Development and Application of a Multi-Residue Method to Determine Pesticides in Agricultural Water Using QuEChERS Extraction and LC-MS/MS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. LC-MS/MS
2.4. Method Validation and Matrix Effects
3. Results and Discussion
3.1. Optimization of LC-MS/MS Conditions
3.2. Clean-Up Sorbent Determination
3.3. Method Validation
3.4. Matrix Effects
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caldas, S.S.; Bolzan, C.M.; Cerqueira, M.B.; Tomasini, D.; Furlong, E.B.; Fagundes, C.; Primel, E.G. Evaluation of a modified QuEChERS extraction of multiple classes of pesticides from a rice paddy soil by LC-APCI-MS/MS. J. Agric. Food Chem. 2011, 59, 11918–11926. [Google Scholar] [CrossRef] [PubMed]
- Hrynko, I.; Łozowicka, B.; Kaczyński, P. Comprehensive analysis of insecticides in melliferous weeds and agricultural crops using a modified QuEChERS/LC-MS/MS protocol and of their potential risk to honey bees (Apis mellifera L.). Sci. Total Environ. 2019, 657, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jennings, A. Worldwide regulations of standard values of pesticides for human health risk control: A review. Int. J. Environ. Res. Public Health 2017, 14, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Arias, J.L.; Rombaldi, C.; Caldas, S.S.; Primel, E.G. Alternative sorbents for the dispersive solid-phase extraction step in quick, easy, cheap, effective, rugged and safe method for extraction of pesticides from rice paddy soils with determination by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1360, 66–75. [Google Scholar] [CrossRef]
- Abdel Ghani, S.B.; Hanafi, A.H. QuEChERS method combined with GC‒MS for pesticide residues determination in water. J. Anal. Chem. 2016, 71, 508–512. [Google Scholar] [CrossRef]
- Tolosa, I.; Douy, B.; Carvalho, F.P. Comparison of the performance of graphitized carbon black and poly(styrene–divinylbenzene) cartridges for the determination of pesticides and industrial phosphates in environmental waters. J. Chromatogr. A 1999, 864, 121–136. [Google Scholar] [CrossRef]
- Shimelis, O.; Yang, Y.; Stenerson, K.; Kaneko, T.; Ye, M. Evaluation of a solid-phase extraction dual-layer carbon/primary secondary amine for clean-up of fatty acid matrix components from food extracts in multiresidue pesticide analysis. J. Chromatogr. A 2007, 1165, 18–25. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P.M. Modification of multiresidue QuEChERS protocol to minimize matrix effect and improve recoveries for determination of pesticide residues in dried herbs followed by GC-MS/MS. Food Anal. Meth. 2018, 11, 709–724. [Google Scholar] [CrossRef]
- Lawal, A.; Wong, R.C.S.; Tan, G.H.; Abdulra’uf, L.B.; Alsharif, A.M.A. Recent modifications and validation of QuEChERS-dSPE coupled to LC-MS and GC-MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables: Review. J. Chromatogr. Sci. 2018, 56, 656–669. [Google Scholar] [CrossRef] [Green Version]
- Bruzzoniti, M.C.; Checchini, L.; Carlo, R.M.D.; Orlandini, S.; Rivoira, L.; Bubba, M.D. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.-K.; Choi, S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Han, L.; Sapozhnikova, Y.; Lehotay, S.J. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp. Anal. Chim. Acta 2014, 827, 40–46. [Google Scholar] [CrossRef]
- Rasche, C.; Fournes, B.; Dirks, U.; Speer, K. Multi-residue pesticide analysis (gas chromatography–tandem mass spectrometry detection)—Improvement of the quick, easy, cheap, effective, rugged, and safe method for dried fruits and fat-rich cereals—Benefit and limit of a standardized apple purée calibration (screening). J. Chromatogr. A 2015, 1403, 21–31. [Google Scholar] [PubMed]
- Walorczyk, S. Application of gas chromatography/tandem quadrupolemass spectrometry to the multi-residue analysis ofpesticides in green leafy vegetables. Rapid Commun. Mass Spectrom. 2008, 22, 3791–3801. [Google Scholar] [CrossRef] [PubMed]
- Rajski, Ł.; Lozano, A.; Uclés, A.; Ferrer, C.; Fernández-Alba, A.R. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2013, 1304, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Deng, Y.; Zheng, J.; Zhang, Y.; Yang, L.; Liao, C.; Su, L.; Zhou, Y.; Gong, D.; Chen, L.; et al. The application of the QuEChERS methodology in the determination of antibiotics in food: A review. TrAC-Trends Anal. Chem. 2019, 118, 517–537. [Google Scholar] [CrossRef]
- European Commission. SANTE/12682/2019. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. European Commission Directorate-General for Health and Food Safety. (rev.0). 2019. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 7 July 2020).
