Materials for Solid-Phase Extraction of Organic Compounds
Abstract
:1. Introduction
2. Polymer-Based Materials
2.1. High-Capacity Polymeric Materials
2.2. Selective Polymeric Materials
3. Inorganic-Based Materials
3.1. Organic-Inorganic Hybrid Materials
3.2. Mesoporous Silica Materials
3.3. Layered Double Hydroxides
3.4. Metal-Organic Frameworks
3.5. Metallic Nanoparticles
4. Carbon-Based Materials
4.1. Fullerenes
4.2. Carbon Nanotubes
4.3. Graphene and Graphene Oxide
5. Other Materials
5.1. Silicates
5.2. Natural Sorbents
5.3. Ionic Liquids-Based Sorbents
5.4. Electrospun Nanofibers
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
1,4-PDBA | 1,4-phenyldiboric acid |
2-AMPS | 2-acrylamido-2-methyl propane sulfonate |
3-APTNS | 3-aminopropyltrimethoxysilane |
4VP | 4-vinylpyridine |
BTEX | benzene, toluene, ethylbenzene, and xylene |
BuIM | butylimidazolium |
CE | capillary electrophoresis |
CNTs | carbon nanotubes |
DAD | diode array detector |
DEAEMA | 2-(diethylamino)ethyl methacrylate |
DMEA | N,N-dimethylethanolamine |
dSPE | dispersive solid-phase extraction |
DVB | divinylbenzene |
EDCs | endocrine disrupting compounds |
EDMA | ethylenglycol dimethacrylate |
EME | eletromembrane extraction |
FDU | Fudan University |
FL | fluorescence detector |
G | graphene |
GC | gas chromatography |
GCB | graphitized carbon blacks |
GMA | glycidyl methacrylate |
GO | graphene oxide |
GOF | graphene oxide framework |
HEMA | 2-hydroxyethyl methacrylate |
HKUST | Hong Kong University of Science and Technology |
HMS | hexagonal mesoporous silica |
HXL | hypercrosslinked |
ILs | ionic liquids |
IM | imidazolium |
IMS | ion mobility spectrometry |
KIT-6 | KoreaAdvanced Institute of Science and Technology-6 |
LC | liquid chromatography |
LDHs | layered double hydroxides |
MAA | methaacrylic acid |
MALDI | matrix assisted laser desorption |
MBAA | N,N-methylenebisacrylamide |
MCM | Mobile Composition of Matter |
MEPS | microextraction by packed syringe |
MIL | materials of Institute Lavoisier |
MIPs | molecularly imprinted polymers |
MMT | montmorillonite |
MNPs | magnetic nanoparticles |
MOFs | metal-organic frameworks |
MS | mass spectrometry |
MS/MS | tandem mass spectrometry |
MSPE | magnetic solid-phase extraction |
MTMOS | methyltrimethoxysilane |
MWCNTs | multi-walled carbon nanotubes |
NFs | nanofibers |
NMA | N-methylolacrylamide |
NMIM | N-methylimidazolium |
NPs | nanoparticles |
NSAIDs | nonsteroidal anti-inflammatory drugs |
NVIm | N-vinylimidazole |
NVP | N-vinylpyrrolidone |
PAHs | polycyclic aromatic hydrocarbons |
PBDEs | polybrominated diphenyl ethers |
PCBs | polychlorinated bisphenyls |
PETRA | pentaerythritol triacrylate |
PFAS | perfluoroalkyl substances |
PFCAs | polyfluorinated carboxylic acids |
PGC | porous graphitic carbon |
PhIM | phenylimidazolium |
PILs | polymeric ILs |
PS | polystyrene |
QTOF | quadrupole time of flight |
rGO | reduced graphene oxide |
SAX | strong anion exchanger |
SBA | Santa Barbara Amorphous |
SBSE | stir bar sorptive extraction |
SCX | strong cation exchanger |
SILs | supported ILs |
SPE | solid-phase extraction |
SPME | solid-phase microextraction |
SSA | specific surface area |
SWCNTs | single-walled carbon nanotubes |
TEOS | tetraethoxysilane |
TEPS | triethoxyphenylsilane |
TMOS | tetramethoxysilane |
TOF | time-of-flight |
UiO | University of Oslo |
UV | ultraviolet |
UVM | Universidad Valencia mesoporous |
VBC | vinylbenzyl chloride |
WAX | weak anion exchanger |
WCX | weak cation exchanger |
ZIF | zeolite imidazole framework |
References
- Poole, C.F. Handbooks in Separation Science: Extraction: Solid-Phase Extraction, 1st ed.; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-816906-3. [Google Scholar]
- Fontanals, N.; Marcé, R.M.; Borrull, F. Porous polymer sorbents. In Handbooks of Separation Science: Extraction: Solid-Phase Extraction; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 55–82. ISBN 978-0-12-816906-3. [Google Scholar]
- Carrasco-Correa, E.J.; Vergara-Barberán, M.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M. Smart Materials for Solid-Phase Extraction Applications. In Handbook of Smart Materials in Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 531–580. ISBN 9781119422587. [Google Scholar]
- Nazario, C.E.D.; Fumes, B.H.; da Silva, M.R.; Lanças, F.M. New materials for sample preparation techniques in bioanalysis. J. Chromatogr. B 2017, 1043, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Fontanals, N. Application of novel materials in sample treatment and separation. Cleanup and chromatographic improvements. In Chromatographic Analysis of the Environment: Mass Spectrometry Based Approaches, 4th ed.; Nollet, L., Lambropoulou, D., Eds.; CRC Press: New York, NY, USA, 2017; pp. 197–218. ISBN 9781466597563. [Google Scholar]
