Fatty Acids from Paracentrotus lividus Sea Urchin Shells Obtained via Rapid Solid Liquid Dynamic Extraction (RSLDE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Sea Urchins Collection
2.3. Shell Extraction and Purification Process
2.4. GC-MS analysis of Chromatographic Fractions
2.4.1. Sample Preparation
2.4.2. Qualitative and Quantitative analysis of Fatty Acids
3. Results
Fatty Acids Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Preparatory Study on Food Waste across EU 27 (2014) Technical Report-2010-054. Available online: http://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf (accessed on 16 September 2019).
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Henchion, M.; McCarthy, M.; O’Callaghan, J. Transforming Beef By-products into Valuable ingredients: Which spell/recipe to Use? Front. Nutr. 2016, 3, 53. [Google Scholar] [CrossRef]
- Xiong, X.; Iris, K.M.; Tsang, D.C.; Bolan, N.S.; Ok, Y.S.; Igalavithana, A.; Kirkham, M.B.; Kim, K.-H.; Vikrant, K. Value-added Chemicals from Food Supply Chain Wastes: State-of-the-art Review and Future Prospects. Chem. Eng. J. 2019, 375, 121983. [Google Scholar] [CrossRef]
- Stefánsson, G.; Kristinsson, H.; Ziemer, N.; Hannon, C.; James, P. Markets for sea urchins: A review of global supply and markets. Int. Matis Rep. Skýrsla Matís 2017, 10–17. [Google Scholar] [CrossRef]
- Cozzolino, I.; Vitulano, M.; Conte, E.; D’Onofrio, F.; Aletta, L.; Ferrara, L.; Andolfi, A.; Naviglio, D.; Gallo, M. Extraction and curcuminoids activity from the roots of Curcuma longa by RSLDE using the Naviglio extractor. Eur. Sci. J. 2016, 12, 119–127. [Google Scholar]
- Caprioli, G.; Iannarelli, R.; Sagratini, G.; Vittori, S.; Zorzetto, C.; Sánchez-Mateo, C.C.; Rabanal, R.M.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; et al. Phenolic acids, antioxidant and antiproliferative activities of Naviglio® extracts from Schizogyne sericea (Asteraceae). Nat. Prod. Res. 2017, 31, 515–522. [Google Scholar] [CrossRef]
- Gigliarelli, G.; Pagiotti, R.; Persia, D.; Marcotullio, M.C. Optimisation of a Naviglio-assisted extraction followed by determination of piperine content in Piper longum extracts. Nat. Prod. Res. 2017, 31, 214–217. [Google Scholar] [CrossRef]
- Naviglio, D.; Formato, A.; Vitulano, M.; Cozzolino, I.; Ferrara, L.; Zanoelo, E.F.; Gallo, M. Comparison between the kinetics of conventional maceration and a cyclic pressurization extraction process for the production of lemon liqueur using a numerical model. J. Food Process Eng. 2017, 40, e12350. [Google Scholar] [CrossRef]
- Gallo, M.; Formato, A.; Ianniello, D.; Andolfi, A.; Conte, E.; Ciaravolo, M.; Varchetta, V.; Naviglio, D. Supercritical fluid extraction of pyrethrins from pyrethrum flowers (Chrysanthemum cinerariifolium) compared to traditional maceration and cyclic pressurization extraction. J. Supercrit. Fluids 2017, 119, 104–112. [Google Scholar] [CrossRef]
- Gallo, M.; Vitulano, M.; Andolfi, A.; DellaGreca, M.; Naviglio, D. Rapid solid-liquid dynamic extraction (RSLDE), a new rapid and greener method to extract two steviol glycosides (stevioside and rebaudioside a) from stevia leaves. Plant Foods Hum. Nutr. 2017, 72, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Posadino, A.; Biosa, G.; Zayed, H.; Abou-Saleh, H.; Cossu, A.; Nasrallah, G.; Giordo, R.; Pagnozzi, D.; Porcu, M.C.; Pretti, L.; et al. Protective effect of cyclically pressurized solid–liquid extraction polyphenols from Cagnulari grape pomace on oxidative endothelial cell death. Molecules 2018, 23, 2105. [Google Scholar] [CrossRef]
- Cirino, P.; Ciaravolo, M.; Paglialonga, A.; Toscano, A. Long-term maintenance of the sea urchin Paracentrotus lividus in culture. Aquac. Rep. 2017, 7, 27–33. [Google Scholar] [CrossRef]
- Naviglio, D. Naviglio’s principle and presentation of an innovative solid-liquid extraction technology: Extractor Naviglio. Anal. Lett. 2003, 36, 1647–1659. [Google Scholar] [CrossRef]
- Guida, M.; Salvatore, M.M.; Salvatore, F. A strategy for GC/MS quantification of polar compounds via their silylated surrogates: Silylation and quantification of biological amino acids. J. Anal. Bioanal. Tech. 2015, 6, 1. [Google Scholar]
- Naviglio, D.; DellaGreca, M.; Ruffo, F.; Andolfi, A.; Gallo, M. Rapid analysis procedures for triglycerides and fatty acids as pentyl and phenethyl esters for the detection of butter adulteration using chromatographic techniques. J. Food Qual. 2017, 2017, 9698107. [Google Scholar] [CrossRef]
- AMDIS NET. Available online: http://www.amdis.net/ (accessed on 12 September 2019).
- Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmüller, E.; Dormann, P.; Weckwerth, Y.G.S.; Fernie, A.R.; Steinhauser, D.; et al. GMD@ CSB. DB: The Golm metabolome database. Bioinformatics 2004, 21, 1635–1638. [Google Scholar] [CrossRef]
- Sparkman, O.D.; Penton, Z.E.; Kitson, F.G. Gas Chromatography and Mass Spectrometry: A Practical Guide, 2nd ed.; Elsevier: Burlington, MA, USA, 2011; ISBN 978-0-12-373628-4. [Google Scholar]
- Salvatore, M.; Giambra, S.; Naviglio, D.; DellaGreca, M.; Salvatore, F.; Burruano, S.; Andolfi, A. Fatty Acids Produced by Neofusicoccum vitifusiforme and N. parvum, Fungi Associated with Grapevine Botryosphaeria Dieback. Agriculture 2018, 8, 189. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Encarnación Goicoechea, M.; Manzanos, J.; Guillén, M.D. A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Res. Int. 2014, 66, 379–387. [Google Scholar] [CrossRef]
- Salvatore, M.M.; DellaGreca, M.; Nicoletti, R.; Salvatore, F.; Vinale, F.; Naviglio, D.; Andolfi, A. Talarodiolide, a New 12-Membered Macrodiolide, and GC/MS Investigation of Culture Filtrate and Mycelial Extracts of Talaromyces pinophilus. Molecules 2018, 23, 950. [Google Scholar] [CrossRef] [PubMed]
- Salem, Y.B.; Amri, S.; Hammi, K.M.; Abdelhamid, A.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Physico-chemical characterization and pharmacological activities of sulfated polysaccharide from sea urchin, Paracentrotus lividus. Int. J. Biol. Macromol. 2017, 97, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.B.; Taveira, M.; Valentão, P.; Sousa, C.; Andrade, P.B. Fatty acids from edible sea hares: Anti-inflammatory capacity in LPS-stimulated RAW 264.7 cells involves iNOS modulation. RSC Adv. 2015, 5, 8981–8987. [Google Scholar] [CrossRef]
- Zárate, E.V.; de Vivar, M.E.D.; Avaro, M.G.; Epherra, L.; Sewell, M.A. Sex and reproductive cycle affect lipid and fatty acid profiles of gonads of Arbacia dufresnii (Echinodermata: Echinoidea). Mar. Ecol. Prog. Ser. 2016, 551, 185–199. [Google Scholar] [CrossRef]
- Corsolini, S.; Borghesi, N. A comparative assessment of fatty acids in Antarctic organisms from the Ross Sea: Occurrence and distribution. Chemosphere 2017, 174, 747–753. [Google Scholar] [CrossRef]
- Bragadeeswaran, S.; Sri Kumaran, N.; Prasath Sankar, P.; Prabahar, R. Bioactive potential of sea urchin Temnopleurus toreumaticus from Devanampattinam, Southeast coast of India. J. Pharm. Altern. Med. 2013, 2, 9–17. [Google Scholar]
- Lennikov, A.; Kitaichi, N.; Noda, K.; Mizuuchi, K.; Ando, R.; Dong, Z.; Fukuhara, J.; Kinoshita, S.; Namba, K.; Ohno, S.; et al. Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats. Mol. Vis. 2014, 20, 171–177. [Google Scholar]
- Archana, A.; Babu, K.R. Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food Chem. 2016, 197, 597–602. [Google Scholar] [CrossRef]