- Song, N.-E.; Lee, J.Y.; Mansur, A.R.; Jang, H.W.; Lim, M.-C.; Lee, Y.; Yoo, M.; Nam, T.G. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chem. 2019, 298, 125050. [Google Scholar] [CrossRef]
- Song, N.-E.; Seo, D.-H.; Choi, J.Y.; Yoo, M.; Koo, M.; Nam, T.G. Dispersive solid–liquid extraction coupled with LC-MS/MS for the determination of sulfonylurea herbicides in strawberries. Foods 2019, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, R.; Ahad, K.; Mehboob, F. Extraction techniques for pesticide residues analysis in edible oils and role of sorbents in cleanup. Sep. Sci. Plus 2020, 3, 51–62. [Google Scholar] [CrossRef]
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015, 13, 980–1010. [Google Scholar] [CrossRef]
- Jing, H.; Ge, S.; Lian-Feng, A.; Jian-Chen, L. Determination of six polyether antibiotic residues in foods of animal origin by solid phase extraction combined with liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2016, 1017, 187–194. [Google Scholar]
- Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef] [PubMed]
- Powley, C.R.; George, S.W.; Ryan, T.W.; Buck, R.C. Matrix effect-free analytical methods for determination of perfluorinated carboxylic acids in environmental matrixes. Anal. Chem. 2005, 77, 6353–6358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, H.; Gerecke, A.C.; Kannan, K.; Müller, C.E.; Alder, A.C. Comparison of two extraction methods for the analysis of per- and polyfluorinated chemicals in digested sewage sludge. J. Chromatogr. A 2010, 1217, 5026–5034. [Google Scholar] [CrossRef] [PubMed]
- Polgár, L.; Kmellár, B.; García-Reyes, J.F.; Fodor, P.B. Comprehensive evaluation of the clean-up step in QuEChERS procedure for the multi-residue determination of pesticides in different vegetable oils using LC-MS/MS. Anal. Methods 2012, 4, 1142–1148. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Compensation of matrix effects in seed matrices followed by gas chromatography-tandem mass spectrometry analysis of pesticide residues. J. Chromatogr. A 2020, 1614, 460738. [Google Scholar] [CrossRef]
