

Article Characterization of the natural colloidal TiO₂ background in soil

Allan Philippe,^{1*} Daniel Armando Campos,¹ Jean-Michel Guigner,² Christian Buchmann,¹ Dörte Diehl,¹ Gabriele E. Schaumann¹

- ¹ Group of Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany.
- ² Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne University, UMR CNRS 7590, MNHN, IRD UR 206, 75252 Paris cedex 05, France.

* Correspondence: philippe@uni-landau.de

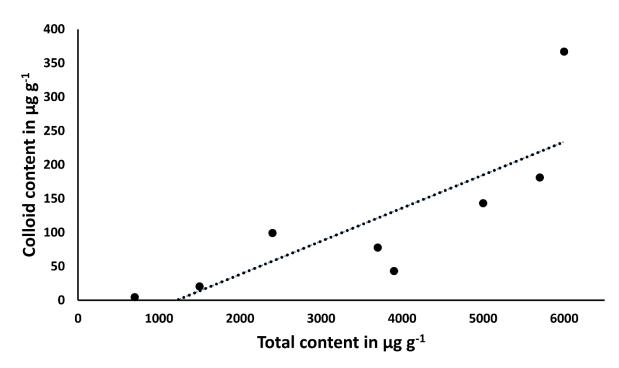
1. X-ray fluorescence analysis (XRFA)

Table S1. Concentration in mass percent of the main soil components determined using XRFA.

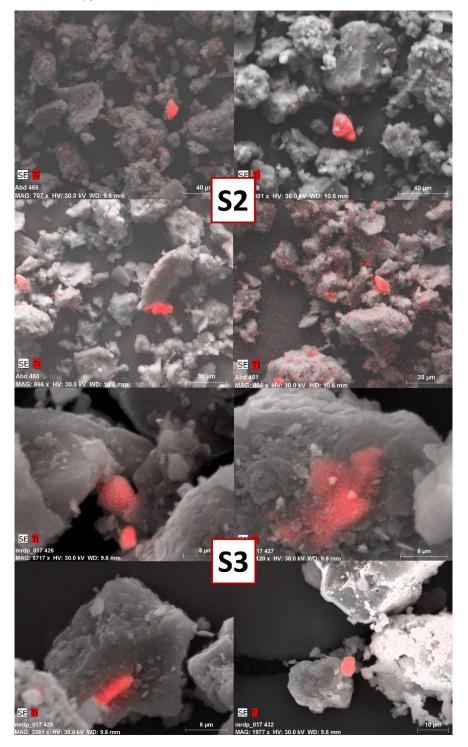
Soil	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	SO ₃
S1	94.39	<loq< td=""><td><loq< td=""><td>0.07</td><td><loq< td=""><td>0.07</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.07</td><td><loq< td=""><td>0.07</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0.07	<loq< td=""><td>0.07</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0.07	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.02</td><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.02</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.02</td><td><loq< td=""></loq<></td></loq<>	0.02	<loq< td=""></loq<>
S2	46.57	9.57	3.72	0.50	0.09	2.62	14.41	0.50	2.04	0.23	0.13
S3	89.06	3.38	0.64	0.15	0.02	0.17	<loq< td=""><td>0.24</td><td>1.75</td><td>0.10</td><td><loq< td=""></loq<></td></loq<>	0.24	1.75	0.10	<loq< td=""></loq<>
S4	85.09	5.61	1.34	0.39	0.05	0.30	<loq< td=""><td>0.39</td><td>2.44</td><td>0.16</td><td><loq< td=""></loq<></td></loq<>	0.39	2.44	0.16	<loq< td=""></loq<>
S5	61.26	11.79	4.57	0.60	0.11	2.94	1.50	0.37	3.83	0.24	<loq< td=""></loq<>
S6	61.14	11.25	3.24	0.57	0.08	1.09	0.86	0.38	2.80	0.27	0.22
S7*	55.75	6.26	2.52	0.24	0.42	0.76	3.99	0.76	1.92	0.19	1.28
S8	93.10	2.34	1.18	0.37	0.01	0.17	<loq< td=""><td><loq< td=""><td>0.43</td><td>0.05</td><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.43</td><td>0.05</td><td><loq< td=""></loq<></td></loq<>	0.43	0.05	<loq< td=""></loq<>

*S7 was measured as press tablet (see material and methods for details).

