Evolution of Environmentally Friendly Strategies for Metal Extraction
Abstract
:1. Introduction
2. Liquid-Based Extraction
2.1. Aqueous Biphasic Systems
2.2. Three-Liquid-Phase Extraction
2.3. Cloud Point Extraction (CPE)
2.4. Liquid Membrane Extraction
2.5. Summary
3. Solid-Phase Extraction
3.1. Nanosorbent Materials
3.2. Polymer-Based Materials
3.3. Metal–Organic Frameworks
3.4. Magnetic-Based Materials
3.5. Ion Exchange
3.6. Ligand Binding
3.7. Solid-Phase Microextraction
3.8. Dispersive Solid-Phase Extraction
4. Bulk Sorbent Methods
4.1. Chemical Precipitation
4.2. Biosorbent Extraction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Egodawatta, P.; McGree, J.; Liu, A.; Goonetilleke, A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 2016, 557–558, 764–772. [Google Scholar] [CrossRef]
- Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011; pp. 315–442.
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Some Drinking-Water Disinfectants and Contaminants, Including Arsenic; IARC (International Agency for Research on Cancer): Lyon, France, 2004.
- Mohan, D.; Gupta, V.K.; Srivastava, S.K.; Chander, S. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids Surf. A 2001, 177, 169–181. [Google Scholar] [CrossRef]
- Pieper, K.J.; Tang, M.; Edwards, M.A. Flint water crisis caused by interrupted corrosion control: Investigating “Ground Zero” home. Environ. Sci. Technol. 2017, 51, 2007–2014. [Google Scholar] [CrossRef]
- Baum, R.; Bartram, J.; Hrudey, S. The flint water crisis confirms that U.S. drinking water needs improved risk management. Environ. Sci. Technol. 2016, 50, 5436–5437. [Google Scholar] [CrossRef] [Green Version]
- Boudesocque, S.; Mohamadou, A.; Conreux, A.; Marin, B.; Dupont, L. The recovery and selective extraction of gold and platinum by novel ionic liquids. Sep. Purif. Technol. 2019, 210, 824–834. [Google Scholar] [CrossRef]
- Matsumiya, M.; Song, Y.; Tsuchida, Y.; Ota, H.; Tsunashima, K. Recovery of platinum by solvent extraction and direct electrodeposition using ionic liquid. Sep. Purif. Technol. 2019, 214, 162–167. [Google Scholar] [CrossRef]
- Hidayah, N.N.; Abidin, S.Z. The evolution of mineral processing in extraction of rare earth elements using solid-liquid extraction over liquid-liquid extraction: A review. Miner. Eng. 2017, 112, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the rare earth elements. Curr. Opin. Green. Sustain. Chem 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Das, P.; Fatehbasharzad, P.; Colombo, M.; Fiandra, L.; Prosperi, D. Multifunctional magnetic gold nanomaterials for cancer. Trends Biotechnol. 2019, 37, 995–1010. [Google Scholar] [CrossRef]
- Puja, P.; Kumar, P. A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim. Acta A 2019, 211, 94–99. [Google Scholar] [CrossRef]
- Du, R.; Gao, B.; Men, J. Microfiltration membrane possessing chelation function and its adsorption and rejection properties towards heavy metal ions. J. Chem. Technol. Biotechnol. 2019, 94, 1441–1450. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Charerntanyarak, L. Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 1999, 39, 135–138. [Google Scholar] [CrossRef]
- Duan, W.; Chen, G.; Chen, C.; Sanghvi, R.; Iddya, A.; Walker, S.; Liu, H.; Ronen, A.; Jassby, D. Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes. J. Membr. Sci. 2017, 531, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Sahraeian, T.; Sereshti, H.; Rohanifar, A. Simultaneous determination of bismuth, lead, and iron in water samples by optimization of USAEME and ICP–OES via experimental design. J. Anal. Test. 2018, 2, 98–105. [Google Scholar] [CrossRef]
- Sereshti, H.; Far, A.R.; Samadi, S. Optimized ultrasound-assisted emulsification-microextraction followed by ICP-OES for simultaneous determination of lanthanum and cerium in urine and water samples. Anal. Lett. 2012, 45, 1426–1439. [Google Scholar] [CrossRef]
- Vital, B.; Bartacek, J.; Ortega-Bravo, J.C.; Jeison, D. Treatment of acid mine drainage by forward osmosis: Heavy metal rejection and reverse flux of draw solution constituents. Chem. Eng. J. 2018, 332, 85–91. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Wang, T.; Wang, N.; Bao, Y.; Hao, H. Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere 2017, 173, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.P.; Zhao, J.; Qin, G.H.; Wang, C.Y.; Tong, X.L.; Xue, S. Photocatalytic reduction of Cr(VI) with TiO2 film under visible light. Appl. Catal. B- Environ. 2013, 142, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Freiser, H. Extraction. Anal. Chem. 1968, 40, 522–553. [Google Scholar] [CrossRef]
- Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. Solvent Extraction Principles and Practices, 2nd ed.; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Gunatilake, S. Methods of removing heavy metals from industrial wastewater. J. Multidisciplin. Eng. Sci. Stud. 2015, 1, 12–18. [Google Scholar]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Bezerra, M.D.A.; Arruda, M.A.Z.; Ferreira, S.L.C. Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review. Appl. Spectrosc. Rev. 2005, 40, 269–299. [Google Scholar] [CrossRef]
- Bulgariu, L.; Bulgariu, D. Cd (II) extraction in PEG (1550)-(NH4)2SO4 aqueous two-phase systems using halide extractants. J. Serb. Chem. Soc. 2008, 73, 341–350. [Google Scholar] [CrossRef]
- Karmakar, R.; Sen, K. Aqueous biphasic extraction of metal ions: An alternative technology for metal regeneration. J. Mol. Liq. 2019, 273, 231–247. [Google Scholar] [CrossRef]
- An, J.; Trujillo-Rodríguez, M.J.; Pino, V.; Anderson, J.L. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J. Chromatogr. A 2017, 1500, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Zvarova, T.I.; Shkinev, V.M.; Vorob’eva, G.A.; Spivakov, B.Y.; Zolotov, Y.A. Liquid-liquid extraction in the absence of usual organic solvents: Application of two-phase aqueous systems based on a water-soluble polymer. Microchim. Acta 1984, 84, 449–458. [Google Scholar] [CrossRef]
- Chen, J.; Spear, S.K.; Huddleston, J.G.; Rogers, R.D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem. 2005, 7, 64–82. [Google Scholar]
- Rogers, R.D.; Bond, A.H.; Bauer, C.B.; Zhang, J.; Griffin, S.T. Metal ion separations in polyethylene glycol-based aqueous biphasic systems: Correlation of partitioning behavior with available thermodynamic hydration data. J. Chromatogr. B 1996, 680, 221–229. [Google Scholar] [CrossRef]
- Sadeghi, R.; Maali, M. Toward an understanding of aqueous biphasic formation in polymer–polymer aqueous systems. Polymer 2016, 83, 1–11. [Google Scholar] [CrossRef]
- Lahiri, S.; Roy, K. A green approach for sequential extraction of heavy metals from Li irradiated Au target. J. Radioanal. Nucl. Chem. 2009, 281, 531–534. [Google Scholar] [CrossRef]
- Akama, Y.; Sali, A. Extraction mechanism of Cr(VI) on the aqueous two-phase system of tetrabutylammonium bromide and (NH4)2SO4 mixture. Talanta 2002, 57, 681–686. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Hamzehzadeh, S. Phase diagrams for the aqueous two-phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at T=(278.15, 298.15, and 318.15) K. J. Chem. Eng. Data 2008, 54, 833–841. [Google Scholar] [CrossRef]
- Das, D.; Sen, K. Species dependent aqueous biphasic extraction of some heavy metals. J. Ind. Eng. Chem. 2012, 18, 855–859. [Google Scholar] [CrossRef]
- Graber, T.A.; Andrews, B.A.; Asenjo, J.A. Model for the partition of metal ions in aqueous two-phase systems. J. Chromatogr. B 2000, 743, 57–64. [Google Scholar] [CrossRef]
