Development and Application of an ICP-AES Method for the Determination of Nutrient and Toxic Elements in Savory Snack Products after Autoclave Dissolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Instrumentation
2.3. Sample Collection
2.4. Validation of the ICP-AES Method
3. Results and Discussion
3.1. Selection of the Emission Line
3.2. Sample Preparation of the Snack Samples
3.3. Figures of Merit
3.4. Analysis of Snack Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Das Graças Korn, M.; Da Boa Morte, E.S.; dos Santos, D.C.M.B.; Castro, J.T.; Barbosa, J.T.P.; Teixeira, A.P.; Fernandes, A.P.; Welz, B.; dos Santos, W.P.C.; dos Santos, E.B.G.N.; et al. Sample Preparation for the Determination of Metals in Food Samples Using Spectroanalytical Methods—A Review. Appl. Spectrosc. Rev. 2008, 43, 67–92. [Google Scholar] [CrossRef]
- Akpinar-Bayizit, A.; Turan, M.A.; Yilmaz-Ersan, L.; Taban, N. Inductively coupled plasma optical-emission spectroscopy determination of major and minor elements in vinegar. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 64–68. [Google Scholar]
- Momen, A.A.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Investigation of four digestion procedures for multi-element determination of toxic and nutrient elements in legumes by inductively coupled plasma-optical emission spectrometry. Anal. Chim. Acta 2006, 565, 81–88. [Google Scholar] [CrossRef]
- Momen, A.A.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Use of fractional factorial design for optimization of digestion procedures followed by multi-element determination of essential and non-essential elements in nuts using ICP-OES technique. Talanta 2006, 71, 443–451. [Google Scholar] [CrossRef]
- Zachariadis, G.A.; Anthemidis, A.N.; Caniou, I.; Stratis, J.A. Determination of Lead, Cadmium and Mercury in Surface Marine Sediments and Mussels. Int. J. Environ. Anal. Chem. 2001, 80, 153–166. [Google Scholar] [CrossRef]
- Morgan, J.N. Effects of processing on heavy metal content of foods. In Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1999; pp. 195–211. [Google Scholar]
- Hajeb, P.; Sloth, J.J.; Shakibazadeh, S.; Mahyudin, N.A.; Afsah-Hejri, L. Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches. Compr. Rev. Food Sci. Food Saf. 2014, 13, 457–472. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Nagarajan, M. Physicochemical and sensory properties of savory crackers incorporating green gram flour to partially or wholly replace wheat flour. Ital. J. Food Sci. 2017, 29, 2017–2599. [Google Scholar]
- Kaur, A.; Singh, N.; Ezekiel, R. Quality Parameters of Potato Chips from Different Potato Cultivars: Effect of Prior Storage and Frying Temperatures. Int. J. Food Prop. 2008, 11, 791–803. [Google Scholar] [CrossRef]