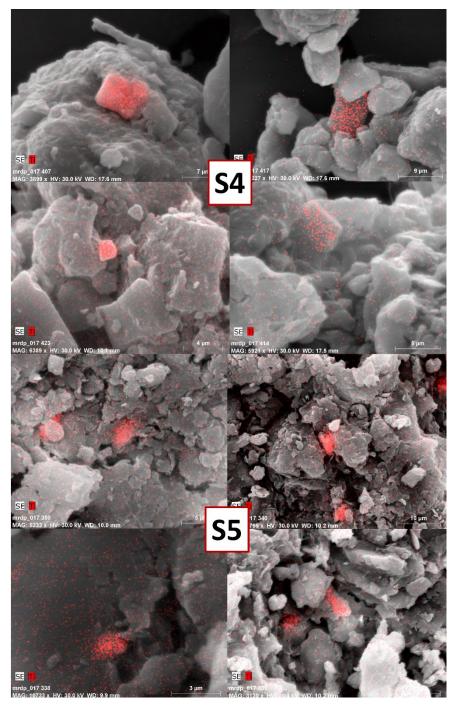
LOQ: limit of quantification


Table S2. Concentration in ppm of selected minor soil components determined using XRFA in µg g⁻¹.

				2				0	100	
Soil	Ba	Ce	Cr	Ni	Pb	Rb	Sr	V	Zn	Zr
S1	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>15.7</td><td><loq< td=""><td><loq< td=""><td>57.3</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>15.7</td><td><loq< td=""><td><loq< td=""><td>57.3</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>15.7</td><td><loq< td=""><td><loq< td=""><td>57.3</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>15.7</td><td><loq< td=""><td><loq< td=""><td>57.3</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>15.7</td><td><loq< td=""><td><loq< td=""><td>57.3</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>15.7</td><td><loq< td=""><td><loq< td=""><td>57.3</td></loq<></td></loq<></td></loq<>	15.7	<loq< td=""><td><loq< td=""><td>57.3</td></loq<></td></loq<>	<loq< td=""><td>57.3</td></loq<>	57.3
S2	292.5	53.4	77.1	33.6	40.6	91.9	255.1	66.7	145.3	160.6
S3	277.0	40.3	20.5	<loq< th=""><th>27.4</th><th>56.7</th><th>56.4</th><th>12.8</th><th>10.5</th><th>123.9</th></loq<>	27.4	56.7	56.4	12.8	10.5	123.9
S4	401.4	48.2	32.1	<loq< th=""><th>26.6</th><th>96.5</th><th>76.4</th><th>28.3</th><th>41.3</th><th>275.6</th></loq<>	26.6	96.5	76.4	28.3	41.3	275.6
S5	477.4	60.8	79.4	29.3	30.7	131.9	116.5	87.5	103.8	210.1
S6	577.8	78.9	69.7	20.1	55.9	122.6	135.2	82.4	115.0	206.7
S7*	654.0	36.3	43.7	17.5	47.0	154.0	97.0	42.0	98.0	101.0
S8	76.9	50.7	<loq< th=""><th><loq< th=""><th><loq< th=""><th>10.3</th><th>33.4</th><th>22.2</th><th><loq< th=""><th>614.0</th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>10.3</th><th>33.4</th><th>22.2</th><th><loq< th=""><th>614.0</th></loq<></th></loq<></th></loq<>	<loq< th=""><th>10.3</th><th>33.4</th><th>22.2</th><th><loq< th=""><th>614.0</th></loq<></th></loq<>	10.3	33.4	22.2	<loq< th=""><th>614.0</th></loq<>	614.0


*S7 was measured as press tablet (see material and methods for details).

LOQ: limit of quantification


2. ICP-OES analyses

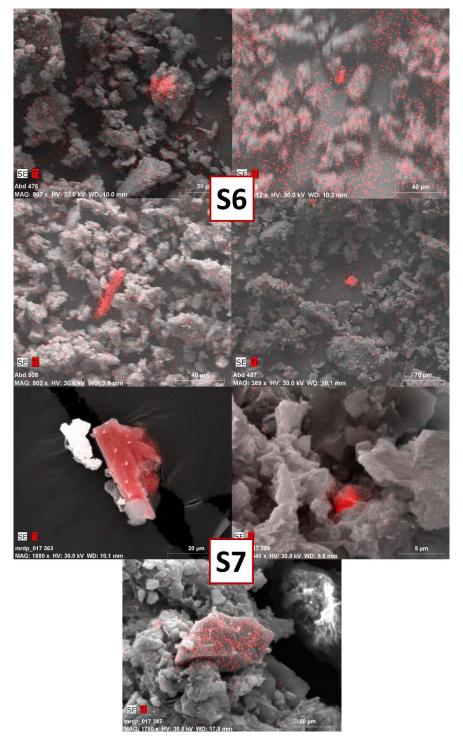
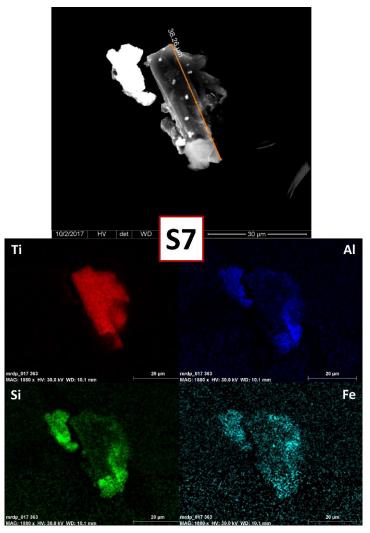