- Postigo, C.; López de Alda, M.J.; Barceló, D. Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by on-line solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Anal. Chem. 2008, 80, 3123–3134. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, E.; Myridakis, A.; Stephanou, E.G.; Samanidou, V. Multiresidue LC–MS/MS analysis of cephalosporins and quinolones in milk following ultrasound-assisted matrix solid-phase dispersive extraction combined with the quick, easy, cheap, effective, rugged, and safe methodology. J. Sep. Sci. 2013, 36, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Babić, S.; Mutavdžić Pavlović, D.; Ašperger, D.; Periša, M.; Zrnčić, M.; Horvat, A.J.M.; Kaštelan-Macan, M. Determination of multi-class pharmaceuticals in wastewater by liquid chromatography-tandem mass spectrometry (LC--MS--MS). Anal. Bioanal. Chem. 2010, 398, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, E.Y.; Quintana, J.B.; Rodil, R.; Cela, R. Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2012, 1256, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.H.; Toraño, J.S.; Somsen, G.W.; de Jong, G.J. Optimization of in-line fritless solid-phase extraction for capillary electrophoresis-mass spectrometry. J. Chromatogr. A 2012, 1267, 138–143. [Google Scholar] [CrossRef]
- Azzouz, A.; Rascón, A.J.; Ballesteros, E. Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2016, 119, 16–26. [Google Scholar] [CrossRef]
- Zeinali, S.; Khalilzadeh, M.; Bagheri, H. Generic extraction medium: From highly polar to non-polar simultaneous determination. Anal. Chim. Acta 2019, 1066, 1–12. [Google Scholar] [CrossRef]
- Masqué, N.; Galià, M.; Marcé, R.M.; Borrull, F. New chemically modified polymeric resin for solid-phase extraction of pesticides and phenolic compounds from water. J. Chromatogr. A 1998, 803, 147–155. [Google Scholar] [CrossRef]
- Fontanals, N.; Galià, M.; Marcé, R.M.; Borrull, F. Solid-phase extraction of polar compounds with hydrophilic copolymer sorbent. J. Chromatogr. A 2004, 1030, 63–68. [Google Scholar] [CrossRef]
- Roy, K.S.; Purohit, A.K.; Chandra, B.; Goud, D.R.; Pardasani, D.; Dubey, D.K. Polymeric Sorbent with Controlled Surface Polarity: An Alternate for Solid-Phase Extraction of Nerve Agents and Their Markers from Organic Matrix. Anal. Chem. 2018, 90, 7025–7032. [Google Scholar] [CrossRef] [PubMed]
- Fontanals, N.; Marcé, R.M.; Cormack, P.A.G.; Sherrington, D.C.; Borrull, F. Monodisperse, hypercrosslinked polymer microspheres as tailor-made sorbents for highly efficient solid-phase extractions of polar pollutants from water samples. J. Chromatogr. A 2008, 1191, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Bratkowska, D.; Fontanals, N.; Cormack, P.A.G.; Sherrington, D.C.; Borrull, F.; Marcé, R.M. Hydrophilic hypercrosslinked sorbents for the solid-phase extraction of polar contaminants from water. J. Chromatogr. A 2010, 1217, 3238–3243. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; et al. Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2010, 662, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Michailof, C.; Manesiotis, P.; Panayiotou, C. Synthesis of caffeic acid and p-hydroxybenzoic acid molecularly imprinted polymers and their application for the selective extraction of polyphenols from olive mill waste waters. J. Chromatogr. A 2008, 1182, 25–33. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Huang, C.; Jiao, Y.; Chen, J. A Phenolphthalein-Dummy Template Molecularly Imprinted Polymer for Highly Selective Extraction and Clean-Up of Bisphenol A in Complex Biological, Environmental and Food Samples. Polymer 2018, 10, 1150. [Google Scholar] [CrossRef] [Green Version]
- Moein, M.M.; Javanbakht, M.; Akbari-adergani, B. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of human insulin in plasma and pharmaceutical formulations. Talanta 2014, 121, 30–36. [Google Scholar] [CrossRef]
- Song, X.; Li, J.; Xu, S.; Ying, R.; Ma, J.; Liao, C.; Liu, D.; Yu, J.; Chen, L. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry. Talanta 2012, 99, 75–82. [Google Scholar] [CrossRef]
- Gilart, N.; Marcé, R.M.; Borrull, F.; Fontanals, N. Determination of pharmaceuticals in wastewaters using solid-phase extraction-liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2012, 35, 875–882. [Google Scholar] [CrossRef]
- Moreno-González, D.; Hamed, A.M.; García-Campaña, A.M.; Gámiz-Gracia, L. Evaluation of hydrophilic interaction liquid chromatography–tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods. Talanta 2017, 171, 74–80. [Google Scholar] [CrossRef]
- Roszko, M.; Szymczyk, K.; Jędrzejczak, R. Simultaneous separation of chlorinated/brominated dioxins, polychlorinated biphenyls, polybrominated diphenyl ethers and their methoxylated derivatives from hydroxylated analogues on molecularly imprinted polymers prior to gas/liquid chromatography and ma. Talanta 2015, 144, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Bagnati, R.; Melis, M.; Panawennage, D.; Chiarelli, P.; Fanelli, R.; Zuccato, E. Identification of cocaine and its metabolites in urban wastewater and comparison with the human excretion profile in urine. Water Res. 2011, 45, 5141–5150. [Google Scholar] [CrossRef] [PubMed]