- Choi, S.; Kim, S.; Shin, J.Y.; Kim, M.; Kim, J.H. Development and verification for analysis of pesticides in eggs and egg products using QuEChERS and LC–MS/MS. Food Chem. 2015, 173, 1236–1242. [Google Scholar] [CrossRef]
- Kittlaus, S.; Schimanke, J.; Kempe, G.; Speer, K. Assessment of sample cleanup and matrix effects in the pesticide residue analysis of foods using postcolumn infusion in liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 8399–8410. [Google Scholar] [CrossRef]
Pesticides | R.T. (min) | Precursor Ion (m/z) | Quantification Transition (m/z) | D.P. (V) | C.E. (V) | Confirmatory Transition (m/z) | D.P. (V) | C.E. (V) |
---|---|---|---|---|---|---|---|---|
Amisulbrom | 8.9 | 466.0 | 227.1 | 96 | 27 | 108.1 | 96 | 33 |
Azinphos-methyl | 5.0 | 318.0 | 132.0 | 61 | 19 | 160 | 61 | 19 |
Bensulfuron-methyl | 5.0 | 410.9 | 149.0 | 66 | 27 | 119.1 | 66 | 53 |
Benzobicyclon | 5.6 | 447.0 | 257.1 | 91 | 37 | 229.1 | 91 | 51 |
Boscalid | 5.4 | 343.0 | 307.0 | 101 | 27 | 140 | 106 | 27 |
Chlorpyrifos | 10.4 | 350.0 | 97.0 | 76 | 43 | 198 | 76 | 43 |
Cyclosulfamurom | 6.0 | 422.1 | 261.1 | 76 | 23 | 218.1 | 76 | 37 |
Diethofencarb | 5.2 | 268.0 | 226.0 | 61 | 15 | 180 | 56 | 23 |
Diflubenzuron | 6.5 | 311.0 | 158.1 | 66 | 19 | 141.1 | 66 | 45 |
Diuron | 4.8 | 233.1 | 72.1 | 76 | 35 | 160.1 | 76 | 35 |
Etoxazole | 11.2 | 360.1 | 141.0 | 101 | 41 | 304.1 | 101 | 27 |
Etrimfos | 7.0 | 293.1 | 125.1 | 76 | 33 | 265 | 76 | 21 |
Fenazaquin | 11.4 | 307.2 | 161.0 | 111 | 25 | 147 | 111 | 29 |
Fenbuconazole | 6.4 | 337.2 | 125.1 | 86 | 41 | 70 | 86 | 35 |
Fenhexamid | 6.1 | 302.2 | 55.0 | 126 | 59 | 97.3 | 91 | 33 |
Fenoxaprop-ethyl | 9.2 | 362.1 | 287.9 | 96 | 29 | 121 | 96 | 41 |
Fenpyroximate | 11.3 | 422.1 | 366.2 | 96 | 25 | 134.8 | 96 | 47 |
Fludioxonil | 5.4 | 266.0 | 229.2 | 36 | 23 | 158 | 36 | 49 |
Flufenoxuron | 11.2 | 489.0 | 158.1 | 81 | 27 | 141.1 | 81 | 71 |
Fluxapyroxad | 5.6 | 382.0 | 362.0 | 76 | 23 | 341.9 | 76 | 31 |
Forchlorfenuron | 4.8 | 248.1 | 129.0 | 71 | 21 | 155.1 | 71 | 19 |
Hexaflumuron | 8.9 | 461.0 | 158.2 | 81 | 25 | 141.1 | 81 | 59 |
Linuron | 5.3 | 249.0 | 160.0 | 76 | 23 | 182.1 | 76 | 19 |
Lufenuron | 10.7 | 510.9 | 158.2 | 59 | 27 | 141.2 | 59 | 67 |
Mefenacet | 5.8 | 299.1 | 148.2 | 71 | 19 | 120.2 | 71 | 35 |