- Siliani, S.; Melis, R.; Loi, B.; Guala, I.; Baroli, M.; Sanna, R.; Uzzau, S.; Roggio, T.; Addis, M.F.; Anedda, R. Influence of seasonal and environmental patterns on the lipid content and fatty acid profiles in gonads of the edible sea urchin Paracentrotus lividus from Sardinia. Mar. Environ. Res. 2016, 113, 124–133. [Google Scholar] [CrossRef]
- Sanna, R.; Siliani, S.; Melis, R.; Loi, B.; Baroli, M.; Roggio, T.; Baroli, M.; Roggio, T.; Uzzau, S.; Anedda, R. The role of fatty acids and triglycerides in the gonads of Paracentrotus lividus from Sardinia: Growth, reproduction and cold acclimatization. Mar. Environ. Res. 2017, 130, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Prato, E.; Chiantore, M.; Kelly, M.S.; Hughes, A.D.; James, P.; Ferranti, M.P.; Biandolino, F.; Parlapiano, I.; Sicuro, B.; Fanelli, G. Effect of formulated diets on the proximate composition and fatty acid profiles of sea urchin Paracentrotus lividus gonad. Aquac. Int. 2018, 26, 185–202. [Google Scholar] [CrossRef]
- Zuo, R.; Li, M.; Ding, J.; Chang, Y. Higher Dietary Arachidonic Acid Levels Improved the Growth Performance, Gonad Development, Nutritional Value, and Antioxidant Enzyme Activities of Adult Sea Urchin (Strongylocentrotus intermedius). J. Ocean Univ. China 2018, 17, 932–940. [Google Scholar] [CrossRef]
- Parzanini, C.; Parrish, C.C.; Hamel, J.F.; Mercier, A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 2018, 13, e0207395. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Nicoletti, R.; Salvatore, F.; Naviglio, D.; Andolfi, A. GC–MS approaches for the screening of metabolites produced by marine-derived Aspergillus. Mar. Chem. 2018, 206, 19–33. [Google Scholar] [CrossRef]
- Amarowicz, R.; Synowiecki, J.; Shahidi, F. Chemical composition of shells from red (Strongylocentrotus franciscanus) and green (Strongylocentrotus droebachiensis) sea urchin. Food Chem. 2012, 133, 822–826. [Google Scholar] [CrossRef]
- Shikov, A.N.; Ossipov, V.I.; Martiskainen, O.; Pozharitskaya, O.N.; Ivanova, S.A.; Makarov, V.G. The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells. J. Chromatogr. A 2011, 1218, 9111–9114. [Google Scholar]
- Rice, H.B.; Ismail, A. Fish Oils in Human Nutrition: History and Current Status. In Fish and Fish Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2016; pp. 75–84. ISBN 978-0-12-802844-5. [Google Scholar]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A Review. J. Adv. Res. 2017, 11, 33–41. [Google Scholar] [CrossRef]
- Fowler, C.J.; Jonsson, K.O.; Andersson, A.; Juntunen, J.; Järvinen, T.; Vandevoorde, S.; Lambert, D.M.; Jerman, C.J.; Smart, D. Inhibition of C6 glioma cell proliferation by anandamide, 1-arachidonoylglycerol, and by a water soluble phosphate ester of anandamide: Variability in response and involvement of arachidonic acid. Biochem. Pharmacol. 2003, 66, 757–767. [Google Scholar] [CrossRef]
Code * | Name | KI | Abundance (%) |
---|---|---|---|
