Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Samples
2.3. Pigments Extraction
2.3.1. 100%. Methanol
2.3.2. 100%. Ethanol
2.3.3. 90%. Acetone
2.3.4. 100%. N,N-Dimethylformamide (DMF)
2.3.5. DMSO:-Water (4:1, v/v)
2.3.6. Phosphate Buffer (pH = 6.8)
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for high-value products towards human health and nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [Green Version]
- Pangestuti, R.; Kim, S.-K. Neuroprotective effects of marine algae. Mar. Drugs 2011, 9, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Suganya, T.; Varman, M.; Masjuki, H.H.; Renganathan, S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 2016, 55, 909–941. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J. The rise of seaweed gastronomy: Phycogastronomy. Bot. Mar. 2018, 62, 195–209. [Google Scholar] [CrossRef]
- González-Torres, L.; Churruca, I.; Schultz Moreira, A.R.; Bastida, S.; Benedi, J.; Portillo, M.P.; Sanchez-Muniz, F.J. Effects of restructured pork containing Himanthalia elongata on adipose tissue lipogenic and lipolytic enzyme expression of normo- and hypercholesterolemic rats. J. Nutr. Nutr. 2012, 5, 158–167. [Google Scholar] [CrossRef]
- Olivero-David, R.; Schultz-Moreira, A.; Vázquez-Velasco, M.; González-Torres, L.; Bastida, S.; Benedí, J.; Sanchez-Reus, M.I.; González-Munoz, M.J.; Sánchez-Muniz, F.J. Effects of nori-and wakame-enriched meats with or without supplementary cholesterol on arylesterase activity, lipaemia and lipoproteinaemia in growing Wistar rats. Br. J. Nutr. 2011, 106, 1476–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammone, M.A.; Orazio, N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs 2015, 13, 2196–2214. [Google Scholar] [CrossRef]
- Park, M.H.; Jeon, Y.J.; Kim, H.J.; Han, J.S. Effect of diphlorethohydroxycarmalol isolated from Ishige okamurae on apoptosis in 3 T3-L1 preadipocytes. Phytother. Res. 2013, 27, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Garcimartín, A.; Benedí, J.; Bastida, S.; Sánchez-Muniz, F.J. Aqueous extracts and suspensions of restructured pork formulated with Undaria pinnatifida, Himanthalia elongata and Porphyra umbilicalis distinctly affect the in vitro α-glucosidase activity and glucose diffusion. LWT Food Sci. Technol. 2015, 64, 720–726. [Google Scholar] [CrossRef]
- Ali, M.Y.; Kim, D.H.; Seong, S.H.; Kim, H.-R.; Jung, H.A.; Choi, J.S. α-Glucosidase and protein tyrosine phosphatase 1B inhibitory activity of plastoquinones from marine brown alga Sargassum serratifolium. Mar. Drugs 2017, 15, 368. [Google Scholar] [CrossRef] [Green Version]
- Schultz Moreira, A.R.; Olivero-David, R.; Vázquez-Velasco, M.; González-Torres, L.; Benedi, J.; Bastida, S.; Sánchez-Muniz, F.J. Protective effects of sea spaghetti-enriched restructured pork against dietary cholesterol: Effects on arylesterase and lipoprotein profile and composition of growing rats. J. Med. Food 2014, 17, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Fukuda, S.; Izumi, H.; Saga, N. Anti-oxidant and fucoxanthin contents of brown alga ishimozuku (Sphaerotrichia divaricata) from the west coast of Aomori, Japan. Mar. Drugs 2018, 16, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, H.; Kanno, S.; Kodate, M.; Hosokawa, M.; Miyashita, K. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells. Mar. Drugs 2015, 13, 4799–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Bai, Y.; Xu, Z.; Shi, Y.; Sun, Y.; Janaswamy, S.; Yu, C.; Qi, H. Phlorotannins from Undaria pinnatifida sporophyll: Extraction, antioxidant, and anti-inflammatory activities. Mar. Drugs 2019, 17, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Nishizawa, M.; Shimizu, Y.; Saeki, H. Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a. Food Res. Int. 2017, 100, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Deethae, A.; Peerapornpisal, Y.; Pekkoh, J.; Sangthong, P.; Tragoolpua, Y. Inhibitory effect of Spirogyra spp. algal extracts against herpes simplex virus type 1 and 2 infection. J. Appl. Microbiol. 2018, 124, 1441–1453. [Google Scholar] [CrossRef]
