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Abstract: This study investigates the feasibility of producing ethanol from date palm seeds.
The chemical compositions of three varieties of date seeds were first studied, showing mainly
the presence of cellulose and hemicellulose. Ethanol was produced after a pre-treatment of date seeds
using acid hydrolysis to extract the cellulosic fraction and to remove the lignin. Producing ethanol by
fermentation was performed using the yeast Saccharomyces cerevisiae for 24 h, during which ethanol
yield, biomass concentration, and total reducing sugars were recorded. The results obtained showed
that the sugar content decreased over time, while ethanol production increased. Indeed, date seeds
gave the highest ethanol concentration of 21.57 g/L after 6 h of alcoholic fermentation. These findings
proved the feasibility of producing ethanol from date seeds.
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1. Introduction

Renewable energy corresponds to the energy provided from renewable resources and constitutes
one of the worldwide headlines to meet the global energy requirements. The rapid depletion
of fossil resources has incited researchers to develop alternative, renewable, low cost-effective,
and environmentally friendly fuels [1]. The conversion of natural resources (e.g., trees, agricultural
and forestry waste, crops, etc.) to energy (e.g., fuel and electricity) is already in progress in many
countries [2]. Several environmental issues are associated with the use of petroleum resources,
which requires developing alternative systems to produce renewable energy [3–7]. Bioethanol, as a
renewable energy, has a high octane number and could be blended with gasoline to reduce the emission
of CO2, NOx, and hydrocarbons after combustion. It has a high compression ratio and showed
adequacy to be used in the combustion engines [3,8,9]. Bioethanol has become a major biotechnology
product, and the needs in the market are continuously increasing. Various agricultural waste products
are rich in sugars, which could be efficiently fermented to ethanol. The main feedstock for bioethanol
production could be classified into starchy materials (e.g., corn, barley, wheat, etc.), sucrose-rich
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materials (e.g., sugar cane, sugar beet, sweet sorghum, etc.), and lignocellulosic materials (e.g., grasses,
forest “waste”, wood straw, etc.) [10].

In this regard, bioethanol has been produced from different kinds of biomasses that include rice
hulls [11], sugar cane leaves [12], industrial waste [13], agriculture residue [14], sweet sorghum [15],
and lignocellulose from wood and agricultural residues [16], among others, have been reported.
Bioethanol production needs usually pre-treatment steps (chemically and or enzymatically) of the
feedstock to produce fermentescible sugars before their conversion by alcoholic fermentation to
bioethanol. Different strains of yeast and bacteria have been described in the literature for the
production of ethanol [17–19]. Many factors should be considered to select the strains such as the
productivity, the resistance to ethanol, the presence of inhibitors in the medium, and the range of pH
and temperature [20]. The yeast Saccharomyces cerevisiae is used in most of the alcoholic fermentation
processes, mainly because of its high ethanol resistance, low optimal pH range, and anaerobic
conditions requirement [21]. However, it should be noted that S. cerevisiae yeast is not suitable for
ethanol production from xylose, which needs modified strains, or the pre-treatment of xylose by
bacterial enzymes [22].

Information in the literature about ethanol production from date seeds is scarce, and research
studies were mainly focused on their chemical composition [23–25], even though many industries
transforming date fruits generate the seeds as a by-product. In fact, date palm (Phoenix dactylifera L.)
represents one of the oldest plants cultivated mainly in the arid and semiarid regions [26]. Date fruit
(a fleshy part and one seed) production was estimated to 8.52 million tons in 2018 [27]. Considering
that the date seed represents ≈10% of the fruit mass, ≈852,000 tons of date seeds are then generated [26].
Tunisia has more than 4 million date palm trees that produce annually ≈100,000 tons of fruits [28].
Most of the seeds generated are usually disposed of or used as animal feed. Therefore, their valorization
to higher-added value products, such as ethanol, is of paramount importance. In this line, this work
aims to investigate the enzymatic treatment of date seeds for the generation of fermentescible sugars,
which is followed by their conversion into ethanol by fermentation.