Mepanipyrim | 6.0 | 224.1 | 76.9 | 91 | 61 | 106 | 91 | 39 |
Metamifop | 9.4 | 441.1 | 288.0 | 91 | 23 | 180.2 | 91 | 27 |
Methabenzthiazuron | 4.7 | 222.1 | 165.2 | 66 | 23 | 150.1 | 66 | 45 |
Metrafenone | 7.8 | 409.0 | 209.1 | 56 | 23 | 227 | 56 | 29 |
Napropamide | 6.2 | 272.2 | 129.2 | 76 | 21 | 171.2 | 76 | 23 |
Novaluron | 9.3 | 492.7 | 141.1 | 76 | 71 | 158.1 | 76 | 27 |
Penoxsulam | 4.3 | 484.1 | 195.0 | 116 | 41 | 163.9 | 116 | 49 |
Pirimiphos-methyl | 7.6 | 306.2 | 108.2 | 86 | 39 | 164.2 | 86 | 29 |
Probenazole | 6.0 | 224.2 | 51.1 | 56 | 95 | 63.1 | 61 | 103 |
Propanil | 9.1 | 373.0 | 302.7 | 76 | 23 | 162.1 | 76 | 19 |
Propaquizafop | 5.3 | 218.1 | 127.1 | 76 | 37 | 56 | 71 | 51 |
Pyraclostrobin | 7.6 | 388.1 | 163.0 | 106 | 39 | 193.9 | 106 | 19 |
Pyrazolate | 7.9 | 439.0 | 91.0 | 91 | 71 | 173 | 91 | 29 |
Pyrazophos | 7.8 | 374.0 | 222.2 | 86 | 27 | 194.2 | 86 | 43 |
Pyribenzoxim | 10.0 | 610.2 | 180.0 | 66 | 49 | 413 | 66 | 19 |
Pyriftalid | 5.1 | 319.0 | 138.9 | 106 | 43 | 83.1 | 106 | 67 |
Pyrimethanil | 5.2 | 200.1 | 107.0 | 91 | 35 | 82 | 91 | 37 |
Pyrimidifen | 9.5 | 378.1 | 184.2 | 86 | 31 | 150.2 | 86 | 45 |
Pyriproxyfen | 10.2 | 322.1 | 96.0 | 56 | 23 | 184.9 | 56 | 31 |
Quinalphos | 6.7 | 299.1 | 97.1 | 66 | 51 | 163.1 | 66 | 33 |
Quinoclamine | 4.0 | 208.1 | 105.1 | 91 | 33 | 172 | 76 | 29 |
Quizalofop-ethyl | 9.1 | 373.1 | 299.2 | 91 | 25 | 163.1 | 91 | 59 |
Sethoxydim | 9.6 | 328.2 | 178.1 | 71 | 25 | 282.3 | 71 | 17 |
Spinetoram(j) | 8.8 | 748.5 | 142.2 | 91 | 45 | 98.1 | 91 | 101 |
Spinetoram(L) | 9.8 | 760.5 | 142.2 | 96 | 43 | 98.2 | 96 | 91 |
Tebufenpyrad | 9.7 | 334.1 | 144.9 | 126 | 39 | 116.9 | 126 | 53 |
Teflubenzuron | 9.9 | 380.9 | 141.1 | 76 | 57 | 158.2 | 76 | 23 |
Thidiazuron | 4.1 | 221.1 | 102.0 | 71 | 19 | 128 | 71 | 25 |
Tiadinil | 5.8 | 267.9 | 100.9 | 61 | 27 | 101.1 | 51 | 27 |
Triazophos | 5.9 | 314.1 | 162.2 | 71 | 27 | 119.2 | 71 | 47 |
Pesticides | Linearity (R2) | LOD (μg L−1) | LOQ (μg L −1) | Recovery (%) | Repeatability, %RSD | Reproducibility, %RSD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 50 | 100 | 10 | 50 | 100 | 10 | 50 | 100 | ||||
μg L−1 | μg L −1 | μg L −1 | ||||||||||