- Tomková, J.; Ondra, P.; Válka, I. Simultaneous determination of mushroom toxins α-amanitin, β-amanitin and muscarine in human urine by solid-phase extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. Forensic Sci. Int. 2015, 251, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.; Nödler, K.; Brauch, H.-J.; Zwiener, C.; Lange, F.T. Robust trace analysis of polar (C2-C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: Method development and application to surface water, groundwater and drinking water. Environ. Sci. Pollut. Res. 2019, 26, 7326–7336. [Google Scholar] [CrossRef]
- Zhang, P.; Bui, A.; Rose, G.; Allinson, G. Mixed-mode solid-phase extraction coupled with liquid chromatography tandem mass spectrometry to determine phenoxy acid, sulfonylurea, triazine and other selected herbicides at nanogram per litre levels in environmental waters. J. Chromatogr. A 2014, 1325, 56–64. [Google Scholar] [CrossRef]
- Fontanals, N.; Cormack, P.A.G.; Sherrington, D.C. Hypercrosslinked polymer microspheres with weak anion-exchange character. Preparation of the microspheres and their applications pH-tunable, selective extractions of analytes from complex environmental samples. J. Chromatogr. A 2008, 1215, 21–29. [Google Scholar] [CrossRef]
- Bratkowska, D.; Marcé, R.M.; Cormack, P.A.G.; Sherrington, D.C.; Borrull, F.; Fontanals, N. Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental samples. J. Chromatogr. A 2010, 1217, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Li, Y.; Yang, J.; Peng, J.; Tan, J.; Fan, Y.; Wang, L.; Chen, J. Hyperbranched mixed-mode anion-exchange polymeric sorbent for highly selective extraction of nine acidic non-steroidal anti-inflammatory drugs from human urine. Talanta 2018, 190, 15–22. [Google Scholar] [CrossRef]
- Hu, K.; Zhao, G.; Liu, J.; Jia, L.; Xie, F.; Zhang, S.; Liu, H.; Liu, M. Simultaneous quantification of three alkylated-purine adducts in human urine using sulfonic acid poly(glycidyl methacrylate-divinylbenzene)-based microspheres as sorbent combined with LC-MS/MS. J. Chromatogr. B 2018, 1081–1082, 15–24. [Google Scholar] [CrossRef]
- Hernández, F.; Ibáñez, M.; Botero-Coy, A.-M.; Bade, R.; Bustos-López, M.C.; Rincón, J.; Moncayo, A.; Bijlsma, L. LC-QTOF MS screening of more than 1000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Anal. Bioanal. Chem. 2015, 407, 6405–6416. [Google Scholar] [CrossRef] [Green Version]
- Fontanals, N.; Puig, P.; Galià, M.; Marcé, R.M.; Borrull, F. New hydrophilic polymeric resin based on 4-vinylpyridine-divinylbenzene for solid-phase extraction of polar compounds from water. J. Chromatogr. A 2004, 1035, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Fontanals, N.; Marcé, R.M.; Borrull, F.; Cormack, P.A.G. Hypercrosslinked materials: Preparation, characterisation and applications. Polym. Chem. 2015, 6, 7231–7244. [Google Scholar] [CrossRef] [Green Version]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal. Chim. Acta 2017, 974, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Martín-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC Trends Anal. Chem. 2013, 45, 169–181. [Google Scholar] [CrossRef]
- Sellergren, B. Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem. 1994, 66, 1578–1582. [Google Scholar] [CrossRef]
- Fontanals, N.; Cormack, P.A.G.; Marcé, R.M.; Borrull, F. Mixed-mode ion-exchange polymeric sorbents: Dual-phase materials that improve selectivity and capacity. Trends Anal. Chem. 2010, 29, 765–779. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC Trends Anal. Chem. 2017, 89, 99–118. [Google Scholar] [CrossRef]
- Maciel, E.V.S.; de Toffoli, A.L.; Neto, E.S.; Nazario, C.E.D.; Lanças, F.M. New materials in sample preparation: Recent advances and future trends. TrAC Trends Anal. Chem. 2019, 119, 115633. [Google Scholar] [CrossRef]
- Ng, N.-T.; Kamaruddin, A.F.; Wan Ibrahim, W.A.; Sanagi, M.M.; Abdul Keyon, A.S. Advances in organic–inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples. J. Sep. Sci. 2018, 41, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.A.W.; Veloo, K.V.; Sanagi, M.M. Novel sol–gel hybrid methyltrimethoxysilane–tetraethoxysilane as solid phase extraction sorbent for organophosphorus pesticides. J. Chromatogr. A 2012, 1229, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, H.; Piri-Moghadam, H.; Rastegar, S.; Taheri, N. Electrospun titania sol–gel-based ceramic composite nanofibers for online micro- solid-phase extraction with high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 1982–1988. [Google Scholar] [CrossRef] [PubMed]
- Abd Rahim, M.; Wan Ibrahim, W.A.; Ramli, Z.; Sanagi, M.M.; Aboul-Enein, H.Y. New Sol-gel hybrid material in solid phase extraction combined with liquid chromatography for the determination of non-steroidal anti-inflammatory drugs in water samples. Chromatographia 2016, 79, 421–429. [Google Scholar] [CrossRef]