2. Materials and Methods

2.1. Date Seed Material

Three cultivars of date seeds (Deglet Nour, Ghars Souf, and Allig) (Figure 1) were separated from
date fruits (≈50 kg) cultivated in Douz city (Tunisia). Date fruits were harvested at the full ripening
stage, which is also called the “Tamr stage”. The collected seeds were first soaked in water and then
washed using ultrapure water for the removal of the adhering date flesh. Then, the seeds were air-dried
before oven-drying at 50 ◦C during 48 h. Date seeds from each variety were then grinded using a
heavy-duty grinder until passing 200 µm sieve pore size and stored at −20 ◦C until use.
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2.2. Chemical Characterization of Date Seeds

2.2.1. Determination of Extractives Content

The extractives (E, %) include mainly carbohydrates of low molecular weight, salts, non-volatile
hydrocarbons, waxes, and fats. Removing them from the date seeds was performed by placing
4.0 ± 0.1 g of date seed powder in a pre-weighed extraction thimble and heating in a Soxhlet apparatus
under reflux for 8 h in the presence of a 150 mL ethanol/toluene (2:1) mixture. After oven drying
during 24 h at 105 ◦C, the extraction thimble was cooled to room temperature and then weighed. Then,
the free of extractives sample obtained was placed in a desiccator for analysis.

2.2.2. Determination of Insoluble and Soluble Lignin Content

The free of extractives sample (m0 = 1 g) was introduced in a 1-L flask and mixed with 15 mL
of sulfuric acid (72%) to determine the insoluble lignin content. The mixture was first placed in a
water bath for 1 h at 20 ◦C, then supplemented by 575 mL ultrapure water, and finally brought to
boiling under reflux during 4 h. Separation between the soluble and the insoluble fraction was made
by filtration using a pre-weighed (m1) fritted glass filter (16–40 µm porosity). The insoluble fraction
kept in the filter was washed with hot water until neutrality and then oven-dried at 105 ◦C for 24 h.
After cooling to room temperature in a desiccator, the weight (m2) (filter + insoluble matter) was
measured, and the insoluble lignin content (in % dry basis) was determined according to Equation (1).

Insoluble lignin, % =
(m2 −m1)

m0
∗ (100− E(%)) (1)

The absorbance of the soluble fraction was then measured at 280 nm (TAPPI UM250 standards),
and the content of soluble lignin was calculated using Equation (2).

Soluble lignin, % =

(
Absorbance at 280 nm ∗ Dilution f actor

20 × 100
)

1000 ∗ weight o f sample
(2)

2.2.3. Determination of Holocellulose Content

The content of holocellulose (cellulose and hemicellulose) was determined by placing 2.5 g of free
of extractives sample (m0) in an Erlenmeyer flask and adding 80 mL hot water. Then, the suspension
was placed in a water bath at 70 ◦C and supplemented each hour by 2.6 mL sodium chlorite (25%) and
0.5 mL of glacial acetic acid until 8 h. Separation between soluble and insoluble fraction was performed
by filtration using a pre-weighed (m1) crucible filter (40–100 µm porosity). Then, the set of insoluble
fraction/filter was oven-dried during 24 h at 105 ◦C, cooled in a desiccator to room temperature,
and finally weighed (m2). The content of holocellulose (HOL) was calculated according to Equation (3)
and was expressed in % dry basis.

Holocellulose content (HOL), % =
(m2 −m1)

m0
∗ (100− E(%)) (3)

2.2.4. Determination of Cellulose and Hemicellulose Contents

The extracted holocellulose was fractionated into cellulose and hemicellulose. This experiment
was performed in a 250 mL glass beaker by mixing 2 g (m0) of holocellulose sample and 10 mL of NaOH
(17.5%). The total volume was made up to 25 mL by adding 5 mL NaOH (17.5%) every 5 min. Then,
the mixture was supplemented with 33 mL ultrapure water and further stirred for 1 h. Separation of
the solid fraction (cellulose) from the mixture was performed by vacuum filtration using a pre-weighed
(m1) fritted glass filter (40–100 µm porosity). Then, the cellulose fraction was washed by 100 mL NaOH
(8.3%) followed by 500 mL of ultrapure water. After 3 min soaking in 15 mL acetic acid (10%), it was
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washed with ultrapure water until reaching a neutral pH. The weight (m2) of the set filter/cellulose
was determined after oven drying during 24 h at 105 ◦C and cooling to room temperature. Then,
the content of cellulose (CEL) was calculated based on Equation (4) and expressed on a percentage
dry basis.