Amisulbrom | 0.9998 | 3.0 | 9.9 | 96.9 | 78.1 | 73.7 | 7.8 | 7.6 | 3.8 | 7.2 | 9.2 | 10.4 |
Azinphos-methyl | 1.0000 | 0.6 | 1.8 | 110.2 | 95.8 | 92.5 | 10.9 | 9.6 | 3.5 | 11.8 | 9.7 | 4.5 |
Bensulfuron-methyl | 1.0000 | 0.2 | 0.6 | 86.0 | 77.0 | 70.1 | 2.4 | 11.4 | 0.8 | 2.6 | 8.7 | 4.3 |
Benzobicyclon | 0.9999 | 0.1 | 0.3 | 68.5 | 62.1 | 74.6 | 13.1 | 8.8 | 6.1 | 13.4 | 10.6 | 9.3 |
Boscalid | 1.0000 | 0.6 | 2.1 | 104.3 | 94.0 | 91.3 | 12.2 | 11.6 | 9.4 | 12.4 | 12.9 | 7.2 |
Chlorpyrifos | 0.9991 | 1.0 | 3.4 | 103.3 | 101.2 | 87.1 | 2.2 | 14.4 | 2.9 | 3.6 | 10.6 | 3.3 |
Cyclosulfamuron | 0.9994 | 0.02 | 0.1 | 105.0 | 97.7 | 80.7 | 11.5 | 12.9 | 11.7 | 9.2 | 10.8 | 8.2 |
Diethofencarb | 1.0000 | 0.2 | 0.6 | 118.9 | 99.5 | 92.7 | 5.4 | 9.7 | 2.9 | 3.6 | 7.2 | 3.4 |
Diflubenzuron | 1.0000 | 0.5 | 1.6 | 99.6 | 86.1 | 80.2 | 8.9 | 9.1 | 2.6 | 7.8 | 7.8 | 7.0 |
Diuron | 0.9998 | 0.3 | 1.0 | 119.3 | 96.1 | 95.0 | 6.8 | 6.3 | 6.8 | 6.1 | 5.5 | 4.4 |
Etoxazole | 0.9994 | 0.2 | 0.5 | 108.8 | 92.4 | 87.1 | 4.2 | 6.9 | 3.9 | 3.4 | 4.7 | 2.9 |
Etrimfos | 1.0000 | 0.1 | 0.2 | 108.3 | 99.9 | 83.5 | 2.2 | 7.4 | 6.1 | 2.7 | 7.1 | 4.8 |
Fenazaquin | 0.9996 | 2.1 | 6.9 | 112.3 | 88.0 | 70.0 | 3.6 | 6.8 | 1.8 | 8.0 | 4.7 | 4.6 |
Fenbuconazole | 1.0000 | 0.5 | 1.6 | 108.0 | 95.7 | 89.8 | 10.1 | 10.0 | 8.4 | 8.5 | 7.6 | 5.9 |
Fenhexamid | 0.9999 | 0.6 | 1.9 | 102.7 | 88.6 | 86.0 | 3.6 | 7.9 | 10.5 | 9.4 | 12.1 | 7.3 |
Fenoxaprop-ethyl | 0.9999 | 0.4 | 1.4 | 108.5 | 94.4 | 90.7 | 5.5 | 7.5 | 2.6 | 5.8 | 4.9 | 5.0 |
Fenpyroximate | 0.9999 | 0.1 | 0.5 | 97.0 | 84.0 | 78.1 | 2.6 | 8.7 | 0.7 | 3.1 | 9.8 | 4.7 |
Fludioxonil | 0.9999 | 0.1 | 0.5 | 117.5 | 99.7 | 88.2 | 11.3 | 9.1 | 11.4 | 9.4 | 9.1 | 8.0 |
Flufenoxuron | 1.0000 | 0.2 | 0.8 | 99.2 | 90.1 | 85.0 | 6.5 | 11.9 | 6.5 | 4.8 | 12.9 | 4.9 |
Fluxapyroxad | 0.9990 | 0.5 | 1.8 | 115.9 | 98.8 | 95.9 | 8.6 | 8.9 | 5.1 | 9.3 | 8.3 | 3.9 |
Forchlorfenuron | 0.9995 | 0.7 | 2.5 | 70.2 | 62.1 | 52.6 | 9.2 | 8.3 | 10.6 | 5.8 | 7.3 | 12.3 |
Hexaflumuron | 0.9999 | 0.5 | 1.8 | 100.0 | 90.9 | 89.2 | 9.7 | 8.5 | 8.0 | 10.6 | 4.4 | 11.2 |
Linuron | 0.9998 | 0.7 | 2.4 | 114.6 | 95.6 | 94.6 | 8.3 | 7.7 | 6.8 | 7.0 | 5.8 | 4.4 |