- Coco, M.G.; Vinson, J.A. Analysis of Popcorn (Zea Mays L. var. Everta) for Antioxidant Capacity and Total Phenolic Content. Antioxidants 2019, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweley, J.C.; Rose, D.J.; Jackson, D.S. Quality Traits and Popping Performance Considerations for Popcorn (Zea mays Everta). Food Rev. Int. 2013, 29, 157–177. [Google Scholar] [CrossRef]
- Aceto, M.; Abollino, O.; Bruzzoniti, M.C.; Mentasti, E.; Sarzanini, C.; Malandrino, M. Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES); a review. Food Addit. Contam. 2002, 19, 126–133. [Google Scholar] [CrossRef]
- Manousi, N.; Gomez-Gomez, B.; Madrid, Y.; Deliyanni, E.A.; Zachariadis, G.A. Determination of rare earth elements by inductively coupled plasma-mass spectrometry after dispersive solid phase extraction with novel oxidized graphene oxide and optimization with response surface methodology and central composite design. Microchem. J. 2020, 152, 104428. [Google Scholar] [CrossRef]
- Kazantzi, V.; Drosaki, E.; Skok, A.; Vishnikin, A.B.; Anthemidis, A. Evaluation of polypropylene and polyethylene as sorbent packing materials in on-line preconcentration columns for trace Pb(II) and Cd(II) determination by FAAS. Microchem. J. 2019, 148, 514–520. [Google Scholar] [CrossRef]
- Ma, X.; Huang, B.; Cheng, M. Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Metals 2007, 26, 541–546. [Google Scholar] [CrossRef]
- Viñas, P.; Pardo-Martínez, M.; López-García, I.; Hernández-Córdoba, M. Determination of mercury in baby food and seafood samples using electrothermal atomic absorption spectrometry and slurry atomization. J. Anal. At. Spectrom. 2001, 16, 633–637. [Google Scholar] [CrossRef]
- Gopalani, M.; Shahare, M.; Ramteke, D.S.; Wate, S.R. Heavy Metal Content of Potato Chips and Biscuits from Nagpur City, India. Bull. Environ. Contam. Toxicol. 2007, 79, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, E.A.; Samanidou, V.F. Multiresidue HPLC analysis of ten quinolones in milk after solid phase extraction: Validation according to the European Union Decision 2002/657/EC. J. Sep. Sci. 2007, 30, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Papadoyannis, I.N.; Samanidou, V.F. Validation of HPLC Instrumentation. J. Liq. Chrom. Relat. Tech. 2004, 27, 753–783. [Google Scholar] [CrossRef]
- IUPAC. Compendium in Chemical Terminology, Version 2014; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Narin, I.; Tuzen, M.; Sari, H.; Soylak, M. Heavy metal content of potato and corn chips from Turkey. Bull. Environ. Contam. Toxicol. 2005, 74, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