- Mauri-Aucejo, A.; Amorós, P.; Moragues, A.; Guillem, C.; Belenguer-Sapiña, C. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples. Talanta 2016, 156–157, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, J.; Su, C.; Zhu, L.; Chen, Z. Development of β-cyclodextrin-modified silica and polyporous polymer particles for solid-phase extraction of methyl jasmonate in aqueous and plant samples. Anal. Lett. 2013, 46, 900–911. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Q.; Fang, G.; Wang, S. Preparation and evaluation of novel surface molecularly imprinted polymers by sol–gel process for online solid-phase extraction coupled with high performance liquid chromatography to detect trace patulin in fruit derived products. RSC Adv. 2016, 6, 54510–54517. [Google Scholar] [CrossRef]
- Kechagia, M.; Samanidou, V.; Kabir, A.; Furton, K.G. One-pot synthesis of a multi-template molecularly imprinted polymer for the extraction of six sulfonamide residues from milk before high-performance liquid chromatography with diode array detection. J. Sep. Sci. 2018, 41, 723–731. [Google Scholar] [CrossRef]
- Ou-Yang, C.-F.; Liu, J.-Y.; Kao, H.-M.; Wang, J.-H.; Liu, S.-P.; Wang, J.-L. Analysis of polycyclic aromatic hydrocarbons using porous material MCM-41 as a sorbent. Anal. Methods 2013, 5, 6874–6880. [Google Scholar] [CrossRef]
- Gañán, J.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Marina, M.L.; Sierra, I. One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks. J. Chromatogr. A 2016, 1428, 228–235. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Yang, J.; Peng, J.; Jin, J.; Ma, H.; Chen, J. Multifunctionalized mesoporous silica as an efficient reversed-phase/anion exchange mixed-mode sorbent for solid-phase extraction of four acidic nonsteroidal anti-inflammatory drugs in environmental water samples. J. Chromatogr. A 2017, 1527, 10–17. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Wang, H.; Guo, L.; Zhai, Y.; Zhang, J.; Yang, Y.; Wang, H.; Yin, Z.; Lu, Y. Preparation of molecularly imprinted ordered mesoporous silica for rapid and selective separation of trace bisphenol A from water samples. Appl. Surf. Sci. 2018, 448, 380–388. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Huang, C.; Wang, L.; Wang, J.; Chen, J. Dendrimer-functionalized mesoporous silica as a reversed-phase/anion-exchange mixed-mode sorbent for solid phase extraction of acid drugs in human urine. J. Chromatogr. A 2015, 1392, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Pellicer-Castell, E.; Belenguer-Sapiña, C.; Amorós, P.; Haskouri, J.E.; Herrero-Martínez, J.M.; Mauri-Aucejo, A. Study of silica-structured materials as sorbents for organophosphorus pesticides determination in environmental water samples. Talanta 2018, 189, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Lee, H.K. Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions. Anal. Chem. 2013, 85, 7426–7433. [Google Scholar] [CrossRef] [PubMed]
- Alsharaa, A.; Sajid, M.; Basheer, C.; Alhooshani, K.; Lee, H.K. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2016, 39, 3610–3615. [Google Scholar] [CrossRef] [PubMed]
- Seidi, S.; Sanàti, S.E. Nickel-iron layered double hydroxide nanostructures for micro solid phase extraction of nonsteroidal anti-inflammatory drugs, followed by quantitation by HPLC-UV. Microchim. Acta 2019, 186, 297. [Google Scholar] [CrossRef]
- Shamsayei, M.; Yamini, Y.; Asiabi, H. Evaluation of highly efficient on-line yarn-in-tube solid phase extraction method for ultra-trace determination of chlorophenols in honey samples. J. Chromatogr. A 2018, 1569, 70–78. [Google Scholar] [CrossRef]
- Cai, Q.; Zhao, T.; Zhang, L.; Zhao, P.; Zhu, Y.; Xu, H.; Hou, X. A new strategy for extraction and depuration of pantoprazole in rat plasma: Vortex assisted dispersive micro-solid-phase extraction employing metal organic framework MIL-101(Cr) as sorbent followed by dispersive liquid–liquid microextraction based on soli. J. Pharm. Biomed. Anal. 2019, 172, 86–93. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, C.; Xi, J.; Tang, S.; Bao, T.; Zhang, J. A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. Microchim. Acta 2019, 186, 393. [Google Scholar] [CrossRef]
- Ge, D.; Lee, H.K. Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A 2011, 1218, 8490–8495. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Gudarzi, Z.; Geranmayeh, S.; Mahdavi, V. HKUST-1 metal-organic framework for dispersive solid phase extraction of 2-methyl-4-chlorophenoxyacetic acid (MCPA) prior to its determination by ion mobility spectrometry. Microchim. Acta 2018, 185, 495. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Martínez-Benito, C.; Pino, V.; Pasán, J.; Ayala, J.H.; Ruiz-Pérez, C.; Afonso, A.M. The metal–organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 2015, 139, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Liu, H.; Yu, H.; Zhang, M.; Bai, L.; Yan, H. A metal organic framework polymer monolithic column as a novel adsorbent for on-line solid phase extraction and determination of ursolic acid in Chinese herbal medicine. J. Chromatogr. B 2019, 1125, 121715. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Xia, L.; Wu, C.; Liu, L.; Li, G.; You, J. Sensitive and accurate determination of sialic acids in serum with the aid of dispersive solid-phase extraction using the zirconium-based MOF of UiO-66-NH2 as sorbent. RSC Adv. 2016, 6, 64895–64901. [Google Scholar] [CrossRef]