Lufenuron | 0.9997 | 0.7 | 2.5 | 103.4 | 94.2 | 88.5 | 6.9 | 6.2 | 10.4 | 5.5 | 6.8 | 9.3 |
Mefenacet | 0.9996 | 0.1 | 0.3 | 121.7 | 99.8 | 95.9 | 2.3 | 8.5 | 1.0 | 2.4 | 6.5 | 1.3 |
Mepanipyrim | 1.0000 | 0.4 | 1.3 | 110.5 | 89.0 | 85.1 | 6.1 | 5.1 | 1.9 | 12.5 | 4.5 | 1.8 |
Metamifop | 1.0000 | 0.1 | 0.4 | 110.3 | 94.3 | 86.8 | 2.3 | 8.2 | 0.8 | 10.0 | 7.6 | 4.8 |
Methabenzthiazuron | 0.9996 | 0.5 | 1.6 | 108.9 | 89.6 | 87.6 | 10.4 | 6.1 | 5.7 | 9.3 | 4.8 | 4.8 |
Metrafenone | 0.9999 | 0.2 | 0.6 | 107.7 | 94.0 | 91.8 | 5.9 | 10.9 | 4.7 | 5.2 | 7.4 | 3.9 |
Napropamide | 0.9999 | 0.1 | 0.4 | 119.9 | 98.7 | 91.5 | 1.9 | 7.0 | 4.2 | 3.6 | 7.9 | 3.4 |
Novaluron | 0.9998 | 0.5 | 1.8 | 113.4 | 94.2 | 96.4 | 14.8 | 11.7 | 9.3 | 10.2 | 7.6 | 9.0 |
Penoxsulam | 0.9998 | 0.6 | 2.2 | 84.6 | 74.0 | 72.0 | 10.2 | 12.0 | 13.4 | 10.7 | 15.8 | 9.4 |
Pirimiphos-methyl | 1.0000 | 0.1 | 0.3 | 110.5 | 96.8 | 91.1 | 4.6 | 7.5 | 6.4 | 3.9 | 4.8 | 4.6 |
Probenazole | 0.9995 | 1.7 | 5.6 | 111.8 | 84.9 | 85.3 | 3.3 | 5.2 | 9.1 | 5.6 | 7.0 | 7.1 |
Propanil | 0.9999 | 0.9 | 3.0 | 102.3 | 86.9 | 90.3 | 8.3 | 9.5 | 9.4 | 12.0 | 10.3 | 10.4 |
Propaquizafop | 0.9996 | 0.1 | 0.3 | 101.9 | 90.6 | 83.1 | 4.9 | 9.3 | 11.6 | 8.8 | 5.4 | 8.7 |
Pyraclostrobin | 0.9997 | 0.2 | 0.6 | 111.3 | 92.6 | 81.7 | 2.5 | 7.5 | 0.7 | 9.8 | 1.0 | 5.3 |
Pyrazolate | 0.9994 | 1.2 | 4.0 | 38.9 | 20.5 | 27.9 | 8.1 | 11.5 | 12.4 | 11.6 | 12.6 | 13.5 |
Pyrazophos | 1.0000 | 0.2 | 0.7 | 103.9 | 92.7 | 85.8 | 6.0 | 9.6 | 5.5 | 8.4 | 7.5 | 7.3 |
Pyribenzoxim | 0.9999 | 0.4 | 1.3 | 116.1 | 99.1 | 94.0 | 4.9 | 10.0 | 2.6 | 6.3 | 7.4 | 2.8 |
Pyriftalid | 0.9994 | 0.1 | 0.2 | 116.7 | 99.4 | 94.0 | 4.6 | 5.8 | 1.9 | 6.7 | 5.9 | 5.3 |
Pyrimethanil | 0.9998 | 0.6 | 2.0 | 113.5 | 87.4 | 87.0 | 9.1 | 3.6 | 3.3 | 10.2 | 11.9 | 3.3 |
Pyrimidifen | 0.9999 | 0.3 | 0.8 | 100.0 | 85.4 | 75.1 | 2.1 | 5.5 | 2.1 | 3.7 | 1.4 | 12.0 |
Pyriproxyfen | 1.0000 | 0.1 | 0.4 | 116.8 | 99.1 | 93.8 | 1.3 | 8.2 | 1.2 | 2.0 | 5.2 | 1.4 |
Quinalphos | 0.9998 | 0.0 | 0.0 | 110.0 | 94.1 | 87.6 | 7.1 | 11.7 | 3.4 | 6.5 | 9.0 | 2.3 |
Quinoclamine | 1.0000 | 0.7 | 2.4 | 104.2 | 80.9 | 81.6 | 10.5 | 9.9 | 2.3 | 8.2 | 7.7 | 11.1 |
