame. The IoU value
of 0.93 indicates that the overlap between the detected target frames and the real target
frames is better higher, and the localization is more accurate.

Therefore, the integration of GC × GC chromatograms with DL-Mask R-CNN tech-
niques offers a more efficient and rapid approach to coal-based liquids’ compound analysis.
The proposed method not only facilitates the visual comparison of chromatograms but also
enables the differentiation of the chemical compositions of coal-based liquids.

3.2.5. Practical Applicability of the Mask R-CNN

Although the Mask R-CNN effectively recognizes patterns in the chromatograms of
DCL oil, it is still suitable for recognizing patterns in the chromatograms of other oils,
such as coal tar and jet fuel. Because of its power and flexibility in segmenting images,
the Mask R-CNN can be applied to recognize patterns in the chromatograms of other oils,
especially for accurately recognizing and segmenting spectral features of oils. However,
the Mask R-CNN must be appropriately adjusted and optimized to adapt to the spectral
characteristics of different oils. For example, the network structure, loss function, and
training strategy may need to be adjusted to improve the model’s accuracy in recognizing
the spectral features of specific oils. Transfer learning (TL) is a ML technique that allows
a model to utilize knowledge learned on a related task on a new task. This approach is
particularly suitable for situations where the amount of data is limited, by pre-training the
model on a large-scale dataset and then applying it to a small-scale dataset for fine-tuning,
thus improving the model’s performance on the new task [36,37]. In the image recognition
of DCL oil, acquiring a large number of GC × GC chromatograms can be very difficult and
expensive. Employing TL to extract the classification features of DCL oils can reduce the
dependence on the amount of data of chromatograms of other coal-based oils by utilizing
the generalized features learned by the pre-trained model in the chromatograms of DCL
oils, so that a better performance in classifying the substances in other coal-based oils, such
as coal tar, can be achieved in spite of the limited amount of data. TL can significantly
improve the performance of the model.
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4. Conclusions
1. GC × GC is a highly efficient technique for analyzing complex mixtures that can pro-

vide more detailed information on molecular composition by separating compounds.
Thirty-six DCL oils were qualitatively analyzed using GC × GC–MS. The oil com-
ponents was classified into aliphatic alkanes and cycloalkanes, mono and polycyclic
aromatic compounds, O-, N- and S-containing compounds. The chromatograms were
segmented into six distinct regions corresponding to compound classes, providing a
foundation for the subsequent pattern recognition step.

2. An analytical method was proposed for comprehensively characterizing the spots
in the GC × GC chromatograms of DCL oils. Mask R-CNN, as a target detection
and segmentation model, can effectively recognize and classify different constituents
in DCL oil GC × GC chromatograms. This method is effective for visually compar-
ing chromatograms. It utilizes the distributions of the spots in chromatograms and
the Mask R-CNN to quickly segment GC × GC chromatograms into regions repre-
senting different compounds. This process automatically qualitatively classifies the
compounds based on the spots in their corresponding chromatograms. The primary
advantage of the method is its ability to efficiently process multiple chromatograms
in batches, substantially accelerating the overall analysis and shortening manual
analysis, thereby substantially enhancing efficiency;

3. The Mask R-CNN is particularly useful for accurately and rapidly analyzing the chem-
ical compositions of multiple coal-based liquids, which is vital for further processing
and utilization of coal-based liquids.
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Abbreviations
The following abbreviations are used in this manuscript:

DCL direct coal liquefaction
1D one-dimensional
2D two-dimensional
3D three-dimensional
GC × GC comprehensive two-dimensional gas chromatography
DL deep learning
ML machine learning
MS mass spectrometry
FID flame ionization detector
GC × GC-MS comprehensive two-dimensional gas chromatography- mass spectrometry
Mask R-CNN mask region-based convolutional neural network
LTS long-term support
ROI region of interest
FPN feature pyramid network
RPN region proposal network
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THN 1,2,3,4-tetrahydronaphthalene
NIST national institute of standards and technology
IoU Intersection over Union
TL Transfer learning

Appendix A
Mask R-CNN is an innovative neural network architecture designed for precise in-

stance segmentation within images. Its structure primarily comprises a pre-trained CNN,
such as ResNet, which serves as the base layer for feature extraction from input images.
Built upon this foundation, a Feature Pyramid Network (FPN) generates a multi-scale
feature pyramid, enhancing the model’s capability to detect objects across various sizes. At
each level of this pyramid, a Region Proposal Network (RPN) identifies potential regions
of interest (ROIs) specific to objects within the image.

A key innovation of Mask R-CNN is the introduction of ROI Align, which ensures the
preservation of spatial location information with enhanced accuracy. For each proposed
ROI, the network predicts the object category and refines the bounding box coordinates.
The Mask Branch, a distinctive feature of Mask R-CNN, dedicates a separate pathway for
predicting detailed segmentation masks for each ROI, facilitating instance-level segmentation.

The framework utilizes a multi-task loss function that accounts for classification,
bounding box regression, and mask prediction losses, optimizing all tasks simultaneously.
During training, the network learns to map image pixels to class labels, bounding boxes,
and segmentation masks. In the inference phase, it can accurately segment instances in new
images. The integration of these components empowers Mask R-CNN to achieve not only
precise segmentation of individual instances but also high efficiency in object detection,
making it a powerful tool for image analysis tasks.
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