- Kabir, A.; Furton, K.G.; Malik, A. Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal. Chem. 2013, 45, 197–218. [Google Scholar] [CrossRef]
- Casado, N.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Current development and applications of ordered mesoporous silicas and other sol–gel silica-based materials in food sample preparation for xenobiotics analysis. TrAC Trends Anal. Chem. 2017, 88, 167–184. [Google Scholar] [CrossRef]
- Pal, N.; Cho, E.-B.; Patra, A.K.; Kim, D. Ceria-Containing Ordered Mesoporous Silica: Synthesis, Properties, and Applications. ChemCatChem 2016, 8, 285–303. [Google Scholar] [CrossRef]
- Maya, F.; Palomino Cabello, C.; Ghani, M.; Turnes Palomino, G.; Cerdà, V. Emerging materials for sample preparation. J. Sep. Sci. 2018, 41, 262–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Zhang, H.; Dou, L. Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics 2014, 6, 298–332. [Google Scholar] [CrossRef]
- Sajid, M.; Basheer, C. Layered double hydroxides: Emerging sorbent materials for analytical extractions. TrAC Trends Anal. Chem. 2016, 75, 174–182. [Google Scholar] [CrossRef]
- Wang, Y.; Rui, M.; Lu, G. Recent applications of metal–organic frameworks in sample pretreatment. J. Sep. Sci. 2018, 41, 180–194. [Google Scholar] [CrossRef]
- Xiang, Z.; Cao, D.; Lan, J.; Wang, W.; Broom, D.P. Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energy Environ. Sci. 2010, 3, 1469–1487. [Google Scholar] [CrossRef]
- Andersson, S.; Larsson, P.-E. Atomic-scale modeling of hydrogen storage in the UiO-66 and UiO-67 metal-organic frameworks. Microporous Mesoporous Mater. 2016, 224, 349–359. [Google Scholar] [CrossRef]
- Du, F.; Qin, Q.; Deng, J.; Ruan, G.; Yang, X.; Li, L.; Li, J. Magnetic metal–organic framework MIL-100(Fe) microspheres for the magnetic solid-phase extraction of trace polycyclic aromatic hydrocarbons from water samples. J. Sep. Sci. 2016, 39, 2356–2364. [Google Scholar] [CrossRef] [PubMed]
- del Rio, M.; Palomino Cabello, C.; González, V.; Maya, F.; Parra, J.B.; Cerdà, V.; Turnes Palomino, G. Metal oxide assisted preparation of core–shell beads with dense metal–organic framework coatings for the enhanced extraction of organic pollutants. Chem. A Eur. J. 2016, 22, 11770–11777. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Kailasa, S.K.; Lee, S.S.; Rascón, A.J.; Ballesteros, E.; Zhang, M.; Kim, K.-H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends Anal. Chem. 2018, 108, 347–369. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern trends in solid phase extraction: New sorbent media. TrAC Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Yu, P.; Wang, Q.; Zhang, X.; Zhang, X.; Shen, S.; Wang, Y. Development of superparamagnetic high-magnetization C18-functionalized magnetic silica nanoparticles as sorbents for enrichment and determination of methylprednisolone in rat plasma by high performance liquid chromatography. Anal. Chim. Acta 2010, 678, 50–55. [Google Scholar] [CrossRef]
- Eskandari, H.; Naderi-Darehshori, A. Preparation of magnetite/poly (styrene-divinylbenzene) nanoparticles for selective enrichment-determination of fenitrothion in environmental and biological samples. Anal. Chim. Acta 2012, 743, 137–144. [Google Scholar] [CrossRef]
- Asgharinezhad, A.A.; Ebrahimzadeh, H.; Mirbabaei, F.; Mollazadeh, N.; Shekari, N. Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Anal. Chim. Acta 2014, 844, 80–89. [Google Scholar] [CrossRef]
- Asgharinezhad, A.A.; Karami, S.; Ebrahimzadeh, H.; Shekari, N.; Jalilian, N. Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids. Int. J. Pharm. 2015, 494, 102–112. [Google Scholar] [CrossRef]
- Madrakian, T.; Fazl, F.; Ahmadi, M.; Afkhami, A. Efficient solid phase extraction of codeine from human urine samples using a novel magnetic molecularly imprinted nanoadsorbent and its spectrofluorometric determination. New J. Chem. 2016, 40, 122–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, H.K. Liquid phase microextraction using knitting wool as the extractant phase holder before chromatographic analysis: A new approach for trace analysis. J. Chromatogr. A 2013, 1273, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lei, M.; Li, J.; Zhao, K.; Liu, Y. Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples. Sep. Purif. Technol. 2017, 182, 78–86. [Google Scholar] [CrossRef]