- Sun, P.; Huang, K.; Lin, J.; Liu, H. Role of hydrophobic interaction in driving the partitioning of metal ions in a PEG-based aqueous two-phase system. Ind. Eng. Chem. Res. 2018, 57, 11390–11398. [Google Scholar] [CrossRef]
- de Lemos, L.R.; Santos, I.J.; Rodrigues, G.D.; da Silva, L.H.; da Silva, M.C. Copper recovery from ore by liquid-liquid extraction using aqueous two-phase system. J. Hazard. Mater. 2012, 237–238, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, W.; Zhou, W.; Gao, H.; Wu, J.; Xu, G.; Chen, J.; Liu, H.; Chen, J. Extraction and separation of gold (I) cyanide in polyethylene glycol-based aqueous biphasic systems. Hydrometallurgy 2001, 62, 41–46. [Google Scholar] [CrossRef]
- Samaddar, P.; Sen, K. Species dependent sustainable preconcentration of zinc: Possible aspects of ABS and CPE. J. Ind. Eng. Chem. 2015, 21, 835–841. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, T.; Lu, T.; Yan, C. Extraction and separation of tungsten(VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant. J. Chromatogr. A 2016, 1474, 40–46. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Sun, T.C.; Hou, Q.X.; Guo, Q.; Lu, T.Q.; Guo, Y.C.; Yan, C.H. A green method for extracting molybdenum(VI) from aqueous solution with aqueous two-phase system without any extractant. Sep. Purif. Technol. 2016, 169, 151–157. [Google Scholar] [CrossRef]
- Hamta, A.; Dehghani, M.R. Application of polyethylene glycol based aqueous two-phase systems for extraction of heavy metals. J. Mol. Liq. 2017, 231, 20–24. [Google Scholar] [CrossRef]
- Shibukawa, M.; Nakayama, N.; Hayashi, T.; Shibuya, D.; Endo, Y.; Kawamura, S. Extraction behaviour of metal ions in aqueous polyethylene glycol–sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions. Anal. Chim. Acta 2001, 427, 293–300. [Google Scholar] [CrossRef]
- Rodrigues, G.D.; da Silva, M.D.C.H.; da Silva, L.H.M.; Paggioli, F.J.; Minim, L.A.; Reis Coimbra, J.S.D. Liquid–liquid extraction of metal ions without use of organic solvent. Sep. Purif. Technol. 2008, 62, 687–693. [Google Scholar] [CrossRef]
- Lacerda, V.G.; Mageste, A.B.; Santos, I.J.B.; da Silva, L.H.M.; da Silva, M.D.C.H. Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems. J. Power Sources 2009, 193, 908–913. [Google Scholar] [CrossRef]
- Bulgariu, L.; Bulgariu, D. Extraction of metal ions in aqueous polyethylene glycol–inorganic salt two-phase systems in the presence of inorganic extractants: Correlation between extraction behaviour and stability constants of extracted species. J. Chromatogr. A 2008, 1196–1197, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Patrício, P.D.R.; Mesquita, M.C.; da Silva, L.H.M.; da Silva, M.C.H. Application of aqueous two-phase systems for the development of a new method of cobalt(II), iron(III) and nickel(II) extraction: A green chemistry approach. J. Hazard. Mater. 2011, 193, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Rogers, R.D.; Griffin, S.T. Partitioning of mercury in aqueous biphasic systems and on ABEC™ resins. J. Chromatogr. B 1998, 711, 277–283. [Google Scholar] [CrossRef]
- Rodrigues, G.D.; de Lemos, L.R.; da Silva, L.H.M.; da Silva, M.C.H. Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt, nickel and cadmium. J. Chromatogr. A 2013, 1279, 13–19. [Google Scholar] [CrossRef]
- Santos, L.H.; Carvalho, P.L.G.; Rodrigues, G.D.; Mansur, M.B. Selective removal of calcium from sulfate solutions containing magnesium and nickel using aqueous two phase systems (ATPS). Hydrometallurgy 2015, 156, 259–263. [Google Scholar] [CrossRef]
- Assis, R.C.; de Araújo Faria, B.A.; Caldeira, C.L.; Mageste, A.B.; de Lemos, L.R.; Rodrigues, G.D. Extraction of arsenic(III) in aqueous two-phase systems: A new methodology for determination and speciation analysis of inorganic arsenic. Microchem. J. 2019, 147, 429–436. [Google Scholar] [CrossRef]
- Akama, Y.; Ito, M.; Tanaka, S. Selective separation of cadmium from cobalt, copper, iron (III) and zinc by water-based two-phase system of tetrabutylammonium bromide. Talanta 2000, 53, 645–650. [Google Scholar] [CrossRef]
- Onghena, B.; Opsomer, T.; Binnemans, K. Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system. Chem. Commun. 2015, 51, 15932–15935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellens, S.; Thijs, B.; Binnemans, K. An environmentally friendlier approach to hydrometallurgy: Highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem. 2012, 14, 1657–1665. [Google Scholar] [CrossRef] [Green Version]
- Vander Hoogerstraete, T.; Wellens, S.; Verachtert, K.; Binnemans, K. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: Separations relevant to rare-earth magnet recycling. Green Chem. 2013, 15, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Depuydt, D.; Dehaen, W.; Binnemans, K. Solvent extraction of scandium(III) by an aqueous biphasic system with a nonfluorinated functionalized ionic liquid. Ind. Eng. Chem. Res. 2015, 54, 8988–8996. [Google Scholar] [CrossRef]
- Yang, X.; Miao, C.; Sun, Y.; Lei, T.; Xie, Q.; Wang, S. Efficient extraction of gold(I) from alkaline aurocyanide solution using green ionic liquid-based aqueous biphasic systems. J. Taiwan Inst. Chem. Eng. 2018, 91, 176–185. [Google Scholar] [CrossRef]
- Flieger, J.; Tatarczak-Michalewska, M.; Blicharska, E.; Madejska, A.; Flieger, W.; Adamczuk, A. Extraction of cobalt (II) using ionic liquid-based bi-phase and three-phase systems without adding any chelating agents with new recycling procedure. Sep. Purif. Technol. 2019, 209, 984–989. [Google Scholar] [CrossRef]
- Sun, P.; Huang, K.; Liu, H. The nature of salt effect in enhancing the extraction of rare earths by non-functional ionic liquids: Synergism of salt anion complexation and Hofmeister bias. J. Colloid Interf. Sci. 2019, 539, 214–222. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Pei, Y.; Wang, J. A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system. Talanta 2018, 182, 450–455. [Google Scholar] [CrossRef]
- Zheng, Y.; Tong, Y.; Wang, S.; Zhang, H.; Yang, Y. Mechanism of gold(III) extraction using a novel ionic liquid-based aqueous two phase system without additional extractants. Sep. Purif. Technol. 2015, 154, 123–127. [Google Scholar] [CrossRef]
- Dutta, R.; Sarkar, U.; Mukherjee, A. Process optimization for the extraction of oil from Crotalaria juncea using three phase partitioning. Ind. Crops Prod. 2015, 71, 89–96. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Blockx, J.; De Coster, H.; Binnemans, K. Selective single-step separation of a mixture of three metal ions by a triphasic Iionic-liquid-water-ionic-liquid solvent extraction system. Chem. Eur. J. 2015, 21, 11757–11766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, S.; Chang, Z.; Liu, J.; Sun, X.; Hu, X.; Liu, H. Separation of glycyrrhizic acid and liquiritin from Glycyrrhiza uralensis Fisch extract by three-liquid-phase extraction systems. Sep. Purif. Technol. 2007, 53, 216–223. [Google Scholar] [CrossRef]
- Shen, S.; Chang, Z.; Liu, H. Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater. Sep. Purif. Technol. 2006, 49, 217–222. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, K.; Yu, P.; Liu, H. Salting-out induced three-liquid-phase separation of Pt (IV), Pd (II) and Rh (III) in system of S201− acetonitrile− NaCl− water. Sep. Purif. Technol. 2011, 80, 81–89. [Google Scholar] [CrossRef]
- Grilo, A.L.; Raquel Aires-Barros, M.; Azevedo, A.M. Partitioning in aqueous two-phase systems: Fundamentals, applications and trends. Sep. Purif. Rev. 2016, 45, 68–80. [Google Scholar] [CrossRef]