Figure S1. TiO₂ concentrations in μ g g⁻¹ in the colloidal extracts determined using ICP-OES over the total TiO₂ concentration in μ g g⁻¹ of the respective soils determined using XRFA. The dashed line represents the least square linear regression model (R² = 0.656).

Figure S2. Image obtained using SEM of soil born natural particles in the untreated soils S2 and S3. The red dots mark the places where Ti was detected using EDX.


Figure S3. Image obtained using SEM of soil born natural particles in the untreated soils S4 and S5. The red dots mark the places where Ti was detected using EDX.

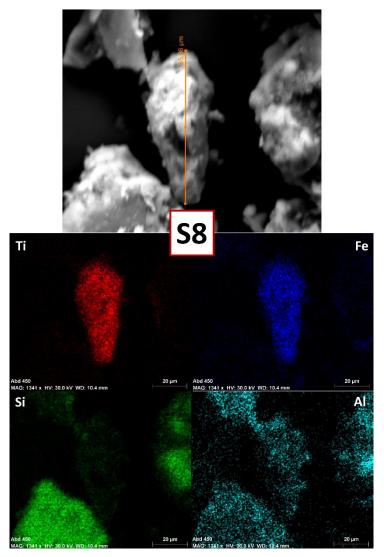

Figure S4. Image obtained using SEM of soil born natural particles in the untreated soils S6 and S7. The red dots mark the places where Ti was detected using EDX.

Figure S5. Image obtained using SEM of soil born natural particles in the untreated soils S8. The red dots mark the places where Ti was detected using EDX.

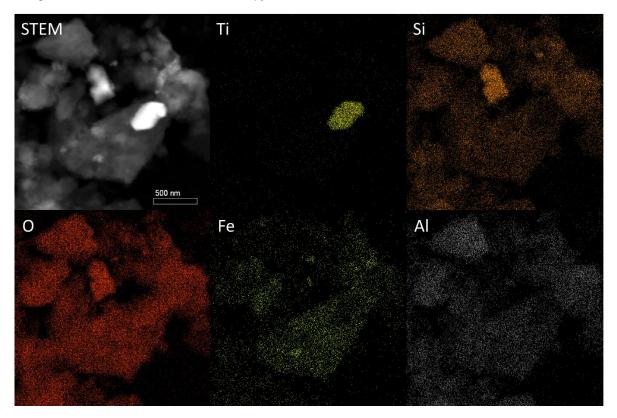


Figure S6. Image obtained using SEM of soil born natural particles in the untreated soils S7 and the corresponding EDX maps. Ti: red; Fe: cyan; Si: green; Al: blue.

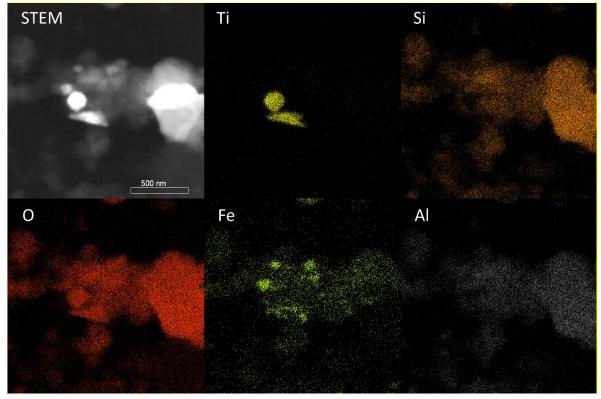
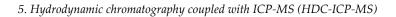


Figure S7. Image obtained using SEM of soil born natural particles in the untreated soils S8 and the corresponding EDX maps. Ti: red; Fe: blue; Si: green; Al: cyan.