- Rodríguez, J.A.; Ibarra, I.S.; Miranda, J.M.; Barrado, E.; Santos, E.M. Magnetic solid phase extraction based on fullerene and activated carbon adsorbents for determination of azo dyes in water samples by capillary electrophoresis. Anal. Methods 2016, 8, 8466–8473. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Shi, Y.-P. Preparation of Fe3O4 nanoparticle enclosure hydroxylated multi-walled carbon nanotubes for the determination of aconitines in human serum samples. Anal. Chim. Acta 2012, 724, 54–60. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, H. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine. J. Sep. Sci. 2014, 37, 2591–2598. [Google Scholar] [CrossRef]
- Cai, M.-Q.; Su, J.; Hu, J.-Q.; Wang, Q.; Dong, C.-Y.; Pan, S.-D.; Jin, M.-C. Planar graphene oxide-based magnetic ionic liquid nanomaterial for extraction of chlorophenols from environmental water samples coupled with liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2016, 1459, 38–46. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.; Wang, T.; Guo, F.; Liu, L.; Jiang, G. Hemimicelles/admicelles supported on magnetic graphene sheets for enhanced magnetic solid-phase extraction. J. Chromatogr. A 2012, 1257, 1–8. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef]
- Li, M.; Jiao, C.; Yang, X.; Wang, C.; Wu, Q.; Wang, Z. Solid phase extraction of carbamate pesticides with banana peel derived hierarchical porous carbon prior to high performance liquid chromatography. Anal. Methods 2017, 9, 593–599. [Google Scholar] [CrossRef]
- Serrano, A.; Gallego, M. Fullerenes as sorbent materials for benzene, toluene, ethylbenzene, and xylene isomers preconcentration. J. Sep. Sci. 2006, 29, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latrous El Atrache, L.; Hachani, M.; Kefi, B.B. Carbon nanotubes as solid-phase extraction sorbents for the extraction of carbamate insecticides from environmental waters. Int. J. Environ. Sci. Technol. 2016, 13, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Lalović, B.; DJurkić, T.; Vukčević, M.; Janković-Častvan, I.; Kalijadis, A.; Laušević, Z.; Laušević, M. Solid-phase extraction of multi-class pharmaceuticals from environmental water samples onto modified multi-walled carbon nanotubes followed by LC-MS/MS. Environ. Sci. Pollut. Res. 2017, 24, 20784–20793. [Google Scholar] [CrossRef] [PubMed]
- Tabani, H.; Fakhari, A.R.; Shahsavani, A.; Behbahani, M.; Salarian, M.; Bagheri, A.; Nojavan, S. Combination of graphene oxide-based solid phase extraction and electro membrane extraction for the preconcentration of chlorophenoxy acid herbicides in environmental samples. J. Chromatogr. A 2013, 1300, 227–235. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Jiao, C.; Wang, C.; Wu, Q.; Wang, Z. Graphene oxide framework: An adsorbent for solid phase extraction of phenylurea herbicides from water and celery samples. J. Chromatogr. A 2016, 1469, 17–24. [Google Scholar] [CrossRef]
- Ahmadi, M.; Elmongy, H.; Madrakian, T.; Abdel-Rehim, M. Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Anal. Chim. Acta 2017, 958, 1–21. [Google Scholar] [CrossRef]
- Hou, X.; Wang, X.; Sun, Y.; Wang, L.; Guo, Y. Graphene oxide for solid-phase extraction of bioactive phenolic acids. Anal. Bioanal. Chem. 2017, 409, 3541–3549. [Google Scholar] [CrossRef]
- Takátsy, A.; Böddi, K.; Nagy, L.; Nagy, G.; Szabó, S.; Markó, L.; Wittmann, I.; Ohmacht, R.; Ringer, T.; Bonn, G.K.; et al. Enrichment of Amadori products derived from the nonenzymatic glycation of proteins using microscale boronate affinity chromatography. Anal. Biochem. 2009, 393, 8–22. [Google Scholar] [CrossRef]
- Caballero-Díaz, E.; Valcárcel, M. Carbon nanotubes as SPE sorbents for the extraction of salicylic acid from river water. J. Sep. Sci. 2014, 37, 434–439. [Google Scholar] [CrossRef]
- Sun, X.; Tang, Y.; Di, D.; Guo, M.; Zhao, L. Evaluation of an efficient and selective adsorbent based on multi-walled carbon nanotubes coated silica microspheres for detecting nucleobases and nucleosides in human urine. New J. Chem. 2015, 39, 5513–5521. [Google Scholar] [CrossRef]
- Shi, Z.; Li, Q.; Xu, D.; Huai, Q.; Zhang, H. Graphene-based pipette tip solid-phase extraction with ultra-high performance liquid chromatography and tandem mass spectrometry for the analysis of carbamate pesticide residues in fruit juice. J. Sep. Sci. 2016, 39, 4391–4397. [Google Scholar] [CrossRef] [PubMed]
- Salehinia, S.; Ghoreishi, S.M.; Maya, F.; Cerdà, V. Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples. J. Environ. Chem. Eng. 2016, 4, 4062–4071. [Google Scholar] [CrossRef]
- Arnnok, P.; Patdhanagul, N.; Burakham, R. Dispersive solid-phase extraction using polyaniline-modified zeolite NaY as a new sorbent for multiresidue analysis of pesticides in food and environmental samples. Talanta 2017, 164, 651–661. [Google Scholar] [CrossRef]
- Baile, P.; Fernández, E.; Vidal, L.; Canals, A. Zeolites and zeolite-based materials in extraction and microextraction techniques. Analyst 2019, 144, 366–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selman, M.H.J.; Hemayatkar, M.; Deelder, A.M.; Wuhrer, M. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal. Chem. 2011, 83, 2492–2499. [Google Scholar] [CrossRef]