- Takata, T.; Hirayama, N. Organic-solvent/water/ionic-liquid triphasic system for the fractional extraction of divalent metal cations. Anal. Sci. 2009, 25, 1269–1270. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; Huang, K.; Xu, L.; Yu, P.; Yang, L.; Liu, H. Three-liquid-phase extraction and separation of Ti(IV), Fe(III), and Mg(II). Ind. Eng. Chem. Res. 2011, 50, 6362–6368. [Google Scholar] [CrossRef]
- Yu, P.; Huang, K.; Zhang, C.; Xie, K.; He, X.; Zhao, J.; Deng, F.; Liu, H. Block copolymer micellization induced microphase mass transfer: Partition of Pd(II), Pt(IV) and Rh(III) in three-liquid-phase systems of S201–EOPO–Na2SO4–H2O. J. Colloid Interf. Sci. 2011, 362, 228–234. [Google Scholar] [CrossRef]
- Yu, P.; Huang, K.; Liu, H.; Xie, K. Three-liquid-phase partition behaviors of Pt(IV), Pd(II) and Rh(III): Influences of phase-forming components. Sep. Purif. Technol. 2012, 88, 52–60. [Google Scholar] [CrossRef]
- Xie, K.; Huang, K.; Yang, L.; Yu, P.; Liu, H. Three-liquid-phase extraction: A new approach for simultaneous enrichment and separation of Cr(III) and Cr(VI). Ind. Eng. Chem. Res. 2011, 50, 12767–12773. [Google Scholar] [CrossRef]
- Sui, N.; Huang, K.; Zhang, C.; Wang, N.; Wang, F.; Liu, H. Light, middle, and heavy rare-earth group separation: A new approach via a liquid–liquid–liquid three-phase system. Ind. Eng. Chem. Res. 2013, 52, 5997–6008. [Google Scholar] [CrossRef]
- Sui, N.; Huang, K.; Lin, J.; Li, X.; Wang, X.; Xiao, C.; Liu, H. Removal of Al, Fe and Si from complex rare-earth leach solution: A three-liquid-phase partitioning approach. Sep. Purif. Technol. 2014, 127, 97–106. [Google Scholar] [CrossRef]
- Sui, N.; Huang, K.; Zheng, H.; Lin, J.; Wang, X.; Xiao, C.; Liu, H. Three-liquid-phase extraction and separation of rare earths and Fe, Al, and Si by a novel mixer–settler–mixer three-chamber integrated extractor. Ind. Eng. Chem. Res. 2014, 53, 16033–16043. [Google Scholar] [CrossRef]
- Shirayama, S.; Uda, T. Simultaneous separation of manganese, cobalt, and nickel by the organic-aqueous-aqueous three-phase solvent extraction. Metall. Mater. Trans. B 2016, 47, 1325–1333. [Google Scholar] [CrossRef]
- Sun, P.; Huang, K.; Wang, X.; Sui, N.; Lin, J.; Cao, W.; Liu, H. Three-liquid-phase extraction and separation of V(V) and Cr(VI) from acidic leach solutions of high-chromium vanadium–titanium magnetite. Chin. J. Chem. Eng. 2018, 26, 1451–1457. [Google Scholar] [CrossRef]
- Dhamole, P.B.; Mahajan, P.; Feng, H. Phase separation conditions for sugaring-out in acetonitrile− water systems. J. Chem. Eng. Data 2010, 55, 3803–3806. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, K.; Yu, P.; Liu, H. Ionic liquid based three-liquid-phase partitioning and one-step separation of Pt(IV), Pd(II) and Rh(III). Sep. Purif. Technol. 2013, 108, 166–173. [Google Scholar] [CrossRef]
- Nascentes, C.C.; Arruda, M.A.Z. Cloud point formation based on mixed micelles in the presence of electrolytes for cobalt extraction and preconcentration. Talanta 2003, 61, 759–768. [Google Scholar] [CrossRef]
- Gullickson, N.; Scamehom, J.; Harwell, J. Surfactant-Based Separation Processes; Marcel Dekker: New York, NY, USA, 1989. [Google Scholar]
- Afkhami, A.; Madrakian, T.; Siampour, H. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents. J. Hazard. Mater. 2006, 138, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Samaddar, P.; Sen, K. Cloud point extraction: A sustainable method of elemental preconcentration and speciation. J. Ind. Eng. Chem. 2014, 20, 1209–1219. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Giokas, D.L.; Karayannis, M.I. Micelle-mediated separation and cloud-point extraction. TrAC-Trends Anal. Chem. 2005, 24, 426–436. [Google Scholar] [CrossRef]
- Kazi, T.G.; Khan, S.; Baig, J.A.; Kolachi, N.F.; Afridi, H.I.; Kandhro, G.A.; Kumar, S.; Shah, A.Q. Separation and preconcentration of aluminum in parenteral solutions and bottled mineral water using different analytical techniques. J. Hazard. Mater. 2009, 172, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhong, S.; Fang, K.; Qian, Z.; Chen, J. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. J. Hazard. Mater. 2012, 239–240, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Citak, D.; Tuzen, M. A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food Chem. Toxicol. 2010, 48, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Niazi, A.; Momeni-Isfahani, T.; Ahmari, Z. Spectrophotometric determination of mercury in water samples after cloud point extraction using nonionic surfactant Triton X-114. J. Hazard. Mater. 2009, 165, 1200–1203. [Google Scholar] [CrossRef]
- Yang, X.; Fane, A.; Soldenhoff, K. Comparison of liquid membrane processes for metal separations: Permeability, stability, and selectivity. Ind. Eng. Chem. Res. 2003, 42, 392–403. [Google Scholar] [CrossRef]
- Soniya, M.; Muthuraman, G. Comparative study between liquid–liquid extraction and bulk liquid membrane for the removal and recovery of methylene blue from wastewater. J. Ind. Eng. Chem. 2015, 30, 266–273. [Google Scholar] [CrossRef]
- Benderrag, A.; Haddou, B.; Daaou, M.; Benkhedja, H.; Bounaceur, B.; Kameche, M. Experimental and modeling studies on Cd (II) ions extraction by emulsion liquid membrane using Triton X-100 as biodegradable surfactant. J. Environ. Chem. Eng. 2019, 7, 103166. [Google Scholar] [CrossRef]
- Kocherginsky, N.; Yang, Q.; Seelam, L. Recent advances in supported liquid membrane technology. Sep. Purif. Technol. 2007, 53, 171–177. [Google Scholar] [CrossRef]
- Parhi, P.K.; Behera, S.S.; Mohapatra, R.K.; Sahoo, T.R.; Das, D.; Misra, P.K. Separation and recovery of Sc(III) from Mg–Sc alloy scrap solution through hollow fiber supported liquid membrane (HFLM) process supported by Bi-functional ionic liquid as carrier. Sep. Sci. Technol. 2019, 54, 1478–1488. [Google Scholar] [CrossRef]
- Duan, H.; Wang, Z.; Yuan, X.; Wang, S.; Guo, H.; Yang, X. A novel sandwich supported liquid membrane system for simultaneous separation of copper, nickel and cobalt in ammoniacal solution. Sep. Purif. Technol. 2017, 173, 323–329. [Google Scholar] [CrossRef]
- Wongkaew, K.; Mohdee, V.; Pancharoen, U.; Arpornwichanop, A.; Lothongkum, A.W. Separation of platinum(IV) across hollow fiber supported liquid membrane using non-toxic diluents: Mass transfer and thermodynamics. J. Ind. Eng. Chem. 2017, 54, 278–289. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Wang, Z.; Li, S.; Xie, Q.; Huang, Z.; Wang, S. Synergistic extraction of gold(I) from aurocyanide solution with the mixture of primary amine N1923 and bis (2-ethylhexyl) sulfoxide in supported liquid membrane. J. Membr. Sci. 2017, 540, 174–182. [Google Scholar] [CrossRef]
- Panja, S.; Mohapatra, P.; Kandwal, P.; Tripathi, S. Uranium(VI) pertraction across a supported liquid membrane containing a branched diglycolamide carrier extractant: Part III: Mass transfer modeling. Desalination 2012, 285, 213–218. [Google Scholar] [CrossRef]
- Hu, S.-Y.B.; Li, J.; Wiencek, J.M. Feasibility of surfactant-free supported emulsion liquid membrane extraction. J. Colloid Interf. Sci. 2003, 266, 430–437. [Google Scholar] [CrossRef]
- Poole, C.F. New trends in solid-phase extraction. TrAC-Trends Anal. Chem. 2003, 22, 362–373. [Google Scholar] [CrossRef]
- Risticevic, S.; Lord, H.; Gorecki, T.; Arthur, C.L.; Pawliszyn, J. Protocol for solid-phase microextraction method development. Nat. Protoc. 2010, 5, 122. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern trends in solid phase extraction: New sorbent media. TrAC-Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Azzouz, A.; Kailasa, S.K.; Lee, S.S.; Rascón, A.J.; Ballesteros, E.; Zhang, M.; Kim, K.-H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC-Trends Anal. Chem. 2018, 108, 347–369. [Google Scholar] [CrossRef]