Cellulose content (CEL), % =

(
(m2 −m1)

m0

)
∗HOL (%) (4)

Then, the content of hemicellulose (HEM) was calculated based on the difference between the
content of holocellulose and cellulose, as shown in Equation (5).

Hemicellulose (HEM), % = HOL(%) – CEL(%) (5)

2.3. Infrared Spectroscopy Analyses

Each seed variety sample (1 mg) was mixed with 100 mg KBr and then scanned in a wavenumber
range of 650–4000 cm−1 to determine the Fourier Transform Infrared (FTIR) spectra [29]. A Shimadzu
spectrometer (UV 1240, Beijing, China) was used to record the sample transmission (%).

2.4. Extraction of Cellulose from Date Seeds

After characterization, impurities and lipophilic molecules were removed from date seed powder
(50 g of each variety) using 95% ethanol during 24 h and under agitation at 4 ◦C. Then, the powder
obtained was mixed with 20 volumes of ultrapure water and brought to boiling during 2 h. Separation
of the solid residue was performed by filtration using Whatman no. 4 filter paper. The filtrate
containing the soluble polysaccharides was discarded, and the solid residue was brought to boiling
during 2 h in the presence of 500 mL NaOH (1 N). Then, the mixture was filtered using Whatman
n◦ 4 filter paper to separate the filtrate (containing hemicellulose) and the solid residue (containing
cellulose) that was further bleached in the presence of NaClO2 at 80 ◦C for 2 h and under continuous
stirring [30–32]. Then, the mixture was cooled down to room temperature and neutralized by adding
ultrapure water. The cellulose obtained was left to dry at room temperature and then stored at 4 ◦C
until hydrolysis. The cellulose yield calculation is given by Equation (6).

Cellulose yield, % =
Recovered mass after drying

weight o f date seed(g)
∗ 100 (6)

2.5. Microbial Strains and Culture Conditions

2.5.1. Penicillium occitanis Pol6

Enzymatic hydrolysis of date seed cellulose was performed using an enzymatic mixture produced
by Penicillium occitanis Pol6 mutant (Cayla company, Toulouse, France) [33]. The strain was growing
in 1000 mL flasks containing 200 mL of a modified Mandels liquid medium. The composition of
the medium was as follows: date seed powder (2%) acting as carbon substrate, yeast extract (1 g/L),
NaNO3 (5 g/L), KH2PO4 (2 g/L), CaCl2 (0.3 g/L), MgSO4 7 H2O (0.3 g/L), Tween 80 (0.1%), and 1 mL
of oligoelements (CoCl2 (2 g/L), MnSO4 H2O (1.6 g/L), ZnSO4 H2O (1.4 g/L), and FeSO4 7 H2O
(5 g/L)) [34,35]. The fermentation was conducted in a shaker for 9 days at 30 ◦C, pH 5.5, and 250 rpm
agitation. The separation between the microbial biomass and the liquid medium containing the
secreted enzymes (cellulase and endoglucanase) was performed by centrifugation at 4 ◦C, 7000 rpm,
and during 20 min.

2.5.2. Saccharomyces cerevisiae Strain Culture

The strain Saccharomyces cerevisiae used for ethanol production from the hydrolyzed date seed
cellulose was provided from the American Type Culture Collection (Manassas, VA, USA). A yeast extract
peptone dextrose (YPD) medium (dextrose (20 g/L), yeast extract (10 g/L), peptone (20 g/L), and agar
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(18 g/L)) was used to prepare the inoculum (50 mL in 250 mL Erlenmeyer flasks). After incubation at
30 ◦C during 24 h, 2% of the inoculum was used to start the ethanolic fermentation.