Fr A (Methyl and Ethyl Esters of Fatty Acids) | |||
14:0 ME | Myristic acid ME | 1722 | 6.7 |
14:0 EE | Myristic acid EE | 1791 | 6.1 |
16:1n-7 ME | Palmitoleic acid ME | 1903 | 3.4 |
16:0 ME | Palmitic acid ME | 1926 | 6.0 |
16:0 EE | Palmitic acid EE | 1992 | 2.2 |
18:2n-6 ME | Linoleic acid ME | 2092 | 1.4 |
18:1n-9 ME | Oleic acid ME | 2103 | 0.7 |
18:0 ME | Stearic acid ME | 2125 | 2.1 |
18:0 EE | Stearic acid EE | 2191 | 0.8 |
20:4n-6 EE | Arachidonic acid EE | 2262 | 24.9 |
20:5n-3 ME | 5,8,11,14,17-Eicosapentanoic acid (EPA) ME | 2267 | 26.5 |
20:1n-11 ME | 11-Eicosenoic acid ME | 2300 | 12.4 |
20:4n-6 ME | Arachidonic acid ME | 2321 | 6.8 |
Fr C (free fatty acids) | |||
20:4n-6 TMS | Arachidonic acid TMS | 2376 | 61.4 |
20:5n-3 TMS | 5,8,11,14,17-Eicosapentanoic acid (EPA) TMS | 2400 | 38.6 |
Fr D (1-monoglycerol esters) | |||
16:1n-7 ME | Palmitoleic acid ME | 1903 | 5.0 |
16:0 ME | Palmitic acid ME | 1926 | 7.8 |
18:2n-6 ME | Linoleic acid ME | 2092 | 1.1 |
18:1n-3 ME | 15-Octadecenoic acid ME | 2012 | 0.4 |
18:0 ME | Stearic acid ME | 2125 | 8.3 |
20:4n-6 ME | Arachidonic acid ME | 2267 | 30.2 |
20:5n-3 ME | 5,8,11,14,17-Eicosapentanoic acid (EPA) ME | 2271 | 32.3 |
20:2n-6 ME | 11,14-Eicosadienoic acid ME | 2288 | 0.5 |
20:1n-9 ME | 11-Eicosenoic acid ME | 2300 | 14.4 |
Component | Yield (%) |
---|---|
Fatty acids ME | 7.7 |
Fatty acids EE | 4 |
Free fatty acids | 12.1 |
1-Monoglycerides | 4.5 |
Total | 28.3 |
Cost | Low | Medium | High |
---|---|---|---|
Shell preparation | ✔ | ||
Chemicals | ✔ | ||
Naviglio Extractor | ✔ | ||
Energy | ✔ | ||
Labor * | ✔ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvatore, M.M.; Ciaravolo, M.; Cirino, P.; Toscano, A.; Salvatore, F.; Gallo, M.; Naviglio, D.; Andolfi, A. Fatty Acids from Paracentrotus lividus Sea Urchin Shells Obtained via Rapid Solid Liquid Dynamic Extraction (RSLDE). Separations 2019, 6, 50. https://doi.org/10.3390/separations6040050
Salvatore MM, Ciaravolo M, Cirino P, Toscano A, Salvatore F, Gallo M, Naviglio D, Andolfi A. Fatty Acids from Paracentrotus lividus Sea Urchin Shells Obtained via Rapid Solid Liquid Dynamic Extraction (RSLDE). Separations. 2019; 6(4):50. https://doi.org/10.3390/separations6040050
Chicago/Turabian StyleSalvatore, Maria Michela, Martina Ciaravolo, Paola Cirino, Alfonso Toscano, Francesco Salvatore, Monica Gallo, Daniele Naviglio, and Anna Andolfi. 2019. "Fatty Acids from Paracentrotus lividus Sea Urchin Shells Obtained via Rapid Solid Liquid Dynamic Extraction (RSLDE)" Separations 6, no. 4: 50. https://doi.org/10.3390/separations6040050
APA StyleSalvatore, M. M., Ciaravolo, M., Cirino, P., Toscano, A., Salvatore, F., Gallo, M., Naviglio, D., & Andolfi, A. (2019). Fatty Acids from Paracentrotus lividus Sea Urchin Shells Obtained via Rapid Solid Liquid Dynamic Extraction (RSLDE). Separations, 6(4), 50. https://doi.org/10.3390/separations6040050