- Afkhami, A.; Bagheri, H. Preconcentration of trace amounts of formaldehyde from water, biological and food samples using an efficient nanosized solid phase, and its determination by a novel kinetic method. Microchim. Acta 2012, 176, 217–227. [Google Scholar] [CrossRef]
- Ranjan, B.; Pillai, S.; Permaul, K.; Singh, S. Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. J. Hazard. Mater. 2019, 363, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.E.; Soliman, E.M. Silica-immobilized formylsalicylic acid as a selective phase for the extraction of iron(III). Talanta 1997, 44, 15–22. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Wang, A. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J. Hazard. Mater. 2009, 168, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Habila, M.; Yilmaz, E.; Alothman, Z.A.; Soylak, M. Flame atomic absorption spectrometric determination of Cd, Pb, and Cu in food samples after pre-concentration using 4-(2-thiazolylazo) resorcinol-modified activated carbon. J. Ind. Eng. Chem. 2014, 20, 3989–3993. [Google Scholar] [CrossRef]
- Hashemi, B.; Rezania, S. Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: A review. Microchim. Acta 2019, 186, 578. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.A.; Al Ghannam, S.M. Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples. Food Chem. 2016, 202, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Soylak, M.; Topalak, Z. Multiwalled carbon nanotube impregnated with tartrazine: Solid phase extractant for Cd(II) and Pb(II). J. Ind. Eng. Chem. 2014, 20, 581–585. [Google Scholar] [CrossRef]
- Tajik, S.; Taher, M.A. A new sorbent of modified MWCNTs for column preconcentration of ultra trace amounts of zinc in biological and water samples. Desalination 2011, 278, 57–64. [Google Scholar] [CrossRef]
- Vellaichamy, S.; Palanivelu, K. Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture. J. Hazard. Mater. 2011, 185, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R.; Hasan, M.M.; Eldesoky, G.E.; Khaleque, M.A.; Rahman, M.M.; Naushad, M. Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem. Eng. J. 2016, 290, 243–251. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, L.; Zhang, L.; Zheng, S.; Wan, H.; Sun, J.; Zhu, D.; Xu, Z. Removal of aqueous Pb(II) by adsorption on Al2O3-pillared layered MnO2. Appl. Surf. Sci. 2017, 406, 330–338. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, J.; Hazra, S.; Basu, S. Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies. Microchem. J. 2019, 145, 105–112. [Google Scholar] [CrossRef]
- Sobhanardakani, S.; Jafari, A.; Zandipak, R.; Meidanchi, A. Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Saf. Environ. 2018, 120, 348–357. [Google Scholar] [CrossRef]
- Maya, F.; Palomino Cabello, C.; Frizzarin, R.M.; Estela, J.M.; Turnes Palomino, G.; Cerdà, V. Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC-Trends Anal. Chem. 2017, 90, 142–152. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef]
- Dimpe, K.M.; Ngila, J.C.; Nomngongo, P.N. Preparation and application of a tyre-based activated carbon solid phase extraction of heavy metals in wastewater samples. Phys. Chem. Earth 2018, 105, 161–169. [Google Scholar] [CrossRef]
- Nomngongo, P.N.; Catherine Ngila, J.; Msagati, T.A.M.; Moodley, B. Preconcentration of trace multi-elements in water samples using Dowex 50W-x8 and Chelex-100 resins prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-OES). Phys. Chem. Earth 2013, 66, 83–88. [Google Scholar] [CrossRef]
- Chen, S.; Yan, J.; Li, J.; Lu, D. Dispersive micro-solid phase extraction using magnetic ZnFe2O4 nanotubes as adsorbent for preconcentration of Co(II), Ni(II), Mn(II) and Cd(II) followed by ICP-MS determination. Microchem. J. 2019, 147, 232–238. [Google Scholar] [CrossRef]
- Pourmand, N.; Sanagi, M.M.; Naim, A.A.; Ibrahim, W.A.W.; Baig, U. Dispersive micro-solid phase extraction method using newly prepared poly (methyl methacrylate) grafted agarose combined with ICP-MS for the simultaneous determination of Cd, Ni, Cu and Zn in vegetable and natural water samples. Anal. Methods 2015, 7, 3215–3223. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Mohammadiazar, S.; Ardalan, S. New modified carbon based solid phase extraction sorbent prepared from wild cherry stone as natural raw material for the pre-concentration and determination of trace amounts of copper in food samples. Microchem. J. 2019, 147, 666–673. [Google Scholar] [CrossRef]
- Bahadir, Z.; Bulut, V.N.; Hidalgo, M.; Soylak, M.; Marguí, E. Determination of trace amounts of hexavalent chromium in drinking waters by dispersive microsolid-phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry. Spectrochim. Acta B 2015, 107, 170–177. [Google Scholar] [CrossRef]
- Zhu, X.; Cui, Y.; Chang, X.; Wang, H. Selective solid-phase extraction and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids. Talanta 2016, 146, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Nomngongo, P.N.; Catherine Ngila, J.; Kamau, J.N.; Msagati, T.A.M.; Marjanovic, L.; Moodley, B. Pre-concentration of trace elements in short chain alcohols using different commercial cation exchange resins prior to inductively coupled plasma-optical emission spectrometric detection. Anal. Chim. Acta 2013, 787, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Pyrzyńska, K.; Wierzbicki, T. Pre-concentration and separation of vanadium on Amberlite IRA-904 resin functionalized with porphyrin ligands. Anal. Chim. Acta 2005, 540, 91–94. [Google Scholar] [CrossRef]
- Ekinci, C.; Köklü, Ü. Determination of vanadium, manganese, silver and lead by graphite furnace atomic absorption spectrometry after preconcentration on silica-gel modified with 3-aminopropyltriethoxysilane. Spectrochim. Acta B 2000, 55, 1491–1495. [Google Scholar] [CrossRef]
- AlSuhaimi, A.O.; AlRadaddi, S.M.; Al-Sheikh Ali, A.K.; Shraim, A.M.; AlRadaddi, T.S. Silica-based chelating resin bearing dual 8-Hydroxyquinoline moieties and its applications for solid phase extraction of trace metals from seawater prior to their analysis by ICP-MS. Arab. J. Chem. 2019, 12, 360–369. [Google Scholar] [CrossRef]
- Rohanifar, A.; Rodriguez, L.B.; Devasurendra, A.M.; Alipourasiabi, N.; Anderson, J.L.; Kirchhoff, J.R. Solid-phase microextraction of heavy metals in natural water with a polypyrrole/carbon nanotube/1, 10–phenanthroline composite sorbent material. Talanta 2018, 188, 570–577. [Google Scholar] [CrossRef]
- Wadhwa, S.K.; Tuzen, M.; Gul Kazi, T.; Soylak, M. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes. Talanta 2013, 116, 205–209. [Google Scholar] [CrossRef]
- Shakerian, F.; Kim, K.-H.; Kwon, E.; Szulejko, J.E.; Kumar, P.; Dadfarnia, S.; Haji Shabani, A.M. Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. TrAC-Trends Anal. Chem. 2016, 83, 55–69. [Google Scholar] [CrossRef]
- Rao, T.P.; Kala, R.; Daniel, S. Metal ion-imprinted polymers—Novel materials for selective recognition of inorganics. Anal. Chim. Acta 2006, 578, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Mafu, L.D.; Msagati, T.A.M.; Mamba, B.B. Ion-imprinted polymers for environmental monitoring of inorganic pollutants: Synthesis, characterization, and applications. Environ. Sci. Pollut. Res. 2013, 20, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Asgharinezhad, A.A.; Jalilian, N.; Ebrahimzadeh, H.; Panjali, Z. A simple and fast method based on new magnetic ion imprinted polymer nanoparticles for the selective extraction of Ni(ii) ions in different food samples. RSC Adv. 2015, 5, 45510–45519. [Google Scholar] [CrossRef]