Element | Atomic Emission Lines (nm) | |
---|---|---|
Barium | 233.527 | 230.425 |
Cadmium | 226.502 | 214.440 |
Copper | 324.752 | 224.700 |
Nickel | 232.003 | 221.648 |
Lead | 217.000 | 220.353 |
Zinc | 213.857 | 202.548 |
Calcium | 317.933 | 396.847 |
Manganese | 257.610 | 259.372 |
Magnesium | 279.077 | 280.271 |
Aluminum | 308.215 | 237.313 |
Iron | 238.204 | 239.562 |
Chromium | 283.563 | 357.869 |
Cobalt | 228.616 | 238.892 |
Sample Mass (mg) | Digestion Mixture | Digestion Process | Digestion Time (min) | Remark |
---|---|---|---|---|
300 | 3 mL deionized H2O | Open vessel, Boiling, 100 °C | 20 | Not dissolved |
300 | 5 mL deionized H2O | Open vessel, Boiling, 100 °C | 20 | Not dissolved |
300 | 3 mL conc. HNO3 | Open vessel, Boiling, 120 °C | 5 | Not dissolved |
300 | 5 mL conc. HNO3 | Open vessel, Boiling, 100 °C | 5 | Not dissolved |
300 | 3 mL conc. HNO3 | Autoclave digestion, 80 °C | 30 | Not dissolved |
300 | 5 mL conc. HNO3 | Autoclave digestion, 80 °C | 30 | Not dissolved |
300 | 3 mL conc. HNO3 | Autoclave digestion, 100 °C | 60 | Not dissolved |
300 | 5 mL conc. HNO3 | Autoclave digestion, 100 °C | 60 | Not dissolved |
300 | 3 mL conc. HNO3 | Autoclave digestion, 120 °C | 75 | Slight sedimentation |
300 | 5 mL conc. HNO3 | Autoclave digestion, 120 °C | 75 | Complete dissolution |
500 | 5 mL conc. HNO3 | Autoclave digestion, 120 °C | 75 | Slight sedimentation |
Element | Emission Line (nm) | Slope | r2 | LOD (μg g−1) | LOQ (μg g−1) | Upper Limit of Linear Range (μg mL−1) |
---|---|---|---|---|---|---|
Ba | 230.425 | 1783.7 | 0.9999 | 0.25 | 0.83 | 4000 |
Cd | 226.502 | 1266.6 | 0.9999 | 1.33 | 4.42 | 4000 |
Cu | 324.752 | 72655 | 0.9999 | 1.00 | 3.30 | 4000 |
Fe | 238.204 | 3042.1 | 0.9999 | 1.18 | 3.94 | 4000 |
Pb | 217.000 | 95.512 | 0.9999 | 3.75 | 12.5 | 4000 |
Mn | 257.610 | 31474 | 0.9999 | 0.60 | 2.00 | 4000 |
Ni | 232.003 | 532.79 | 0.9999 | 0.25 | 0.83 | 4000 |
Zn | 213.857 | 1312.3 | 0.9999 | 1.11 | 3.33 | 4000 |
Al | 237 | 589.9 | 0.9998 | 0.24 | 0.82 | 4000 |
Cr | 357.869 | 45671 | 0.9998 | 0.18 | 0.60 | 4000 |
Co | 238.892 | 1789 | 0.9998 | 1.25 | 4.17 | 4000 |
Ca | 396.847 | 2001003 | 0.9999 | 1.25 | 4.17 | 800 |
Mg | 280.271 | 58760 | 0.9999 | 0.58 | 1.95 | 800 |
Sample | Added (μg g−1) | Ba | Cd | Cu | Fe | Pb | Mn | Ni | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | ||
SFC-3 | 0 | 1.1 ± 0.1 | - | 9.1 | <LOD | - | - | 3.7 ± 0.1 | - | 2.7 | 12.2 ± 0.5 | - | 4.1 | <LOD | - | - | <LOD | - | - | <LOD | - | - |
50 | 47.1 ± 2.0 | 92.0 | 4.2 | 54.1 ± 0.7 | 108.3 | 1.3 | 54.4 ± 1.4 | 101.4 | 2.6 | 61.9 ± 1.0 | 99.5 | 1.6 | 47.4 ± 0.8 | 94.9 | 1.7 | 51.5 ± 0.6 | 103.1 | 1.2 | 59.0 ± 0.6 | 118.0 | 1.0 | |