- Dinesh, S.; Menon, T.; Hanna, L.E.; Suresh, V.; Sathuvan, M.; Manikannan, M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int. J Biol. Macromol. 2016, 82, 83–88. [Google Scholar] [CrossRef]
- Karpinski, T.M.; Adamczak, A. Fucoxanthin—An antibacterial carotenoid. Antioxidants 2019, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.-J.; Lin, H.-J.; Hsu, P.-H.; Lai, M.; Chiu, J.-Y.; Lin, H.-T.V. Brown and red seaweeds serve as potential efflux pump inhibitors for drug-resistant Escherichia coli. Evid Based Complement. Altern. Med. 2019, 2019, 1836982. [Google Scholar] [CrossRef] [Green Version]
- Capillo, G.; Savoca, S.; Costa, R.; Sanfilippo, M.; Rizzo, C.; Lo Giudice, A.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Spanò, N.; et al. New insights into the culture method and antibacterial potential of Gracilaria gracilis. Mar. Drugs 2018, 16, 492. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.J. Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Mar. Drugs 2015, 13, 4784–4798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Ma, Y.; Yang, J.; Jin, L.; Gao, Z.; Xue, L.; Hou, L.; Sui, L.; Liu, J.; Zou, X. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J. Cell. Mol. Med. 2019, 23, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Y.; Cao, M.; Pan, T.; Yang, Y.; Mao, H.; Sun, L.; Liu, G. Anti-allergic activity of R-phycocyanin from Porphyra haitanensis in antigen-sensitized mice and mast cells. Int. Immunopharmacol. 2015, 25, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, H.; Li, Z.; Mou, Q. The anti-allergic activity of polyphenol extracted from five marine algae. J. Ocean Univ. China 2015, 14, 681–684. [Google Scholar] [CrossRef]
- Lin, J.; Huang, L.; Yu, J.; Xiang, S.; Wang, J.; Zhang, J.; Yan, X.; Cui, W.; He, S.; Wang, Q. Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro. Mar. Drugs 2016, 14, 67. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Alves, C.; Pinteus, S.; Mendes, S.; Pedrosa, R. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC Complement. Altern. Med. 2018, 18, 58. [Google Scholar] [CrossRef] [Green Version]
- Shimazu, T.; Kuriyama, S.; Hozawa, A.; Ohmori, K.; Sato, Y.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study. Int. J. Epidemiol. 2007, 36, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Kitamura, A.; Machida, H.; Watanabe, M.; Negishi, H.; Hiraoka, J.; Nakano, T. Effect of Undaria pinnatifida (Wakame) on the development of cerebrovascular diseases in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2003, 30, 44–48. [Google Scholar] [CrossRef]
- Azeem, M.; Iqbal, N.; Mir, R.A.; Adeel, S.; Batool, F.; Khan, A.A.; Gul, S. Harnessing natural colorants from algal species for fabric dyeing: A sustainable eco-friendly approach for textile processing. J. Appl. Phycol. 2019, 31, 3941–3948. [Google Scholar] [CrossRef]
- Palabiyik, I.; Durmaz, Y.; Öner, B.; Toker, O.S.; Coksari, G.; Konar, N.; Tamtürk, F. Using spray-dried microalgae as a natural coloring agent in chewing gum: Effects on color, sensory, and textural properties. J. Appl. Phycol. 2018, 30, 1031–1039. [Google Scholar] [CrossRef]
- El-Khatib, E.; Ali, N.F.; El-Mohamedy, R. Enhancing dyeing of wool fibers with colorant pigment extracted from green algae. J. Chem. Pharm. Res. 2016, 8, 614–619. [Google Scholar]