- Feist, B.; Sitko, R. Fast and sensitive determination of heavy metal ions as batophenanthroline chelates in food and water samples after dispersive micro-solid phase extraction using graphene oxide as sorbent. Microchem. J. 2019, 147, 30–36. [Google Scholar] [CrossRef]
- Kim, B.-K.; Lee, E.J.; Kang, Y.; Lee, J.-J. Application of ionic liquids for metal dissolution and extraction. J. Ind. Eng. Chem. 2018, 61, 388–397. [Google Scholar] [CrossRef]
- Nunes da Silva, F.; Bassaco, M.M.; Bertuol, D.A.; Tanabe, E.H. An eco-friendly approach for metals extraction using polymeric nanofibers modified with di-(2-ethylhexyl) phosphoric acid (DEHPA). J. Cleaner Prod. 2019, 210, 786–794. [Google Scholar] [CrossRef]
- Cadore, J.S.; Bertuol, D.A.; Tanabe, E.H. Recovery of indium from LCD screens using solid-phase extraction onto nanofibers modified with Di-(2-ethylhexyl) phosphoric acid (DEHPA). Process Saf. Environ. 2019, 127, 141–150. [Google Scholar] [CrossRef]
- Zhang, Y.; Mei, M.; Ouyang, T.; Huang, X. Preparation of a new polymeric ionic liquid-based sorbent for stir cake sorptive extraction of trace antimony in environmental water samples. Talanta 2016, 161, 377–383. [Google Scholar] [CrossRef]
- Kazantzi, V.; Giakisikli, G.; Anthemidis, A. Reversed phase StrataTM-X resin as sorbent for automatic on-line solid phase extraction atomic absorption spectrometric determination of trace metals: Comparison of polymeric-based sorbent materials. Int. J. Environ. Anal. Chem. 2017, 97, 508–519. [Google Scholar] [CrossRef]
- Molaei, K.; Bagheri, H.; Asgharinezhad, A.A.; Ebrahimzadeh, H.; Shamsipur, M. SiO2-coated magnetic graphene oxide modified with polypyrrole–polythiophene: A novel and efficient nanocomposite for solid phase extraction of trace amounts of heavy metals. Talanta 2017, 167, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Arbab-Zavar, M.H.; Chamsaz, M.; Zohuri, G.; Darroudi, A. Synthesis and characterization of nano-pore thallium(III) ion-imprinted polymer as a new sorbent for separation and preconcentration of thallium. J. Hazard. Mater. 2011, 185, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Saraji, M.; Yousefi, H. Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. J. Hazard. Mater. 2009, 167, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Ersöz, A.; Say, R.; Denizli, A. Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns. Anal. Chim. Acta 2004, 502, 91–97. [Google Scholar] [CrossRef]
- Birlik, E.; Ersöz, A.; Denizli, A.; Say, R. Preconcentration of copper using double-imprinted polymer via solid phase extraction. Anal. Chim. Acta 2006, 565, 145–151. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, Y.; Chang, X.; Chen, S.; Huang, X. Selective solid-phase extraction of trace cadmium(II) with an ionic imprinted polymer prepared from a dual-ligand monomer. Anal. Chim. Acta 2007, 593, 123–128. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Masini, J.C. Complexing porous polymer monoliths for online solid-phase extraction of metals in sequential injection analysis with electrochemical detection. Talanta 2018, 185, 387–395. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?—A review. Anal. Chim. Acta 2016, 939, 26–41. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V. Metal-organic frameworks in green analytical chemistry. Separations 2019, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Tadjarodi, A.; Abbaszadeh, A. A magnetic nanocomposite prepared from chelator-modified magnetite (Fe3O4) and HKUST-1 (MOF-199) for separation and preconcentration of mercury(II). Microchim. Acta 2016, 183, 1391–1399. [Google Scholar] [CrossRef]
- Esmaeilzadeh, M. A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Microchim. Acta 2019, 186, 14. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.M.; Md Nordin, N.A.H.; Goh, P.S.; Ismail, A.F. Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF-L) as arsenite adsorbent: Kinetic, isotherm and mechanism. J. Mol. Liq. 2018, 250, 269–277. [Google Scholar] [CrossRef]
- Saleem, H.; Rafique, U.; Davies, R.P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous Mesoporous Mater. 2016, 221, 238–244. [Google Scholar] [CrossRef]
- Naeimi, S.; Faghihian, H. Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep. Purif. Technol. 2017, 175, 255–265. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, S.; Jia, J.; Xu, F.; Long, Z.; Hou, X. Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration. Microchem. J. 2016, 124, 578–583. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, M.; Nie, J.; Tan, J.; Song, S.; Luo, Y. Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications. Carbohydr. Polym. 2019, 208, 328–335. [Google Scholar] [CrossRef]
- Liang, L.; Chen, Q.; Jiang, F.; Yuan, D.; Qian, J.; Lv, G.; Xue, H.; Liu, L.; Jiang, H.-L.; Hong, M. In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg(ii) from water. J. Mater. Chem. 2016, 4, 15370–15374. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, J.; Wu, Y.; Hu, X. A magnetic metal-organic framework as a new sorbent for solid-phase extraction of copper(II), and its determination by electrothermal AAS. Microchim. Acta 2014, 181, 949–956. [Google Scholar] [CrossRef]
- Moghaddam, Z.S.; Kaykhaii, M.; Khajeh, M.; Oveisi, A.R. Synthesis of UiO-66-OH zirconium metal-organic framework and its application for selective extraction and trace determination of thorium in water samples by spectrophotometry. Spectrochim. Acta A 2018, 194, 76–82. [Google Scholar] [CrossRef]
- Wang, L.; Hang, X.; Chen, Y.; Wang, Y.; Feng, X. Determination of cadmium by magnetic multiwalled carbon nanotube flow injection preconcentration and graphite furnace atomic absorption spectrometry. Anal. Lett. 2016, 49, 818–830. [Google Scholar] [CrossRef]
- Zhou, S.; Song, N.; Lv, X.; Jia, Q. Magnetic dual task-specific polymeric ionic liquid nanoparticles for preconcentration and determination of gold, palladium and platinum prior to their quantitation by graphite furnace AAS. Microchim. Acta 2017, 184, 3497–3504. [Google Scholar] [CrossRef]
- Llaver, M.; Casado-Carmona, F.A.; Lucena, R.; Cárdenas, S.; Wuilloud, R.G. Ultra-trace tellurium preconcentration and speciation analysis in environmental samples with a novel magnetic polymeric ionic liquid nanocomposite and magnetic dispersive micro-solid phase extraction with flow-injection hydride generation atomic fluorescence spectrometry detection. Spectrochim. Acta B 2019, 162, 105705. [Google Scholar]
- Moradi, S.E.; Haji Shabani, A.M.; Dadfarnia, S.; Emami, S. Sulfonated metal organic framework loaded on iron oxide nanoparticles as a new sorbent for the magnetic solid phase extraction of cadmium from environmental water samples. Anal. Methods 2016, 8, 6337–6346. [Google Scholar] [CrossRef]
- Hassanpour, S.; Taghizadeh, M.; Yamini, Y. Magnetic Cr(VI) ion imprinted polymer for the fast selective adsorption of Cr(VI) from aqueous solution. J. Polym. Environ. 2018, 26, 101–115. [Google Scholar] [CrossRef]
- Shirani, M.; Semnani, A.; Habibollahi, S.; Haddadi, H. Ultrasound-assisted, ionic liquid-linked, dual-magnetic multiwall carbon nanotube microextraction combined with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium and arsenic in food samples. J. Anal. At. Spectrom. 2015, 30, 1057–1063. [Google Scholar] [CrossRef]
- Habila, M.A.; Alothman, Z.A.; El-Toni, A.M.; Labis, J.P.; Soylak, M. Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta 2016, 154, 539–547. [Google Scholar] [CrossRef]