100 | 103.7 ± 14.0 | 102.6 | 13.5 | 102.1 ± 12 | 102.1 | 11.8 | 117.7 ± 12 | 114.0 | 10.2 | 123.0 ± 1.0 | 110.8 | 0.8 | 93.0 ± 4.0 | 93.0 | 4.3 | 99.0 ± 12.0 | 99.0 | 12.3 | 116.2 ± 10 | 116.2 | 8.6 | |
PC-3 | 0 | 2.3 ± 0.1 | - | 6.1 | <LOD | - | - | 4.3 ± 0.3 | - | 7.0 | 17.1 ± 1.3 | - | 7.6 | <LOD | - | - | 2.1 ± 0.2 | - | 9.5 | <LOD | - | - |
50 | 49.6 ± 6.0 | 94.5 | 12.1 | 47.0 ± 4.3 | 101.4 | 9.1 | 58.8 ± 4.9 | 91.8 | 8.3 | 73.6 ± 5.0 | 113.0 | 6.8 | 52.5 ± 0.6 | 105.4 | 1.1 | 57.0 ± 3.2 | 109.7 | 5.6 | 49.1 ± 1.3 | 98.2 | 2.6 | |
100 | 100.3 ± 3 | 98.0 | 3.0 | 99.0 ± 3.0 | 99.0 | 3.0 | 119.6 ± 7.1 | 115.3 | 5.9 | 135.0 ± 4.0 | 117.9 | 3.0 | 117.0 ± 3.0 | 117.0 | 2.6 | 98.3 ± 9.0 | 96.2 | 9.2 | 115.0 ± 4.0 | 115.0 | 3.5 | |
P-1 | 0 | 1.3 ± 0.1 | - | 7.7 | <LOD | - | - | D 1 | - | - | 25.4 ± 1.5 | - | 5.9 | <LOD | - | - | 2.3 ± 0.1 | - | 4.3 | <LOD | - | - |
50 | 45.1 ± 0.7 | 87.7 | 1.6 | 51.3 ± 0.2 | 102.6 | 0.4 | 48.2 ± 0.1 | 96.4 | 0.2 | 72.0 ± 0.7 | 93.2 | 1.0 | 49.1 ± 0.1 | 98.3 | 0.2 | 51.3 ± 0.1 | 98.0 | 0.2 | 51.1 ± 0.7 | 102.2 | 1.4 | |
100 | 98.0 ± 1.1 | 96.7 | 1.1 | 97.0 ± 2.0 | 97.0 | 2.1 | 107.0 ± 2.0 | 107.0 | 1.9 | 138.4 ± 2.0 | 113.0 | 1.4 | 108.6 ± 9.0 | 108.6 | 8.3 | 100.3 ± 1.0 | 98.0 | 1.0 | 100.0 ± 3.0 | 100.0 | 3.0 | |
CR-1 | 0 | <LOD | - | - | <LOD | - | - | D | - | - | 17.1 ± 1.6 | - | 9.4 | <LOD | - | - | D | - | - | D | - | - |
50 | 43.7 ± 0.9 | 87.3 | 2.1 | 51.3 ± 0.6 | 102.6 | 1.2 | 51.5 ± 4.8 | 103.0 | 9.3 | 63.0 ± 0.2 | 91.8 | 0.3 | 48.1 ± 0.6 | 96.1 | 1.2 | 49.0 ± 4.6 | 98.0 | 9.4 | 46.3 ± 0.1 | 92.6 | 0.2 | |
100 | 83.0 ± 4.0 | 83.0 | 4.8 | 84.0 ± 2.1 | 84.1 | 2.5 | 101.0 ± 2.0 | 101.0 | 2.0 | 119.1 ± 2.0 | 102.0 | 1.7 | 80.0 ± 4.0 | 80.0 | 5.1 | 89.1 ± 3.0 | 89.1 | 3.4 | 99.1 ± 3.0 | 99.1 | 3.0 |
Sample | Added (μg g−1) | Zn | Al | Cr | Co | Ca | Mg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | Found (μg g−1) | R% | RSD% | ||
SFC-3 | 0 | 9.1 ± 0.9 | - | 9.9 | 11.2 ± 1.1 | - | 9.8 | <LOD | - | - | <LOD | - | - | 754.1 ± 3.7 | - | 0.5 | 351.9 ± 20.4 | - | 5.8 |
50 | 65.4 ± 2.5 | 112.6 | 3.8 | 67.5 ± 1.0 | 99.3 | 1.5 | 49.6 ± 0.1 | 99.3 | 0.2 | 53.9 ± 7.1 | 107.8 | 13.2 | 791.9 ± 20 | 93.6 | 2.5 | 411.0 ± 22.2 | 118.1 | 5.4 | |
100 | 124.1 ± 13.0 | 115.0 | 10.5 | 115.0 ± 2.0 | 103.8 | 1.7 | 109.3 ± 1.1 | 109.3 | 1.0 | 106.0 ± 14.0 | 106.0 | 13.2 | 847.1 ± 30 | 93.0 | 3.5 | 438.9 ± 20 | 87.0 | 4.6 | |
PC-3 | 0 | 12.8 ± 1.3 | - | 10.2 | <LOD | - | - | D 1 | - | - | <LOD | - | - | 53.0 ± 4.3 | - | 3.5 | 645.0 ± 63.6 | - | 9.9 |
50 | 55.6 ± 4.6 | 85.7 | 8.3 | 55.6 ± 5.1 | 99.4 | 9.2 | 49.7 ± 1.1 | 99.4 | 2.2 | 55.7 ± 2.5 | 111.4 | 4.5 | 97.3 ± 5.0 | 88.6 | 5.2 | 699.7 ± 65.0 | 109.5 | 9.3 | |