- Wang, H.D.; Li, X.C.; Lee, D.J.; Chang, J.S. Potential biomedical applications of marine algae. Bioresour. Technol. 2017, 244, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kate, B.N.; Banerjee, U.C. Bioactive compounds from cyanobacteria and microalgae: An overview. Crit. Rev. Biotechnol. 2005, 25, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Pangestuti, R. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. Adv. Food Nutr. Res. 2011, 64, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Senge, M.O.; Ryan, A.A.; Letchford, K.A.; MacGowan, S.A.; Mielke, T. Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry 2014, 6, 781–843. [Google Scholar] [CrossRef] [Green Version]
- Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.A.; Juliano, P. Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef]
- Matsuno, T. Aquatic animal carotenoids. Fish. Sci. 2001, 67, 771–783. [Google Scholar] [CrossRef]
- Glazer, A.N. Phycobiliproteins—A family of valuable, widely used fluorophores. J. Appl. Phycol. 1994, 6, 105–112. [Google Scholar] [CrossRef]
- Bryant, D.A.; Guglielmi, G.; Marsac, N.T.D.; Castets, A.-M.; Cohen-Bazire, G. The structure of cyanobacterial phycobilisomes: A model. Arch. Microbiol. 1979, 123, 113–127. [Google Scholar] [CrossRef]
- Pimentel, F.B.; Alves, R.C.; Rodrigues, F.; Oliveira, M.B.P.P. Macroalgae-derived ingredients for cosmetic industry—An update. Cosmetics. 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Connan, S. Spectrophotometric assays of major compounds extracted from algae. Methods Mol. Biol. 2015, 1308, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Fabrowska, J.; Messyasz, B.; Szyling, J.; Walkowiak, J.; Łęska, B. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycol. Res. 2018, 66, 52–57. [Google Scholar] [CrossRef]
- Alam, T.; Najam, L.; Al Harrasi, A. Extraction of natural pigments from marine algae. J. Agric. Marine Sci. 2018, 23, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Wiltshire, K.H.; Boersma, M.; Möller, A.; Buhtz, H. Extraction of pigments and fatty acids from green alga Scenedesmus obliquus (Chlorophyceae). Aquat. Ecol. 2000, 34, 119–126. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction Coefficients of Chlorophyll a and b in N,N-Dimethylformamide and 80% Acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Ritchie, R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 2008, 46, 115–126. [Google Scholar] [CrossRef]
- Seely, G.R.; Duncan, M.J.; Vidaver, W.E. Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Marine Biol. 1972, 12, 184–188. [Google Scholar] [CrossRef]
- Beer, S.; Eshel, A. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Marine Freshw. Res. 1985, 36, 785–792. [Google Scholar] [CrossRef]
- Lawrenz, E.; Fedewa, E.J.; Richardson, T.L. Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J. Appl. Phycol. 2011, 23, 865–871. [Google Scholar] [CrossRef]
- Munier, M.; Jubeau, S.; Wijaya, A.; Morancais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem. 2014, 150, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.H.; El-Naggar, N.E.; El-Sawah, A.A. Extraction, Purification and Spectroscopic Characterization of Phycobiliproteins Extracted from Some Nostoc Spp. J. Agric. Chem. Biotechn. 2017, 8, 261–264. [Google Scholar] [CrossRef]
- Thoisen, C.; Hansen, B.W.; Nielsen, S.L. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin. MethodsX 2017, 4, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Barroso, S.; Mendes, S.; Amaral, R.A.; Dias, J.R.; Baptista, T.; Saraiva, J.A.; Alves, N.M.; Gil, M.M. Optimization of phycobiliprotein pigments extraction from red algae Gracilaria gracilis for substitution of synthetic food colorants. Food Chem. 2020, 321, 126688. [Google Scholar] [CrossRef] [PubMed]
- Floc’h, J.; Pajot, R.; Mouret, V. Undaria pinnatifida (Laminariales, Phaeophyta) 12 years after its introduction into the Atlantic Ocean. Hydrobiol. 1996, 326, 217–222. [Google Scholar] [CrossRef]