2.6. Enzymatic Hydrolysis

2.6.1. Enzyme Activity Measurements

A standard filter paper assay was used to determine the cellulose activity [36]. The experiment
consisted of mixing 0.4 mL of enzymatic extract, 0.6 mL of sodium acetate buffer (50 mM, pH 5.5),
and 50 mg Whatman (No. 1) filter paper. Hydrolysis was performed in a water bath at 50 ◦C during
1 h, and the results were expressed as filter paper units (FPU). One FPU was defined as the amount of
enzyme releasing 1 µmol of glucose/min [36].

Carboxymethyl cellulose (CMC) was used as substrate to determine the endoglucanase activity [36].
The reaction consisted of mixing 0.1 mL of enzymatic extract, 0.4 mL sodium acetate buffer (50 mM,
pH 5.5), and 0.5 mL CMC (1%). Hydrolysis was performed in a water bath at 50 ◦C during 30 min.
Results were expressed in international unit of endoglucanase, in which one unit corresponds to the
amount of enzyme releasing 1 µmol of glucose/min [37].

2.6.2. Date Seed Cellulose Hydrolysis

Once the cellulase and endoglucanase activities were determined, different concentrations of date
seed cellulose, from 2.5 to 20 mg/mL, were used to optimize the substrate concentration for cellulose
hydrolysis. Different samples were taken from the mixture over time, centrifuged during 10 min at
8000 rpm, and the supernatant was analyzed for reducing sugars using the 3,5-dinitrosalicylic acid
(DNS) method [38].

2.7. Ethanol Fermentation of Date Seed Cellulose Hydrolysates

Hydrolyzed date seed cellulose was fermented using S. cerevisiae in 250 mL Erlenmeyer flasks
to produce ethanol. The culture medium was composed of yeast extract (1%), peptone (2%), and the
hydrolyzates (1, 2, and 4% w/v). It was sterilized by autoclaving (121 ◦C for 20 min) prior to fermentation
and then inoculated by a 20-h-old culture of S. cerevisiae. Ethanolic fermentation was conducted
at 30 ◦C temperature, 100 rpm agitation, and pH 5. Sampling was performed periodically until
48 h fermentation, and each sample was analyzed to determine the reducing sugar content as above
described. Ethanol content in each sample was determined using the ethanol FS kit (Diagnostic System
International). The reaction consisted first of measuring the absorbance A1 at 376 nm of a mixture of
10 µl sample and 1 mL of reagent R1 (buffer pH 9) incubated at 37 ◦C for 5 min. Then, this mixture
was supplemented by 250 µl reagent R2 (buffer pH 6.6, NAD, alcohol dehydrogenase), incubated for
5 min at 37 ◦C, and its absorbance A2 was measured at 376 nm. In this reaction mixture, ethanol is
converted in the presence of NAD+ to acetaldehyde by alcohol dehydrogenase. A standard curve
was established using a solution of ethanol (3 g/L). The ethanol concentration in each sample was
determined according to Equation (7).

Ethanol content, g/L =
A2 −A1 (Sample)

A2 −A1 (Standard)
∗ 3 (7)

The yield of ethanol was calculated according to Equation (8). It corresponds to the yield
obtained using the hydrolyzed cellulose divided by the theoretical one, when pure glucose is used
(0.51 kg ethanol/kg glucose) [39].

Ethanol yield, % =
Obtained yield (g)

Theoretical yield(g)
∗ 100 (8)
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2.8. Statistical Analysis

Results in the graphs correspond to the average of three biological replicates ± standard deviation
(SD). Significant differences (p < 0.05) were determined using SPSS software 17.0 by Duncan’s multiple
range test.

3. Results and Discussion

3.1. Date Seed Characterization

The results of the chemical compositions of date seeds are summarized in Table 1. The moisture
content in the three varieties was low; the highest value recorded (8.02 ± 0.18%) was for the Deglet
Nour variety and the lowest one (4.76 ± 0.2%) was for the Allig variety. The results obtained concur
with those found previously [24]. Low moisture contents allow the storage of date seeds at room
temperature for subsequent analysis. The variation observed in the moisture content of date seeds
could be related to the differences in the varieties studied.