- Bystrzejewski, M.; Pyrzyńska, K.; Huczko, A.; Lange, H. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 2009, 47, 1201–1204. [Google Scholar] [CrossRef]
- Wei, Z.; Sandron, S.; Townsend, A.T.; Nesterenko, P.N.; Paull, B. Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography. Talanta 2015, 135, 155–162. [Google Scholar] [CrossRef]
- Yilmaz, E.; Alosmanov, R.M.; Soylak, M. Magnetic solid phase extraction of lead(ii) and cadmium(ii) on a magnetic phosphorus-containing polymer (M-PhCP) for their microsampling flame atomic absorption spectrometric determinations. RSC Adv. 2015, 5, 33801–33808. [Google Scholar] [CrossRef]
- Babazadeh, M.; Hosseinzadeh-Khanmiri, R.; Abolhasani, J.; Ghorbani-Kalhor, E.; Hassanpour, A. Solid phase extraction of heavy metal ions from agricultural samples with the aid of a novel functionalized magnetic metal–organic framework. RSC Adv. 2015, 5, 19884–19892. [Google Scholar] [CrossRef]
- Ghorbani-Kalhor, E. A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd(II), Pb(II), and Ni(II). Microchim. Acta 2016, 183, 2639–2647. [Google Scholar] [CrossRef]
- Sohrabi, M.R.; Matbouie, Z.; Asgharinezhad, A.A.; Dehghani, A. Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim. Acta 2013, 180, 589–597. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Tang, J.; Ye, G.; Ge, H.; Hu, X. Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem. 2015, 181, 191–197. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, B.R.; Cardoso, S.P.; Portugal, I.; Rocha, J.; Silva, C.M. Inorganic ion exchangers for cesium removal from radioactive wastewater. Sep. Purif. Rev. 2018, 47, 306–336. [Google Scholar] [CrossRef]
- Murray, A.; Örmeci, B. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters. J. Environ. Sci. 2019, 75, 247–254. [Google Scholar] [CrossRef]
- Vergili, I.; Gönder, Z.B.; Kaya, Y.; Gürdağ, G.; Çavuş, S. Sorption of Pb (II) from battery industry wastewater using a weak acid cation exchange resin. Process Saf. Environ. 2017, 107, 498–507. [Google Scholar] [CrossRef]
- Abu-El-Halawa, R.; Zabin, S.A. Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. J. Taibah Univ. Sci. 2017, 11, 57–65. [Google Scholar] [CrossRef]
- Bai, L.; Hu, H.; Fu, W.; Wan, J.; Cheng, X.; Zhuge, L.; Xiong, L.; Chen, Q. Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. J. Hazard. Mater. 2011, 195, 261–275. [Google Scholar] [CrossRef]
- Gaur, J.; Jain, S.; Bhatia, R.; Lal, A.; Kaushik, N.K. Synthesis and characterization of a novel copolymer of glyoxal dihydrazone and glyoxal dihydrazone bis (dithiocarbamate) and application in heavy metal ion removal from water. J. Therm. Anal. Calorim. 2013, 112, 1137–1143. [Google Scholar] [CrossRef]
- Fu, H.; Lv, X.; Yang, Y.; Xu, X. Removal of micro complex copper in aqueous solution with a dithiocarbamate compound. Desalinat. Water Treat. 2012, 39, 103–111. [Google Scholar] [CrossRef]
- Li, Z. Synthesis of a carbamide-based dithiocarbamate chelator for the removal of heavy metal ions from aqueous solutions. J. Ind. Eng. Chem. 2014, 20, 586–590. [Google Scholar] [CrossRef]
- Kanchi, S.; Singh, P.; Bisetty, K. Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab. J. Chem. 2014, 7, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Chitpong, N.; Husson, S.M. Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J. Membr. Sci. 2017, 523, 418–429. [Google Scholar] [CrossRef]
- Habiba, U.; Afifi, A.M.; Salleh, A.; Ang, B.C. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 2017, 322, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Koushkbaghi, S.; Jafari, P.; Rabiei, J.; Irani, M.; Aliabadi, M. Fabrication of PET/PAN/GO/Fe3O4 nanofibrous membrane for the removal of Pb(II) and Cr(VI) ions. Chem. Eng. J. 2016, 301, 42–50. [Google Scholar] [CrossRef]
- Cegłowski, M.; Schroeder, G. Removal of heavy metal ions with the use of chelating polymers obtained by grafting pyridine–pyrazole ligands onto polymethylhydrosiloxane. Chem. Eng. J. 2015, 259, 885–893. [Google Scholar] [CrossRef]
- Ustynyuk, Y.A.; Borisova, N.; Babain, V.; Gloriozov, I.; Manuilov, A.; Kalmykov, S.; Alyapyshev, M.Y.; Tkachenko, L.; Kenf, E.; Ustynyuk, N. N, N′-Dialkyl-N, N′-diaryl-1, 10-phenanthroline-2, 9-dicarboxamides as donor ligands for separation of rare earth elements with a high and unusual selectivity. DFT computational and experimental studies. Chem. Commun. 2015, 51, 7466–7469. [Google Scholar] [CrossRef]
- Bérubé, C.; Cardinal, S.; Boudreault, P.-L.; Barbeau, X.; Delcey, N.; Giguère, M.; Gleeton, D.; Voyer, N. Novel chiral N,N′-dimethyl-1,4-piperazines with metal binding abilities. Tetrahedron 2015, 71, 8077–8084. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Souza Silva, E.A.; Risticevic, S.; Pawliszyn, J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC-Trends Anal. Chem. 2013, 43, 24–36. [Google Scholar] [CrossRef]
- Godage, N.H.; Gionfriddo, E. A critical outlook on recent developments and applications of matrix compatible coatings for solid phase microextraction. TrAC-Trends Anal. Chem. 2019, 111, 220–228. [Google Scholar] [CrossRef]
- Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J. Chromatogr. A 2013, 1321, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Green analytical chemistry. TrAC-Trends Anal. Chem. 2008, 27, 497–511. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC-Trends Anal. Chem. 2015, 73, 19–38. [Google Scholar] [CrossRef]
- Malik, A.K.; Kaur, V.; Verma, N. A review on solid phase microextraction—High performance liquid chromatography as a novel tool for the analysis of toxic metal ions. Talanta 2006, 68, 842–849. [Google Scholar] [CrossRef]
- Mester, Z.; Sturgeon, R. Trace element speciation using solid phase microextraction. Spectrochim. Acta B 2005, 60, 1243–1269. [Google Scholar] [CrossRef]
- Kaur, V.; Aulakh, J.S.; Malik, A.K. A new approach for simultaneous determination of Co(II), Ni(II), Cu(II) and Pd(II) using 2-thiophenaldehyde-3-thiosemicarbazone as reagent by solid phase microextraction–high performance liquid chromatography. Anal. Chim. Acta 2007, 603, 44–50. [Google Scholar] [CrossRef]
- Mester, Z.; Pawliszyn, J. Electrospray mass spectrometry of trimethyllead and triethyllead with in-tube solid phase microextraction sample introduction. Rapid Commun. Mass Spectrom. 1999, 13, 1999–2003. [Google Scholar] [CrossRef]
- Ridgway, K.; Lalljie, S.P.D.; Smith, R.M. Sample preparation techniques for the determination of trace residues and contaminants in foods. J. Chromatogr. A 2007, 1153, 36–53. [Google Scholar] [CrossRef]
- Rahmi, D.; Takasaki, Y.; Zhu, Y.; Kobayashi, H.; Konagaya, S.; Haraguchi, H.; Umemura, T. Preparation of monolithic chelating adsorbent inside a syringe filter tip for solid phase microextraction of trace elements in natural water prior to their determination by ICP-MS. Talanta 2010, 81, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive micro-solid phase extraction. TrAC-Trends Anal. Chem. 2019, 112, 226–233. [Google Scholar] [CrossRef]
- Sitko, R.; Janik, P.; Zawisza, B.; Talik, E.; Margui, E.; Queralt, I. Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal. Chem. 2015, 87, 3535–3542. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qian, P.; Yu, Y.; Xiao, L.; Wang, Y.; Ye, S.; Chen, Y. Dithiocarbamate functionalized Al(OH)3-polyacrylamide adsorbent for rapid and efficient removal of Cu(II) and Pb(II). J. Appl. Polym. Sci. 2017, 134, 45431. [Google Scholar] [CrossRef]