Quizalofop-ethyl | 1.0000 | 0.2 | 0.8 | 108.4 | 92.6 | 86.6 | 5.7 | 7.0 | 4.4 | 6.2 | 4.6 | 4.7 |
Sethoxydim | 1.0000 | 1.8 | 5.9 | 101.8 | 86.7 | 82.0 | 6.9 | 9.3 | 5.5 | 7.9 | 8.7 | 5.7 |
Spinetoram(J) | 0.9999 | 0.04 | 0.1 | 108.3 | 92.2 | 85.9 | 2.1 | 10.0 | 1.1 | 5.0 | 14.5 | 3.1 |
Spinetoram(L) | 0.9998 | 0.3 | 0.9 | 107.1 | 90.2 | 84.2 | 2.7 | 12.1 | 2.7 | 5.5 | 14.5 | 3.6 |
Tebufenpyrad | 1.0000 | 0.3 | 1.1 | 108.6 | 96.2 | 94.0 | 13.3 | 12.5 | 12.1 | 13.5 | 11.6 | 7.7 |
Teflubenzuron | 0.9999 | 0.6 | 1.9 | 89.6 | 85.2 | 83.1 | 9.8 | 9.9 | 9.2 | 11.6 | 2.5 | 11.1 |
Thidiazuron | 0.9999 | 0.6 | 1.9 | 74.2 | 55.3 | 48.1 | 4.1 | 3.6 | 8.6 | 6.1 | 2.2 | 9.6 |
Tiadinil | 1.0000 | 2.6 | 8.6 | 105.5 | 89.9 | 82.9 | 1.4 | 11.9 | 11.7 | 7.4 | 12.6 | 11.3 |
Triazophos | 0.9993 | 0.1 | 0.2 | 114.1 | 100.0 | 95.3 | 3.8 | 7.1 | 0.7 | 4.7 | 4.9 | 1.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, N.-E.; Jung, Y.S.; Choi, J.Y.; Koo, M.; Choi, H.-K.; Seo, D.-H.; Lim, T.-G.; Nam, T.G. Development and Application of a Multi-Residue Method to Determine Pesticides in Agricultural Water Using QuEChERS Extraction and LC-MS/MS Analysis. Separations 2020, 7, 52. https://doi.org/10.3390/separations7040052
Song N-E, Jung YS, Choi JY, Koo M, Choi H-K, Seo D-H, Lim T-G, Nam TG. Development and Application of a Multi-Residue Method to Determine Pesticides in Agricultural Water Using QuEChERS Extraction and LC-MS/MS Analysis. Separations. 2020; 7(4):52. https://doi.org/10.3390/separations7040052
Chicago/Turabian StyleSong, Nho-Eul, Young Sung Jung, Ji Yeon Choi, Minseon Koo, Hyo-Kyoung Choi, Dong-Ho Seo, Tae-Gyu Lim, and Tae Gyu Nam. 2020. "Development and Application of a Multi-Residue Method to Determine Pesticides in Agricultural Water Using QuEChERS Extraction and LC-MS/MS Analysis" Separations 7, no. 4: 52. https://doi.org/10.3390/separations7040052
APA StyleSong, N. -E., Jung, Y. S., Choi, J. Y., Koo, M., Choi, H. -K., Seo, D. -H., Lim, T. -G., & Nam, T. G. (2020). Development and Application of a Multi-Residue Method to Determine Pesticides in Agricultural Water Using QuEChERS Extraction and LC-MS/MS Analysis. Separations, 7(4), 52. https://doi.org/10.3390/separations7040052