- Lu, Q.; Wu, J.-H.; Yu, Q.-W.; Feng, Y.-Q. Using pollen grains as novel hydrophilic solid-phase extraction sorbents for the simultaneous determination of 16 plant growth regulators. J. Chromatogr. A 2014, 1367, 39–47. [Google Scholar] [CrossRef]
- Fang, G.; Chen, W.; Yao, Y.; Wang, J.; Qin, J.; Wang, S. Multi-residue determination of organophosphorus and organochlorine pesticides in environmental samples using solid-phase extraction with cigarette filter followed by gas chromatography–mass spectrometry. J. Sep. Sci. 2012, 35, 534–540. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, X.; Alula, Y.; Yao, S. Bionic multi-tentacled ionic liquid-modified silica gel for adsorption and separation of polyphenols from green tea (Camellia sinensis) leaves. Food Chem. 2017, 230, 637–648. [Google Scholar] [CrossRef]
- Fontanals, N.; Ronka, S.; Borrull, F.; Trochimczuk, A.W.; Marcé, R.M. Supported imidazolium ionic liquid phases: A new material for solid-phase extraction. Talanta 2009, 80, 250–256. [Google Scholar] [CrossRef]
- Dang, M.; Deng, Q.; Fang, G.; Zhang, D.; Liu, J.; Wang, S. Preparation of novel anionic polymeric ionic liquid materials and their potential application to protein adsorption. J. Mater. Chem. B 2017, 5, 6339–6347. [Google Scholar] [CrossRef]
- Guo, L.; Deng, Q.; Fang, G.; Gao, W.; Wang, S. Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples. J. Chromatogr. A 2011, 1218, 6271–6277. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.D.; Emaus, M.N.; Varona, M.; Bowers, A.N.; Anderson, J.L. Ionic liquids: Solvents and sorbents in sample preparation. J. Sep. Sci. 2018, 41, 209–235. [Google Scholar] [CrossRef] [PubMed]
- Fontanals, N.; Borrull, F.; Marcé, R.M. Ionic liquids in solid-phase extraction. Trends Anal. Chem. 2012, 41, 15–26. [Google Scholar] [CrossRef]
- Kang, X.; Pan, C.; Xu, Q.; Yao, Y.; Wang, Y.; Qi, D.; Gu, Z. The investigation of electrospun polymer nanofibers as a solid-phase extraction sorbent for the determination of trazodone in human plasma. Anal. Chim. Acta 2007, 587, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Aghakhani, A.; Akbari, M.; Ayazi, Z. Electrospun composite of polypyrrole-polyamide as a micro-solid phase extraction sorbent. Anal. Bioanal. Chem. 2011, 400, 3607–3613. [Google Scholar] [CrossRef]
- Chigome, S.; Torto, N. Electrospun nanofiber-based solid-phase extraction. TrAC Trends Anal. Chem. 2012, 38, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Háková, M.; Havlíková, L.C.; Solich, P.; Švec, F.; Šatínský, D. Electrospun nanofiber polymers as extraction phases in analytical chemistry—The advances of the last decade. TrAC Trends Anal. Chem. 2019, 110, 81–96. [Google Scholar] [CrossRef]
Type | Material | SPE Mode | Compounds | Sample | Instrumental Technique | Reference |
---|---|---|---|---|---|---|
High capacity | PLRP-S | off-line | drugs of abuse | wastewater | LC-MS/MS | [6] |
Bond Elut Plexa | dispersive | antibiotic | milk | LC-MS/MS | [7] | |
Strata X | off-line | pharmaceuticals | wastewater | LC-MS/MS | [8] | |
Oasis HLB | off-line | sweeteners | wastewater | LC-MS/MS | [9] | |
Oasis HLB | in-line | drugs | urine | CE-MS | [10] | |
Lichrolut EN | off-line | EDCs 1 | urine, blood, milk | GC-MS | [11] | |
XAD-4 modif. NO2/COCH3/NH2/COOH | on-line µSPE | pesticides | urine, oil, wastewater | LC-UV | [12] | |
PS-DVB modif. benzoyl | on-line | pesticides | river | LC-UV | [13] | |
NVIm-DVB 2 | on-line | pesticides | river | LC-UV | [14] | |
MAA-EDMA 3 | off-line | nerve agents & organophosphorus | organic matrix | GC-MS | [15] | |
HXLPP 4 | on-line | pesticides | river, wastewater | LC-UV | [16] | |
HXLPP (HEMA) 5 | off-line | pesticides | river, wastewater | LC-UV | [17] | |
Selective | MIP (ciprofloxacin) | off-line | antibiotics | lake, wastewater | LC-MS/MS | [18] |
MIP (caffeic acid) | off-line | polyphenols | Oil, wastewater | LC-UV | [19] | |
MIP (bisphenol A) | off-line | bisphenol A | sediments, milk, oil, urine | LC-DAD | [20] | |
MIP (insulin) | off-line | insulin | plasma | LC-DAD | [21] | |
MIP (PAHs) | off-line | PAHs 6 | seawater | GC-MS | [22] | |
SupelMIP NSAIDs | off-line | NSAIDs 7 | wastewater | LC-MS/MS | [23] | |
SupelMIP AG | off-line | aminoglycosides | milk | LC-MS/MS | [24] | |
AffiMIP-Phenolic | off-line | PCBs 8, PBDEs 9 | animal tissues | GC-MS, LC-MS | [25] | |
Oasis MCX | off-line | drugs of abuse | wastewater, urine | LC-MS/MS | [26] | |
Strata-X-WC | off-line | toxins | urine | LC-TOF 10 | [27] | |
Oasis WAX | off-line | PFCAs 11 | river, groundwater, drinking | LC-MS/MS | [28] | |
Bond Elut Plexa SAX | off-line | herbicides | stormwater | LC-MS/MS | [29] | |
HXLPP-WAX 4 | on-line | pharmaceuticals | river, wastewater | LC-UV | [30] | |
HXLPP-WCX 4 | off-line | pharmaceuticals | river, wastewater | LC-MS/MS | [31] | |
DEAEMA-DVB-SAX 12 | off-line | pharmaceuticals | urine | LC-UV | [32] | |
GMA-DVB-SCX 13 | off-line | alkylate purines | river, wastewater | LC-UV | [33] |