Table 1. Physicochemical composition of three varieties of date seeds (Allig, Deglet Nour, Ghars).

Allig Deglet Nour Ghars

Humidity 4.76 ± 0.2 8.02 ± 0.18 7.81 ± 0.12
Cellulose 26.6 ± 0.08 33.92 ± 0.075 31.94 ± 0.089

Hemicellulose 42.3 ± 0.3 31.97 ± 0.26 34.29 ± 0.241
Lignin 24.06 ± 0.04 21.2 ± 0.062 23.96 ± 0.033

The results of lignin content analysis in date seeds show that the Allig variety had the highest
content of lignin (24.06%), while the Deglet Nour variety had the lowest one (21.2 ± 0.062%).

A high content of hemicellulose was obtained in date seeds with the respective values of
42.3 ± 0.3%, 34.29 ± 0.241%, and 31.97 ± 0.26% in Allig, Ghars, and Deglet Nour varieties. Similarly,
high cellulose contents were obtained in the three varieties with the highest value of 33.92 ± 0.075% for
the Allig variety. These results were higher than those found previously, reporting a cellulose content
between 15.18% and 19.26% [40].

The functional groups of the three varieties of date seeds analyzed using infrared spectroscopy
showed the presence of characteristic absorption peaks observed around 2800–3000 cm−1 and
3304.28 cm−1 for the respective stretching vibrations of C-H and O-H (Figure 2), which concur
with the results found by Koubaa et al. [29]. The spectrum analysis shows also the presence of a
band at 1600 cm−1 corresponding to the symmetrical deformation of -CH2 and -CH3 [41], a band at
1002 cm−1 corresponding to the vibration of C-O-H deformation, a band at 963 cm−1 corresponding to
C-H bending [42], and the bands at 1072–1080 cm−1 corresponding to the presence in the main chain of
galactopyranose units [43,44].
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3.2. Extraction of Cellulose from Date Seeds

The results of cellulose content extracted from the date seed powders of the three varieties are
presented in Figure 3. The extraction yields were of 24 ± 0.08%, 30.25 ± 0.08%, and 28.77 ± 0.09% for
Allig, Deglet Nour, and Ghars varieties, respectively. Thus, the date seed of Deglet Nour gave the best
yield of cellulose and was selected for ethanol production.
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3.3. Enzymatic Hydrolysis of Date Seed Cellulose

3.3.1. Optimization of Enzyme Production

Deglet Nour date seed powder, used as carbon substrate, was used at different concentrations
to optimize the production of cellulase and endoglucanase by P. occitanis Pol6. The different
samples taken at days 3, 5, 7, and 9 were analyzed for their FPase (filter-paperase) and CMCase
(carboxymethyl-cellulase) activities. The results presented in Figure 4A show the proportional increase
of the FPase activity with the concentration of substrate up to the 7th day of culture, reaching a
maximum of 0.25 ± 0.0058 U/mL (using 2% (w/v) date seed). Beyond the 7th day, the FPase activity
decreased, which was probably due to the cell lysis, the release of protease, and the enzyme degradation.
Similar results were observed for the CMCase activity, with the highest value (1.74 ± 0.022 U/mL)
found at the 7th day (using 2% (w/v) date seed) (Figure 4B), which decreased beyond this point.
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Figure 4. FPase (A) and carboxymethyl cellulose (CMC)ase (B) activities produced by P. occitanis Pol6
taken at the 3rd, 5th, 7th, and 9th day of culture.