- Veiga, P.; Torres, A.C.; Rubal, M.; Troncoso, J.; Soupa-Pinto, I. The invasive kelp Undaria pinnatifida (Laminariales, Ochrophyta) along the north coast of Portugal: Distribution model versus field observations. Mar. Pollut. Bull. 2014, 84, 363–365. [Google Scholar] [CrossRef]
- Rezzoum, N.; Mouradi, A.; Givernaud, T.; Bennasser, L. Temporal variation of Laminaria ochroleuca Bachelot de la Pylaie (Laminariales, Phaeophyta) biomass on the Moroccan Atlantic coast: Implication for commercial harvesting. Algol. Stud. 2017, 153, 1–15. [Google Scholar] [CrossRef]
- Pimentel, F.; Cermeño, M.; Kleekayai, T.; Harnedy, P.A.; FitzGerald, R.J.; Alves, R.C.; Oliveira, M.B.P.P. Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed Porphyra dioica. Food Res. Int. 2020, 136, 109309. [Google Scholar] [CrossRef]
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Rep. 2019, 5, 327–336. [Google Scholar] [CrossRef]
- Syad, A.N.; Pandian, S.; Kasi, P.D. Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomed. Prev. Nutr. 2013, 3, 139–144. [Google Scholar] [CrossRef]
- Sartory, D.P.; Grobbelaar, J.U. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 1984, 114, 177–187. [Google Scholar] [CrossRef]
- Dasgupta, C.N. Algae as a source of phycocyanin and other industrially important pigments. In Algae Biorefinery: An Integrated Approach, 1st ed.; Das, D., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 253–276. [Google Scholar] [CrossRef]
- Pither, R.J. Canning-quality changes during canning. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Finglas, P., Toldra, F., Eds.; Academic Press: London, UK, 2003; pp. 845–851. [Google Scholar] [CrossRef]
- Brereton, R.G.; Rahmani, A.; Liang, Y.; Kvalheim, O.M. Investigation of the allomerization reaction of chlorophyll a: Use of diode array HPLC, mass spectrometry and chemometric factor analysis for the detection of early products. Photochem. Photobiol. 1994, 59, 99–110. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Hirano, A.; Arakawa, T.; Shiraki, K. Mechanistic insights into protein precipitation by alcohol. Int. J. Biol. Macromol. 2012, 50, 865–871. [Google Scholar] [CrossRef]
- Schilder, G.; Schlagenhauf, A.; Schneditz, D.; Scharnagl, H.; Ribitsch, W.; Krause, R.; Rosenkranz, A.R.; Stojakovic, T.; Horina, J.H. Ethanol causes protein precipitation—New safety issues for catheter locking techniques. PLoS ONE 2013, 8, e84869. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Neto, J.M. Marine Algae: Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–398. [Google Scholar] [CrossRef]
- Takaichi, S. Carotenoid in algae: Distributions, biosynthesis and functions. Mar. Drugs 2011, 9, 1101–1118. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Lalegerie, F.; Gager, L.; Stiger-Pouvreau, V.; Connan, S. The stressful life of red and brown seaweeds on the temperate intertidal zone: Effect of abiotic and biotic parameters on the physiology of macroalgae and content variability of particular metabolites. In Advances in Botanical Research—Seaweeds around the World: State of Art and Perspectives, 1st ed.; Bourgougnon, N., Ed.; Elsevier Science & Technology: London, UK, 2020; Volume 95, (accepted; in press). [Google Scholar] [CrossRef]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef] [Green Version]
- Zerrifi, S.E.A.; Khalloufi, F.E.; Oudra, B.; Vasconcelos, V. Seaweed bioactive compounds against pathogens and microalgae: Potential uses on pharmacology and harmful algae bloom control. Mar. Drugs 2018, 16, 55. [Google Scholar] [CrossRef] [Green Version]
Methanol | Methanol Acid Free | Ethanol | Acetone | DMF | ||
---|---|---|---|---|---|---|
Himanthalia elongata | Chl a | 63.3 ± 4.7 b | 60.3 ± 5.9 b | 67.6 ± 3.2 b | 156.7 ± 15.3 a | 75.6 ± 6.2 b |
Chl b | n.d. | n.d. | n.d. | n.d. | n.d. | |
Chl c | n.d. | n.d. | n.d. | n.d. | n.d. | |