Type | Material | SPE Mode | Compounds | Sample | Instrumental Technique | Reference |
---|---|---|---|---|---|---|
Organic-inorganic hybrid | sol-gel hybrid MTMOS-TEOS 1 | off-line | organophosphorus | tap, mineral, river, fruit | GC-MS | [44] |
sol-gel hybrid MTMOS-MPTMS 2 | off-line | NSAIDs 3 | river | LC-UV | [46] | |
sol-gel composite TiO2-Mn/Fe/Ni/Co | µSPE | pharmaceuticals | urine, plasma | LC-UV | [45] | |
Si-β-CD 4 | off-line | PAHs 5 | river, well, rainwater | LC-FL | [47] | |
Si-β-CD 4 | off-line | methyl jasmonate | salty plant extract | LC-UV | [48] | |
MIP SiO2-TEOS 6 (oxindole) | on-line | paulatin | fruit, fruit juices | LC-UV | [49] | |
MIP TEOS-TEPS-3-APTMS 7 (sulfonamides) | off-line | sulfonamide antibiotic | milk | LC-DAD | [50] | |
Mesoporous silica | MCM-41 8 | off-line | PAHs 5 | ambient air | GC-MS | [51] |
SBA-15-C18-CO 9 | off-line | EDCs 10 | milk | LC-DAD | [52] | |
SBA-15-NH2 9 | off-line | NSAIDs 3 | tap, river, wastewater | LC-UV | [53] | |
MIP-SBA | off-line | bisphenol A | tap, well, wastewater | LC-UV | [54] | |
KIT-6 11 | off-line | pharmaceuticals | urine | LC-UV | [55] | |
UVM-Ti25 12 | off-line | organophosphorus | wastewater | GC-NPD 13 | [56] | |
LDHs | Mg-Al-LDH (NO3−) | dispersive | aromatic acids | urine, sports drinks | LC-UV | [57] |
Ni-Fe-LDH (NO3−) | dispersive | haloacetic acids | drinking water | LC-MS/MS | [58] | |
Ni-Fe-LDH (NO3−) | µMEPS14 | NSAIDs 3 | urine | LC-UV | [59] | |
yarn@PPy@Cu-Cr-Fe LDH | in-tube | phenols | honey | LC-UV | [60] | |
MOF | MIL-101 15 | dispersive µSPE | pantoprozole | plasma | LC-UV | [61] |
MIL-68 15 | pipette tip | sulfonamides | lake, milk, meat | LC-UV | [62] | |
ZIF-8 16 | µSPE | PAHs 5 | river | GC-MS | [63] | |
HKUST-1 17 | dispersive | herbicides | well water, soil, rice, tomato | IMS 18 | [64] | |
HKUST-1 17 | dispersive µSPE | parabens | tap, swimming, spa water, urine, cosmetic cream | LC-DAD | [65] | |
MOF-199 embedded NMA-EDMA 19 | off-line | ursolic acid | Chinese herbal medicine | LC-UV | [66] | |
UiO-66 20 | dispersive µSPE | sialic acids | serum | LC-FL | [67] |
Type | Material | SPE Mode | Compounds | Sample | Instrumental Technique | Reference |
---|---|---|---|---|---|---|
Silica-based | Fe3O4@SiO2-C18 | magnetic | corticosteroid | plasma | LC-UV | [81] |
Fe3O4@SiO2-C18 | magnetic | pesticides | pond water | GC-MS | [86] | |
Fe3O4@SiO2-MIP | magnetic | codeine | urine | LC-UV | [85] | |
LDH | Fe@Mg-Al-LDH | magnetic | bisphenol A, nonylphenol | river, wastewater | LC-UV | [87] |
MOF | Fe3O4@MIL-100 | magnetic µSPE | PAHs 1 | tap, well, pond water | LC-FD | [77] |
Fe3O4@ZIF-8 | magnetic | EDC 2 | drinking water | LC-UV | [78] | |
Polymer-based | Fe3O4@PS-DVB | magnetic | fenitrothion | water, urine | UV | [82] |
Fe3O4@polyaniline | magnetic µSPE | benzodiazepines | tap, river, well, lake water, plasma, urine | LC-UV | [83] | |
Fe3O4@polypyrrole | magnetic µSPE | antidepressant drugs | plasma, urine | LC-UV | [84] | |
Carbon-based | Fe3O4@C60fullerenes | magnetic | azodyes | wastewater | CE-UV | [88] |
Fe3O4@MWCNTs 3 | magnetic | aconitites | serum | LC-DAD | [89] | |
Fe3O4@GO 4 | magnetic | PAHs 1 | urine | LC-MS | [90] | |
Fe3O4@SiO2@GO@IL 5 | magnetic | chlorophenols | tap water | LC-MS/MS | [91] | |
Fe3O4@GO@hemimicelles | magnetic | PFAS 6 | river, wastewater | LC-MS/MS | [92] |
Type | Material | SPE Mode | Compounds | Sample | Instrumental Technique | Reference |
---|---|---|---|---|---|---|
Fullerenes | C60 | on-line | BTEX 1 | sea, wastewater | GC-MS | [95] |
SiO2-C60 | dispersive | peptides | serum | MALDI-TOF-MS 2 | [102] | |
Carbon nanotubes | SWCNTs 3 | SPE | salicylic acid | river | CE-UV | [103] |
MWCNTs 4 | SPE | carbamate pesticides | tap, river water | LC-MS | [96] | |
SiO2-MWCNTs | SPE | nucleosides, nucleobases | urine | LC-DAD | [104] | |
MWCNTs4-HCl | dispersive | pharmaceuticals | surface, groundwater | LC-MS/MS | [97] | |
Graphene | G 5 | dispersive | carbamate pesticides | fruit juice | LC-MS/MS | [105] |
GO 6 | SPE | herbicides | river, seawater | CE-UV | [98] | |
SiO2-GO | dispersive | phenolic acids | urine | LC-UV | [101] | |
GO-1,4-PDBA 7 | SPE | herbicides | pond water, celery | LC-DAD | [99] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanals, N.; Marcé, R.M.; Borrull, F. Materials for Solid-Phase Extraction of Organic Compounds. Separations 2019, 6, 56. https://doi.org/10.3390/separations6040056
Fontanals N, Marcé RM, Borrull F. Materials for Solid-Phase Extraction of Organic Compounds. Separations. 2019; 6(4):56. https://doi.org/10.3390/separations6040056
Chicago/Turabian StyleFontanals, Núria, Rosa M. Marcé, and Francesc Borrull. 2019. "Materials for Solid-Phase Extraction of Organic Compounds" Separations 6, no. 4: 56. https://doi.org/10.3390/separations6040056
APA StyleFontanals, N., Marcé, R. M., & Borrull, F. (2019). Materials for Solid-Phase Extraction of Organic Compounds. Separations, 6(4), 56. https://doi.org/10.3390/separations6040056