- Rohanifar, A. Conductive Polymers for Electrochemical Analysis and Extraction. Ph.D. Dissertation, University of Toledo, Toledo, OH, USA, 2018. [Google Scholar]
- Babel, S.; Kurniawan, T. Various treatment technologies to remove arsenic and mercury from contaminated groundwater: An overview. In Proceedings of the First International Symposium on Southeast Asian Water Environment, Bangkok, Thailand, 24–25 October 2003; pp. 433–440. [Google Scholar]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Wang, L.K.; Vaccari, D.A.; Li, Y.; Shammas, N.K. Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005; pp. 141–197. [Google Scholar]
- Lu, H.; Wang, Y.; Wang, J. Recovery of Ni2+ and pure water from electroplating rinse wastewater by an integrated two-stage electrodeionization process. J. Cleaner Prod. 2015, 92, 257–266. [Google Scholar] [CrossRef]
- Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid. J. Power Sources 2016, 325, 220–228. [Google Scholar] [CrossRef]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef]
- Tanong, K.; Tran, L.-H.; Mercier, G.; Blais, J.-F. Recovery of Zn(II), Mn(II), Cd(II) and Ni(II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. J. Cleaner Prod. 2017, 148, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Han, G.; Liu, J.; Chai, W.; Wang, W.; Yang, S.; Su, S. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. J. Power Sources 2016, 325, 555–564. [Google Scholar] [CrossRef]
- Ghosh, P.; Samanta, A.N.; Ray, S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 2011, 266, 213–217. [Google Scholar] [CrossRef]
- Özverdi, A.; Erdem, M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 2006, 137, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Kratochvil, D.; Volesky, B. Advances in the biosorption of heavy metals. Trends Biotechnol. 1998, 16, 291–300. [Google Scholar] [CrossRef]
- Nourbakhsh, M.; Sag, Y.; Özer, D.; Aksu, Z.; Kutsal, T.; Çaglar, A. A comparative study of various biosorbents for removal of chromium(VI) ions from industrial waste waters. Process Biochem. 1994, 29, 1–5. [Google Scholar] [CrossRef]
- de Rome, L.; Gadd, G.M. Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. J. Ind. Microbiol. 1991, 7, 97–104. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Asgari Lajayer, B.; Khadem Moghadam, N.; Maghsoodi, M.R.; Ghorbanpour, M.; Kariman, K. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: Mechanisms and efficiency improvement strategies. Environ. Sci. Pollut. Res. 2019, 26, 8468–8484. [Google Scholar] [CrossRef]
- Prabakaran, K.; Li, J.; Anandkumar, A.; Leng, Z.; Zou, C.B.; Du, D. Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol. Eng. 2019, 138, 28–37. [Google Scholar] [CrossRef]
- Sharma, D.; Forster, C. Removal of hexavalent chromium using sphagnum moss peat. Water Res. 1993, 27, 1201–1208. [Google Scholar] [CrossRef]
- Bosinco, S.; Roussy, J.; Guibal, E.; Cloirec, P. Interaction mechanisms between hexavalent chromium and corncob. Environ. Technol. 1996, 17, 55–62. [Google Scholar] [CrossRef]
- Pavasant, P.; Apiratikul, R.; Sungkhum, V.; Suthiparinyanont, P.; Wattanachira, S.; Marhaba, T.F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour. Technol. 2006, 97, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Mallakpour, S.; Abdolmaleki, A.; Tabesh, F. Ultrasonic-assisted manufacturing of new hydrogel nanocomposite biosorbent containing calcium carbonate nanoparticles and tragacanth gum for removal of heavy metal. Ultrason. Sonochem. 2018, 41, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Losev, V.N.; Elsufiev, E.V.; Buyko, O.V.; Trofimchuk, A.K.; Horda, R.V.; Legenchuk, O.V. Extraction of precious metals from industrial solutions by the pine (Pinus sylvestris) sawdust-based biosorbent modified with thiourea groups. Hydrometallurgy 2018, 176, 118–128. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Negm, N.A.; Hefni, H.H.H.; Wahab, M.M.A. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures. Int. J. Biol. Macromol. 2015, 81, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Tsezos, M.; Volesky, B. Biosorption of uranium and thorium. Biotechnol. Bioeng. 1981, 23, 583–604. [Google Scholar] [CrossRef]
- Volesky, B.; Holan, Z. Biosorption of heavy metals. Biotechnol. Prog. 1995, 11, 235–250. [Google Scholar] [CrossRef]
- Qi, B.; Aldrich, C. Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour. Technol. 2008, 99, 5595–5601. [Google Scholar] [CrossRef]
- Cardoso, S.L.; Costa, C.S.D.; Nishikawa, E.; da Silva, M.G.C.; Vieira, M.G.A. Biosorption of toxic metals using the alginate extraction residue from the brown algae Sargassum filipendula as a natural ion-exchanger. J. Cleaner Prod. 2017, 165, 491–499. [Google Scholar] [CrossRef]
- Sibi, G. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Ener. Environ. 2016, 1, 172–177. [Google Scholar] [CrossRef] [Green Version]
- El-Naas, M.; Al-Rub, F.A.; Ashour, I.; Al Marzouqi, M. Effect of competitive interference on the biosorption of lead (II) by Chlorella vulgaris. Chem. Eng. Process. 2007, 46, 1391–1399. [Google Scholar] [CrossRef]
- Kuyucak, N.; Volesky, B. Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett. 1988, 10, 137–142. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, S.; Teng, C.; Song, T.; Dong, L.; Liang, J.; Bai, X.; Xu, X.; Qu, J. Biosorption characteristic of Alcaligenes sp. BAPb.1 for removal of lead(II) from aqueous solution. 3 Biotech 2017, 7, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagnanelli, F.; Toro, L.; Vegliò, F. Olive mill solid residues as heavy metal sorbent material: A preliminary study. Waste Manage. 2002, 22, 901–907. [Google Scholar] [CrossRef]
- Ponou, J.; Wang, L.P.; Dodbiba, G.; Okaya, K.; Fujita, T.; Mitsuhashi, K.; Atarashi, T.; Satoh, G.; Noda, M. Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella. J. Environ. Chem. Eng. 2014, 2, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
Targeted Metal(s) | ABS Composition | Extraction Agent | Detection | Ref. |
---|---|---|---|---|
Surfactant–Salt | ||||
Zn2+ | Triton X-100 a, MgSO4 | PAN n | UV–Vis | [42] |
Mo6+, W6+ | Triton X-100, (NH4)2SO4 | None | ICP–AES r | [43,44] |
Polymer–Salt | ||||
Hg2+, Zn2+, Co2+ | PEG 6000 b, Na2CO3 | None | AAS s | [45] |
Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Li+ | PEG 4000, Na2SO4 | None | AAS | [46] |
Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ | L35 c, Na2SO4 | 1N2N o, SCN−, I− | AAS | [47] |
Cd2+, Ni2+ | L35, LiSO4 | KI, TTL p | AAS | [48] |
Zn2+, Cd2+, Hg2+, Pb2+, Bi3+ | PEG 1550, Na2SO4, NaNO3, (NH4)2SO4 | NaX, X = I−, Cl−, Br−, SCN− | FTIR t | [49] |
Co2+, Fe3+, Ni2+ | PEO d 1500, (NH4)2SO4, H2O | KSCN | FAAS u | [50] |
Hg2+ | PEG 5000, Na2SO4 | NaX, X = I−, Cl−, Br− | Packard Cobra II Auto-ɣ-Spectrometer | [51] |
Co2+, Ni2+, Cd2+ | L64 e, Na2C4H4O6 | 1N2N | FAAS | [52] |
Ca2+ | L64, sodium tartrate | None | FAAS | [53] |
As3+ | L64, (NH4)2SO4, H2O | APDC q | ICP–OES v | [54] |
Salt–Salt | ||||
Cd2+ | TBAB f, (NH4)2SO4 | None | AAS | [55] |
Ionic Liquid–Salt | ||||
Ni2+, Co2+ | (P44414) g(Cl), NaCl | None | NR | [56] |
Co2+, Fe3+, Nd3+, Sm3+ | Cyphos IL 101 h, NaCl | None | ICP–OES, TXRF w | [57,58] |
Sc3+ | (P444C1COOH)Cl i, NaCl | None | TXRF | [59] |
Au+ | 1-alkyl-3-methylimidazolium bromide, K2HPO4 | None | AAS | [60] |
Co2+ | (HMIM)(BF4) j, NaCl | None | ICP–OES | [61] |
Pr3+ | (A336)(NO3) k, NaNO3 | None | UV–Vis | [62] |
Nd3+ | (P4444) l(NO3), NaCl | None | ICP–MS | [63] |
Miscellaneous | ||||
Au3+ | (C6mim)(C12SO3) m, PEG 6000 | None | UV–Vis | [64] |
TLP Phases | TLP Component | Metal Extracted | Ref. | ||||
---|---|---|---|---|---|---|---|
Top | Middle | Bottom | Top | Middle | Bottom | ||