4. High resolution transmission electron microscopy (HR-TEM)

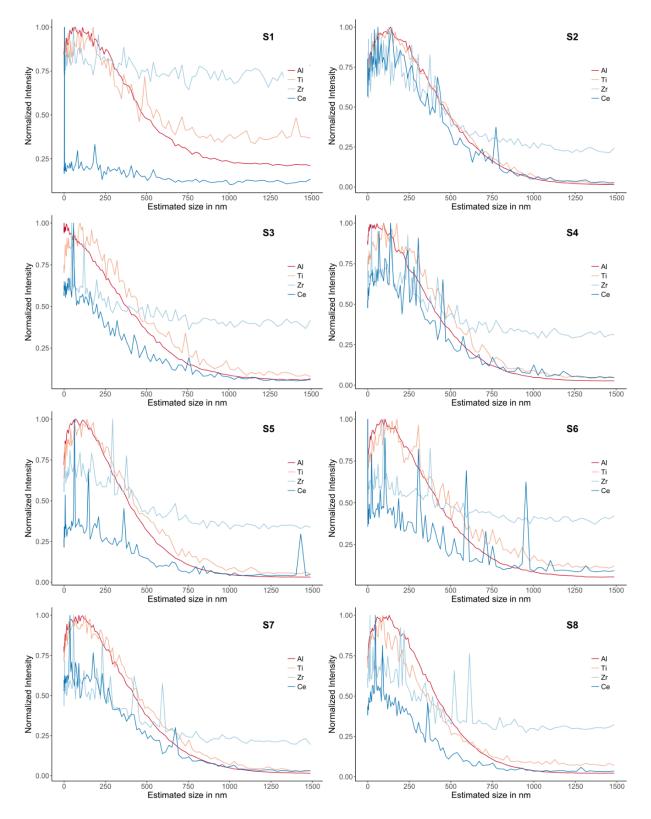


Figure S8. Image obtained using HR-TEM in HAADF scanning mode of soil born natural particles, which were extracted from the soil S2, and the corresponding EDX-maps. Ti: yellow; Si: orange; O: red; Fe: green; Al: grey.

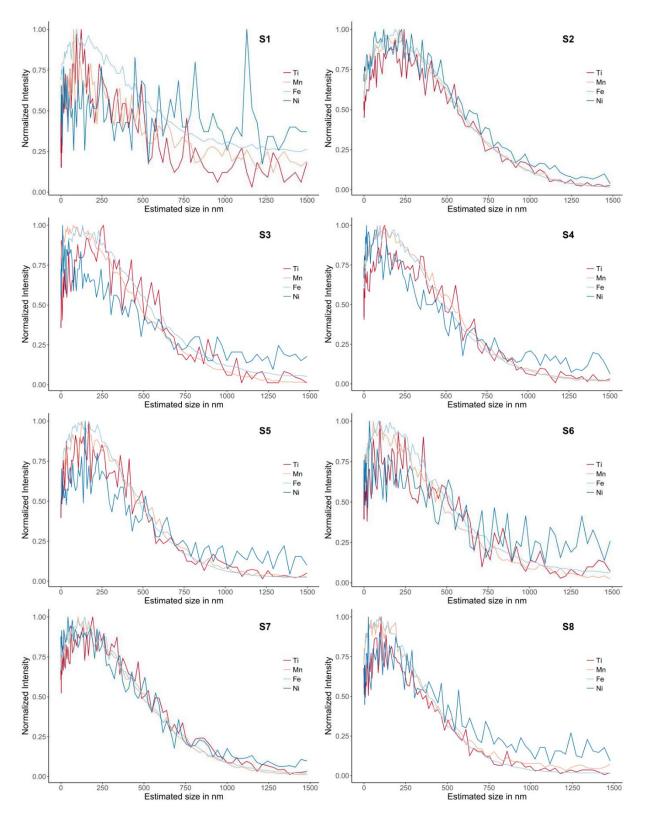


Figure S9. Image obtained using HR-TEM in HAADF scanning mode of soil born natural particles, which were extracted from the soil S2, and the corresponding EDX-maps. Ti: yellow; Si: orange; O: red; Fe: green; Al: grey.

Figure S10. Size distributions estimated from the chromatograms obtained using HDC-ICP-MS for the soils investigated in this study. The signals used for determining the size are: red: ²⁷Al, orange: ⁴⁷Ti, light blue: ⁹⁰Zr, and dark blue: ¹⁴⁰Ce.

Figure S11. Size distributions estimated from the chromatograms obtained using HDC-ICP-MS for the soils investigated in this study. The signals used for determining the size are: red: ⁴⁷Ti, orange: ⁵⁵Mn, light blue: ⁵⁶Fe, and dark blue: ⁶⁰Ni.