Chl d | 2.7 ± 0.2 c | 4.5 ± 0.5 b | 3.4 ± 0.3 b,c | 11.5 ± 0.4 a | n.d. | |
Total chls | 66.0 ± 4.8 b | 64.8 ± 5.5 b | 71.0 ± 3.3 b | 168.2 ± 15.0 a | 75.6 ± 6.2 b | |
Total carotenoids | 2.3 ± 0.0 b | 2.9 ± 0.3 a | ||||
Undaria pinnatifida | Chl a | 349.0 ± 7.6 c | 331.4 ± 28.8 c | 321.3 ± 19.2 c | 542.5 ± 32.7 a | 436.5 ± 26.8 b |
Chl b | n.d. | n.d. | n.d. | n.d. | n.d. | |
Chl c | n.d. | n.d. | n.d. | 15.98 ± 1.60 | n.d. | |
Chl d | 3.27 ± 0.45 c | 3.35 ± 0.37 c | 4.32 ± 0.23 b | 15.64 ± 0.83 a | n.d. | |
Total chls | 352.2 ± 8.0 c | 334.7 ± 29.1 c | 325.6 ± 19.4 c | 574.1 ± 33.2 a | 436.5 ± 26.8 b | |
Total carotenoids | 54.6 ± 1.3 a | 54.2 ± 3.4 a | ||||
Laminaria ochroleuca | Chl a | 143.1 ± 12.0 bc | 111.2 ± 3.0 d | 114.0 ± 4.5 cd | 183.5 ± 14.8 a | 160.5 ± 5.6 ab |
Chl b | 7.2 ± 0.4 c | 12.3 ± 0.1 b | n.d. | 14.1 ± 0.5 b | 22.4 ± 1.4 a | |
Chl c | 6.7 ± 0.6 c | 12.7 ± 0.5 b | 3.8 ± 0.3 d | 17.9 ± 0.7 a | n.d. | |
Chl d | 12.0 ± 0.4 b | 20.7 ± 0.6 a | 9.8 ± 0.2 b | 19.8 ± 0.3 a | n.d. | |
Total chls | 168.9 ± 13.1 b | 156.8 ± 4.1 bc | 127.7 ± 4.4 c | 235.3 ± 15.4 a | 182.9 ± 7.0 b | |
Total carotenoids | 27.0 ± 2.4 a | 24.4 ± 2.2 a | ||||
Porphyra spp. | Chl a | 504.5 ± 22.9 ab | 533.4 ± 20.3 a | 431.9 ± 19.8 b | 489.2 ± 7.8 ab | 538.4 ± 39.3 a |
Chl b | n.d. | n.d. | n.d. | 7.2 ± 0.4 | n.d. | |
Chl c | n.d. | n.d. | n.d. | n.d. | n.d. | |
Chl d | 5.20 ± 0.2 c | 8.83 ± 0.8 b | 2.67 ± 0.2 d | 16.25 ± 2.9 a | n.d. | |
Total chls | 509.7 ± 28.0 a | 542.2 ± 25.8 a | 434.6 ± 24.5 b | 512.7 ± 13.4 a | 538.40 ± 39.30 a | |
Totalcarotenoids | 70.8 ± 2.5 a | 74.5 ± 3.8 a | ||||
Spirulina spp. | Chl a | 9872 ± 499 a | 9388 ± 191 a | 996.0 ± 15.0 d | 3766 ± 96 c | 5179 ± 447 b |
Chl b | 105.0 ± 5.6 c | 168.6 ± 14.9 b | n.d. | 123.5 ± 4.2 bc | 373.7 ± 30.3 a | |
Chl c | 121.9 ± 12.7 b | 275.3 ± 33.12 a | 15.34 ± 0.84 c | n.d. | n.d. | |
Chl d | 155.4 ± 11.1 a | 159.9 ± 8.7 a | 27.2 ± 1.8 c | 84.6 ± 4.5 b | n.d. | |
Total chls | 10253 ± 503 a | 9991.4 ± 186.6 a | 1038.5 ± 15.9 d | 3974.3 ± 97.4 c | 5553.0 ± 476.3 b | |
Totalcarotenoids | 1263.9 ± 54.0 a | 1238.6 ± 42.6 a |
Total Chlorophylls | Total Carotenoids | |
---|---|---|
Himanthalia elongata | 168.2 ± 15.0 b (Acetone) | 2.9 ± 0.3 b (Methanol acid-free) |
Undaria pinnatifida | 574.1 ± 33.2 b (Acetone) | 54.6 ± 1.3 b (Methanol) |
Laminaria ochroleuca | 235.3 ± 15.4 b (Acetone) | 27.0 ± 2.4 b (Methanol) |
Porphyra spp. | 542.2 ± 25.8 b (Methanol acid-free) | 74.5 ± 3.8 b (Methanol acid-free) |
Spirulina spp. | 10253 ± 503 a (Methanol) | 1263.9 ± 54.0 a (Methanol) |
Fucoxanthin | |
---|---|
Himanthalia elongata | 2.79 ± 0.31 c |
Undaria pinnatifida | 26.81 ± 0.79 a |
Laminaria ochroleuca | 14.21 ± 0.31 b |
Phycoerythrin | Phycocyanin | |
---|---|---|
Porphyra spp. | 8319 ± 288 a | 5305 ± 193 b |
Spirulina spp. | 8180 ± 301 a | 20732 ± 846 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osório, C.; Machado, S.; Peixoto, J.; Bessada, S.; Pimentel, F.B.; C. Alves, R.; Oliveira, M.B.P.P. Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations 2020, 7, 33. https://doi.org/10.3390/separations7020033
Osório C, Machado S, Peixoto J, Bessada S, Pimentel FB, C. Alves R, Oliveira MBPP. Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations. 2020; 7(2):33. https://doi.org/10.3390/separations7020033
Chicago/Turabian StyleOsório, Catarina, Susana Machado, Juliana Peixoto, Sílvia Bessada, Filipa B. Pimentel, Rita C. Alves, and M. Beatriz P. P. Oliveira. 2020. "Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae" Separations 7, no. 2: 33. https://doi.org/10.3390/separations7020033
APA StyleOsório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., C. Alves, R., & Oliveira, M. B. P. P. (2020). Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations, 7(2), 33. https://doi.org/10.3390/separations7020033