1 Organic 2 Aqueous | |||||||
TRPO a | PEG-2000 | (NH4)2SO4, H2O | Ti4+ | Fe3+ | Mg2+ | [72] | |
S201 b | EOPO j | Na2SO4, H2O | Pd2+ | Pt4+ | Rh3+ | [73,74] | |
D2EHPA c | PEG | (NH4)2SO4, H2O | Cr3+ | Cr6+ | None | [75] | |
Cyanex272 d | PEG | (NH4)2SO4, H2O | Yb3+ | Eu3+ | La3+ | [76] | |
Cyanex272 | PEG 2000 | (NH4)2SO4, H2O | Yb3+, Eu3+ | Fe3+, Si4+ | La3+, Al3+ | [77] | |
PC-88A e | PEG 2000 | (NH4)2SO4, H2O | Eu3+ | Al3+, Si4+, Fe3+ | La3+, Yb3+ | [78] | |
Xylene, (D2EHPA) | PEG | (NH4)2SO4, H2O | Mn2+ | Co2+ | Ni2+ | [79] | |
N1923 f | PEG | (NH4)2SO4, H2O | V5+ | Cr6+ | Al3+ | [80] | |
2 Organic 1 Aqueous | |||||||
S201 | (Sugaring out) CH3CN | glucose, H2O | Pd2+ | Pt4+ | Rh3+ | [81] | |
S201 | (Salting out) CH3CN | NaCl, H2O | Pd2+ | Pt4+ | Rh3+ | [69] | |
TLP Systems with Ionic Liquids | |||||||
H2O | (HMIM) (BF4) k | NaCl | None | Co2+ | None | [61] | |
TOPO g | H2O | (Bmim) (PF6) l | Mn2+, Zn2+, Cd2+, Pb2+ | None | Cu2+, Ni2+ | [71] | |
S201 | H2O | (C4mim) (PF6) l | Pd2+ | Rh3+ | Pt4+ | [82] | |
TBP h, (P66614) (Tf2N) i | H2O | (Hbet) (Tf2N) m | Sn2+ | Sc3+ | Y3+ | [66] |
Type of LM | Overview | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
SLM | Hydrophobic membrane impregnated with an organic solvent is squeezed between an aqueous feed and stripping solution | Simplicity of operation Low operating cost | Emulsion formation of liquid membrane phase in water Instability | [95] |
HFSLM | Hollow fiber is used as microporous hydrophobic membrane and impregnated with LM phase | High interfacial area-to-volume ratio | Lower transport rate than SLM | [96] |
ELM | Water/organic/water (W/O/W) or organic/water/organic (O/W/O) with a thin middle LM phase | High transfer rates | Continuous operation is difficult to achieve as settling stage is performed after extraction. Long contact of emulsions with water in feed stream results in swelling and rupture due to the difference in osmotic pressure, shear forces, and static pressure between the feed and stripping phase | [101] |
BLM | An aqueous feed and stripping phase separated by bulk organic LM phase | High transfer rate | Less interfacial area-to-volume ratio results in low fluxes | [93] |
Sorbent | Extraction Method | Target Metal(s) | Reusability | SC f (mg g−1) | Ref. |
---|---|---|---|---|---|
Tyre-based activated carbon | SPE-FAAS d | As5+, Cd2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+, Zn2+ | NR | NR | [122] |
Dowex 50W-x8 & Chelex-100 | SPE | Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Ni2+, Pb2+, Zn2+ | Stable up to 150 elution cycles | NR | [123] |
ZnFe2O4 nanotubes (ZFONTs) | DMSPE e | Co2+, Ni2+, Mn2+, Cd2+ | NR | Co2+-30.09 Ni2+-28.4 Mn2+-35.4 Cd2+-27.9 | [124] |
Agarose-g-PMMA a | DMSPE | Cd2+, Ni2+, Cu2+, Zn2+ | NR | Cd2+-31.8 Ni2+-42.5 Cu2+-48.3 Zn2+-34.3 | [125] |
Activated carbon | DSPE | Cu2+ | Stable up to 6 cycles | 1.6 | [126] |
MWCNTs b | DMSPE | Cr6+ | NR | NR | [127] |
GO-MWCNTs-DETA c | SPE | Cr3+, Fe3+, Pb2+, Mn2+ | NR | Cr3+-5.4 Fe3+-13.8 Pb2+-6.6 Mn2+-9.5 | [128] |
Sorbent Material | Extraction Method | Target Metal(s) | Flow Rate | Extraction Time | Ref. |
---|---|---|---|---|---|
Copolymer StrataTM-X resin | On-line SPE | Cd2+, Pb2+, Cu2+, Cr6+ | NR | 1.5 | [144] |
mGO/SiO2@coPPy-Th a | MSPE b | Cd2+, Pb2+, Cu2+, Cr3+, Zn2+ | NR | 6.5 min | [145] |
Thallium ion-imprinted polymer | SPE c | Tl3+ | NR | 30 min | [146] |
Copolymer of 4-Vinylpyridine and Ni-Dithizone | SPE | Ni2+ | 0.2 mL min−1 | NR | [147] |
(EGDMA-MAH/Ni) d imprinted polymer | SPE | Ni2+ | 0.5 mL min−1 | NR | [148] |
Double imprinted chitosan-succinate polymer | SPE | Cu2+ | NR | NR | [149] |
Dual imprinted polymers of Cd | SPE | Cd2+ | 3.0 mL min−1 | 20 min | [150] |
Poly(GMA e-co-EDMA f)-IDA g | SPE | Cu2+, Pb2+, Cd2+ | 10 µL ;s−1 | NR | [151] |
Nylon 6-DEHPA h | SPE | Zn2+, Ni2+ | NR | 7.5 min | [141] |
Sorbent Material | Extraction Method | Target Metal(s) | Reusability | SC f (mg g−1) | Ref. |
---|---|---|---|---|---|
UiO-66 a -NH2 | SPE | Cd2+, Cr3+, Pb2+, Hg2+ | NR | Cd2+-49 Cr3+-117 Pb2+-232 Hg2+-769 | [157] |
KNiFC b Fe3O4/KNiFC | MSPE | Cs+ | 5 | 153 and 109 | [158] |
Fe3O4@ZIF-8 c | SPE | As5+ | NR | 0.035–0.036 | [159] |
ZIF-8@cellulose | SPE | Cr6+ | NR | NR | [160] |
FJI-H12 d | SPE | Hg2+ | NR | 440 | [161] |
Fe3O4/IRMOF-3 e | MSPE | Cu2+ | 10 | 2.4 | [162] |
UiO-66-OH | SPE | Th4+ | 25 | 47.5 | [163] |
Sorbent Material | Extraction Method | Target Metal(s) | WS f pH | SC g (mg g−1) | Ref. |
---|---|---|---|---|---|
CEMNPs a | MSPE | Cu2+, Co2+, Cd2+ | 9.0 | Cu2+-3.21 Co2+-1.23 Cd2+-1.77 | [171] |
Co-IDA b | MSPE | Cu2+ | 7.5 | NR | [172] |
M-PhCP c | MSPE | Cd2+, Pb2+ | 6.0 | NR | [173] |
Fe3O4@MOF-235(Fe)-OSO3H | MSPE | Cd2+ | 3.0 | NR | [167] |
(Fe3O4-ethylenediamine)/ MIL-101(Fe) | MSPE | Cd2+, Pb2+, Zn2+, Cr3+ | 6.1 | Cd2+-155 Pb2+-198 Zn2+-164 Cr3+-173 | [174] |
Fe3O4@TAR d | MSPE | Cd2+, Pb2+, Ni2+ | 6.2 | 185–210 | [175] |
MOF Fe3O4-Pyridine | MSPE | Cd2+, Pb2+ | 6.3 | 186–198 | [176] |
SH-Fe3O4/Cu3(BTC)2 e | MSPE | Pb2+ | 6.0 | 198 | [177] |
Techniques | Substance Used | SC h | Target Metal(s) | Ref. |
---|---|---|---|---|
Ion Exchange Membrane | Cellulose nanofiber modified with PAA a and PGMA b | 160 mg g−1 | Cd2+ | [188] |
Chitisan/PVA c/Zeolite nanofiber | NR | Cr6+, Fe3+, Ni2+ | [189] | |
PAN d/GO e/Fe3O4 nanofiber | 799.4 mg g−1 of Pb2+, 911.9 mg g−1 of Cr6+ | Pb2+, Cr6+ | [190] | |
Ligand Binding | PMHS f-g-PyPz g PMHS-g-PyPz(OEt)2 | 0.24 mmol (Co2+) and 1.48 mmol (Cu2+) g−1 of polymer | Cu2+, Cd2+, Cr3+, Ni2+, Co2+ | [191] |
N,N’-dialkyl-N,N’-diaryl-1,10-phenanthroline-2,9-dicarboxamides | NR | Lanthanides | [192] | |
N,N’-dimethyl-1,4-piperazines | NR | Zn2+, Cu2+, Mn2+, Li+, Ni2+, Mg2+ | [193] |
Biosorbent | SC a | Target Metal(s) | Ref. |
---|---|---|---|
Rice husk, palm leaf, water hyacinth | NR | Cu2+, Co2+, Fe3+ | [232] |
Rhizopus arrhizus | 180 mg g−1 | U6+, Th4+ | [233] |
Ascophyllum and Sargassum | 30% of dry weight of biomass | Pb2+, Cd2+ | [234] |
Tobacco dust | 39.6, 36.0, 29.6, 25.1, and 24.5 mg g−1 | Pb2+, Cu2+, Cd2+, Zn2+, Ni2+ | [235] |
Sargassum filipendula | NR | Ag+, Cd2+, Cr3+, Ni2+, Zn2+ | [236] |
Chlorella vulgaris | 161.41 mg g−1 of Cr4+ and 169 mg g−1 of Pb2+ | Cr6+, Pb2+ | [237,238] |
Saccharomyces cerevisiae and Rhizopus arrhizus | Ranges from 31 to 180 mg g−1 for different metals | Cu2+, Zn2+, Cd2+, U6+ | [239] |
Alcaligenes sp. | 66.7 mg g−1 | Pb2+ | [240] |
Olive mill | Varies with pH and other conditions | Hg2+, Pb2+, Cu2+, Zn2+, Cd2+ | [241] |
Parachlorella | NR | Y3+, La3+, Sm3+, Dy3+, Pr3+, Nd3+, Gd3+ | [242] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyam Sunder, G.S.; Adhikari, S.; Rohanifar, A.; Poudel, A.; Kirchhoff, J.R. Evolution of Environmentally Friendly Strategies for Metal Extraction. Separations 2020, 7, 4. https://doi.org/10.3390/separations7010004
Shyam Sunder GS, Adhikari S, Rohanifar A, Poudel A, Kirchhoff JR. Evolution of Environmentally Friendly Strategies for Metal Extraction. Separations. 2020; 7(1):4. https://doi.org/10.3390/separations7010004
Chicago/Turabian StyleShyam Sunder, Govind Sharma, Sandhya Adhikari, Ahmad Rohanifar, Abiral Poudel, and Jon R. Kirchhoff. 2020. "Evolution of Environmentally Friendly Strategies for Metal Extraction" Separations 7, no. 1: 4. https://doi.org/10.3390/separations7010004
APA StyleShyam Sunder, G. S., Adhikari, S., Rohanifar, A., Poudel, A., & Kirchhoff, J. R. (2020). Evolution of Environmentally Friendly Strategies for Metal Extraction. Separations, 7(1), 4. https://doi.org/10.3390/separations7010004