3.3.2. Cellulose Hydrolysis

The cellulose fraction from seeds of the Deglet Nour variety was hydrolyzed using the enzymes
produced by P. occitanis Pol6 strain, which were collected at the 7th day of culture. Different
concentrations of date seed cellulose were used to optimize the substrate concentration for cellulose
hydrolysis. The obtained results (Figure 5) showed that the maximum hydrolysis was obtained using a
15% substrate concentration. The hydrolysis of date seed cellulose was performed over 24 h using
1.74 ± 0.022 U/mL CMCase and 0.25 ± 0.0058 U/mL PFase. After incubation for 20 h, the amount of
reducing sugars released was 56.1 mg/mL, and the hydrolysis yield recorded was 37.4%.
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3.4. Ethanol Production by Yeast Fermentation

After cellulose hydrolysis, the released glucose was converted to ethanol using S. cerevisiae yeast.
Results were compared to those obtained with commercial glucose used at the same concentration
range. The biomass concentration, residual reducing sugars amount, and concentration of ethanol
were optimized. The results presented in Figure 6 showed that the highest bioethanol production yield
was obtained using a mixture of 4% commercial glucose and 4% enzymatic hydrolyzate.
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Figure 6. Determination of fermentation parameters: (A) biomass concentration, (B) reducing sugars,
(C) bioethanol production. G 1%, G 2%, and G 4% represent respectively the concentrations of
commercial glucose used as control for ethanol production. HDSC denotes hydrolyzate of date
seed cellulose.
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After 6 h fermentation, the substrate was completely consumed, and the production of biomass
and ethanol reached a maximum using both substrates (commercial glucose and date seed cellulose
hydrolyzate), irrespective of the concentration. In addition, the obtained result showed that for the
same initial concentration of carbon substrate, biomass and ethanol production were higher using a
commercial substrate than enzymatic hydrolyzate. This result was not surprising due to the presence
of other secondary molecules in the hydrolyzate that may decrease the growth of S. cerevisiae yeast
and consequently the production of ethanol. Furthermore, after 6 h of fermentation, the biomass
and ethanol concentrations obtained using 4% cellulose hydrolyzate were 2.78 g/L and 21.57 g/L,
respectively, whereas these values were of 3.64 g/L and 25 g/L, respectively using commercial glucose.
Compared to the other by-products, date seeds are a promising source for bioethanol production.
For example, ethanol production using 6% potato peel waste was 21 g/L after 10 h [45], and that
obtained using sugar beet molasses and thick juice was in the range of 31.7–109.5 g/L, depending on
sugar concentration and the use or not of immobilized cells [46].

Additionally, the maximal specific growth rate (µmax) values increased proportionally to glucose
concentrations (Table 2), with similar values obtained using 1% and 2% substrate concentrations.
However, the µmax values were higher for the commercial glucose (µmax = 0.427 h−1) than the enzymatic
hydrolyzate (µmax = 0.306 h−1). After 6 h fermentation, the productivities YX/S and YP/S using enzymatic
hydrolyzate were of 7.16% and 65.84%, respectively, whereas those using commercial glucose were of
8.86% and 62.89, respectively (Table 2).

Table 2. Fermentation characteristics. µmax represents the maximal specific growth rate, G represents
the generation time, YX/S and YP/S represent the yield coefficients of the mass of cells or product formed
per unit mass of substrate consumed, respectively. G 1%, G 2%, and G 4% represent respectively
the concentrations of commercial glucose used as control for ethanol production. HDSC denotes
hydrolyzate of date seed cellulose.

µmax (h−1) G (h) Y X/S (%) Y P/S (%)

G 1% 0.204 4.90 27.01 98.31
G 2% 0.257 3.89 14.68 69.91
G 4% 0.427 2.34 8.86 62.89

HCDS 1% 0.248 4.03 15.31 84.33
HCDS 2% 0.262 3.82 11.16 71.86
HCDS 4% 0.306 3.27 7.16 65.84

4. Conclusions

Results from this work showed that date seeds represent a potential feedstock for bioethanol
production after an appropriate pre-treatment. Ethanol production was performed after the generation
of fermentescible sugars using enzymatic hydrolysis of the cellulosic fraction of date seeds, followed by
alcoholic fermentation. Interesting ethanol concentration (21.57 g/L) was obtained, which demonstrates
the feasibility of adopting this multistage strategy for the valorization of date seed by-product and its
possible scaling-up. Limitations to scaling up the process could be related to the relatively high-energy
consumption to grind the seeds and the cost associated to enzyme production for cellulose hydrolysis,
which could make the process less competitive than others, transforming ready-to-use by-products
such as sugar beet and sugar cane molasses.
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