100 | 131.7 ± 1.9 | 118.9 | 1.4 | 105.0 ± 5.0 | 105.0 | 4.7 | 119.3 ± 1.1 | 119.3 | 0.9 | 98.3 ± 4.2 | 98.3 | 4.3 | 137.3 ± 5 | 84.0 | 3.6 | 762.1 ± 50.3 | 117.0 | 6.6 | |
P-1 | 0 | 9.7 ± 0.6 | - | 6.2 | 8.6 ± 0.5 | - | 5.8 | 1.3 ± 0.1 | - | 7.7 | <LOD | - | - | 115.1 ± 6.9 | - | 6.0 | 1295.3 ± 85.6 | - | 6.6 |
50 | 55.2 ± 1.1 | 90.9 | 2.0 | 49.6 ± 1.4 | 99.1 | 2.8 | 50.9 ± 0.3 | 99.1 | 0.6 | 44.4 ± 0.4 | 88.5 | 0.9 | 160.8 | 91.3 | 3.1 | 1345.8 ± 90.0 | 100.9 | 6.7 | |
100 | 115.7 ± 2.0 | 106.0 | 1.7 | 109.5 ± 4.3 | 100.9 | 3.9 | 107.3 ± 2.0 | 106.0 | 1.9 | 96.2 ± 4.3 | 96.2 | 4.7 | 205.1 ± 18 | 90.0 | 8.8 | 1404.4 ± 12.4 | 109.0 | 0.9 | |
CR-1 | 0 | 13.4 ± 0.7 | - | 5.2 | 24.2 ± 0.1 | - | 0.4 | 0.95 ± 0.03 | - | 3.2 | <LOD | - | - | 332.6 ± 4.3 | - | 1.3 | 1216.7 ± 75.2 | - | 6.2 |
50 | 43.8 ± 2.1 | 87.5 | 4.8 | 79.2 ± 3.5 | 98.2 | 4.4 | 50.1 ± 0.5 | 98.2 | 1.0 | 50.7 ± 3.1 | 101.5 | 6.1 | 376.1 ± 50 | 86.9 | 13.3 | 1268.1+75.0 | 102.7 | 5.9 | |
100 | 99.1 ± 10.0 | 85.7 | 10.0 | 126.2 ± 3.0 | 102.0 | 2.4 | 103.0 ± 4.0 | 102.0 | 3.9 | 87.5 ± 3.2 | 87.5 | 3.7 | 419.6 ± 30 | 87.0 | 7.1 | 1300.0 ± 13.1 | 83.0 | 1.0 |
Sample | Ba (μg g−1) | Cd (μg g−1) | Cu (μg g−1) | Fe (μg g−1) | Pb (μg g−1) | Mn (μg g−1) | Ni (μg g−1) | Zn (μg g−1) | Cr (μg g−1) | Co (μg g−1) | Ca (μg g−1) | Mg (μg g−1) | Al (μg g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFC-1 | 0.83 ± 0.01 | <LOD | 7.7 ± 0.1 | 24.0 ± 2.3 | <LOD | <LOD | <LOD | 14.1 ± 0.7 | 1.1 ± 0.1 | <LOD | 767.4 ± 4.7 | 521.1 ± 29.6 | 8.2 ± 0.4 |
SFC-2 | <LOD | <LOD | 5.8 ± 0.3 | 305.0 ± 7.7 | <LOD | <LOD | 2.10 ± 0.1 | 5.9 ± 0.1 | D | <LOD | 453.0 ± 2.1 | 317.8 ± 14.5 | 54.2 ± 3.3 |
SFC-3 | 1.07 ± 0.09 | <LOD | 3.7 ± 0.1 | 12.2 ± 0.5 | <LOD | <LOD | <LOD | 9.1 ± 0.9 | D | <LOD | 754.1 ± 3.7 | 351.9 ± 20.4 | 11.2 ± 1.1 |
SFC-4 | <LOD | <LOD | 3.7 ± 0.2 | 13.9 ± 0.4 | <LOD | <LOD | <LOD | 8.2 ± 0.5 | D | <LOD | 321.7 ± 17.9 | 465.7 ± 17.7 | 5.6 ± 0.9 |
SFC-5 | <LOD | <LOD | D 1 | 6.8 ± 0.1 | <LOD | <LOD | <LOD | 8.1 ± 0.5 | D | <LOD | 550.3 ± 37.9 | 502.6 ± 18.2 | <LOD |
SFC-6 | <LOD | <LOD | D | 5.9 ± 0.1 | <LOD | <LOD | D | D | D | <LOD | 184.9 ± 7.2 | 242.5 ± 22.0 | <LOD |
SFC-7 | <LOD | <LOD | 5.8 ± 0.3 | 9.5 ± 0.7 | <LOD | 6.0 ± 0,1 | <LOD | 15.9 ± 0.2 | D | <LOD | 212.9 ± 18.3 | 1060.0 ± 84.9 | <LOD |
SFC-8 | 2.15 ± 0.07 | <LOD | 4.8 ± 0.3 | 9.9 ± 0.2 | <LOD | 3.8 ± 0.2 | <LOD | 13.3 ± 1.1 | <LOD | <LOD | 161.0 ± 1.4 | 872.9 ± 38.4 | 9.6 ± 0.8 |
SFC-9 | 0.85 ± 0.07 | <LOD | D | 11.1 ± 0.2 | <LOD | <LOD | <LOD | 4.8 ± 0.4 | <LOD | <LOD | 185.4 ± 6.5 | 604.3 ± 3.6 | 12.4 ± 0.2 |
PC-1 | <LOD | <LOD | D | 15.2 ± 0.2 | <LOD | <LOD | <LOD | 12.6 ± 0.1 | D | <LOD | 170.8 ± 1.1 | 927.9 ± 40.4 | <LOD |
PC-2 | 2.05 ± 0.07 | <LOD | D | 20.5 ± 1.2 | <LOD | 1.9 ± 0.1 | <LOD | 19.4 ± 0.1 | 0.62 ± 0.06 | <LOD | 71.9 ± 2.7 | 1225.0 ± 35.4 | 4.6 ± 0.1 |
PC-3 | 2.30 ± 0.14 | <LOD | 4.3 ± 0.3 | 17.1 ± 1.3 | <LOD | 2.1 ± 0.2 | <LOD | 12.8 ± 1.3 | D | <LOD | 53.0 ± 4.3 | 645.0 ± 63.6 | <LOD |
P-1 | 1.32 ± 0.11 | <LOD | D | 25.4 ± 1.5 | <LOD | 2.3 ± 0.1 | <LOD | 9.7 ± 0.6 | 1.26 ± 0.1 | <LOD | 115.1 ± 6.9 | 1295.3 ± 85.6 | 8.6 ± 0.5 |
P-2 | 0.83 ± 0.02 | <LOD | 3.3 ± 0.2 | 16.3 ± 0.6 | <LOD | D | <LOD | 9.1 ± 0.4 | 0.60 ± 0.06 | <LOD | 201.3 ± 1.8 | 666.6 ± 37.6 | 11.3 ± 0.2 |
P-3 | <LOD | <LOD | <LOD | 11.7 ± 0.1 | <LOD | <LOD | 0.91 ± 0.01 | 4.0 ± 0.1 | D | <LOD | 31.0 ± 4.2 | 230.0 ± 14.1 | 16.3 ± 1.5 |
P-4 | <LOD | <LOD | D | 11.3 ± 0.6 | <LOD | <LOD | <LOD | 6.2 ± 0.6 | D | <LOD | 216.2 ± 14.7 | 759.1 ± 51.5 | 9.8 ± 0.3 |
P-5 | <LOD | <LOD | <LOD | 13.7 ± 1.3 | <LOD | <LOD | <LOD | D | D | <LOD | 298.3 ± 2.3 | 767.7 ± 14.7 | 6.2 ± 0.1 |
P-6 | <LOD | <LOD | D | 11.2 ± 0.4 | <LOD | <LOD | D | 3.4 ± 0.2 | <LOD | <LOD | 360.1 ± 5.3 | 690.0 ± 14.1 | D |
PRC-1 | <LOD | <LOD | <LOD | 12.6 ± 1.2 | <LOD | <LOD | 1.8 ± 0.1 | 6.5 ± 0.2 | <LOD | <LOD | 153.1 ± 4.9 | 1556.3 ± 56.9 | 7.2 ± 0.3 |
CR-1 | <LOD | <LOD | D | 17.1 ± 1.6 | <LOD | D | D | 13.4 ± 0.7 | 0.95 ± 0.03 | <LOD | 332.6 ± 4.3 | 1216.7 ± 75.2 | 24.2 ± 0.1 |
CR-2 | 1.25 ± 0.07 | <LOD | <LOD | 12.0 ± 0.3 | <LOD | D | 2.1 ± 0.1 | 3.3 ± 0.1 | 1.11 ± 0.02 | <LOD | 272.1 ± 24.8 | 255.5 ± 6.2 | 8.1 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manousi, N.; Zachariadis, G.A. Development and Application of an ICP-AES Method for the Determination of Nutrient and Toxic Elements in Savory Snack Products after Autoclave Dissolution. Separations 2020, 7, 66. https://doi.org/10.3390/separations7040066
Manousi N, Zachariadis GA. Development and Application of an ICP-AES Method for the Determination of Nutrient and Toxic Elements in Savory Snack Products after Autoclave Dissolution. Separations. 2020; 7(4):66. https://doi.org/10.3390/separations7040066
Chicago/Turabian StyleManousi, Natalia, and George A. Zachariadis. 2020. "Development and Application of an ICP-AES Method for the Determination of Nutrient and Toxic Elements in Savory Snack Products after Autoclave Dissolution" Separations 7, no. 4: 66. https://doi.org/10.3390/separations7040066
APA StyleManousi, N., & Zachariadis, G. A. (2020). Development and Application of an ICP-AES Method for the Determination of Nutrient and Toxic Elements in Savory Snack Products after Autoclave Dissolution. Separations, 7(4), 66. https://doi.org/10.3390/separations7040066