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Abstract: Rolling circle amplification (RCA) and loop mediated isothermal amplification (LAMP)
were combined to establish the rolling circle and loop mediated isothermal amplification (RC-LAMP)
method for miRNA detection. With the participation of Bst 2.0 DNA Polymerase, the method
enabled RCA and LAMP amplification to occur simultaneously without thermal cycling. The limit of
detection of RC-LAMP was 500 amol/L, which is comparable to previously reported amplification
strategies. Moreover, its upper limit of quantitation was higher and showed a stronger resistance
to matrix interference. Therefore, it is possible to detect low concentrations of miRNA in samples
by increasing the total RNA added. Owing to its facile detection mode and simple operation, this
method has great potential in clinical sample detection.

Keywords: microRNA; LAMP; RC-LAMP; sample detection

1. Introduction

MicroRNAs (miRNAs) are small, non-coding RNAs with 19–24 nucleotides, which
regulate two thirds of the protein-coding genes in humans [1]. MiRNAs have been con-
firmed to be involved in a variety of cellular functions and biological and pathological
processes, including the expansion, differentiation, metabolism and apoptosis of cancer
cells [2]. As a regulator of many cancer-related genes, miRNAs are expected to become
biomarkers for the diagnosis and prognosis of cancer [3]. A miRNA has the functions
of binding to functional proteins, regulating mitochondria-related gene mRNAs, directly
activating gene transcription and targeting other non-coding RNAs [4]. Based on the
above biological functions, miRNAs become a promising therapeutic drug in a variety of
pathological processes. Thus, it is imperative to establish sensitive and selective miRNA
detection strategies for the sake of medical applications or to understand their functions.
However, miRNAs are still challenging analytical targets on account of their small size,
sequence homology among family members and low abundance [5].

In recent years, some new technologies, such as assays based on isothermal nu-
cleic acid amplification, have been applied to detect miRNAs [6–14]. Among them,
rolling circle amplification (RCA) has become more popular, owing to its specificity and
simplicity [7,13–24]. The miRNA always serves as a ligation template, which is hybridized
with the padlock probe. Then, this DNA complex will be ligated by an enzyme to form
a circular single-stranded DNA (ssDNA). An external primer or miRNA itself works as
primer to extend on the circular ssDNA, and eventually displace the linked miRNA, then
long cascaded products, which are the repeated sequences from circular ssDNA, are pro-
duced [14,15,17–19,22–27]. However, the detecting of RCA products is exactly laborious
and time-consuming, although several kinds of methods based on RCA were designed
for simple and specific miRNA expression analysis including MNAzyme-mediated [13],
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nicking-mediated [17,27,28] and dumbbell probe-mediated RCA [29]. However, the sensi-
tivity of these RCA-based assays is still generally unsatisfactory, with low levels of miRNA
detection, which limits its biomedical applications. Recently, a miRNA quantification
method named rolling circle-quantitative PCR (RC-qPCR) was developed by our group,
where the Vent (exo-) DNA Polymerase was firstly utilized to combine RCA and qPCR
in one step, due to its high thermostability, which brought high sensitivity and speci-
ficity [30]. Unfortunately, this technique requires variable temperature amplification and
special laboratory skills, which restricts its wide applications.

Loop mediated isothermal amplification (LAMP) is another novel technique that
is suitable for genetic diagnosis with high efficiency. In regular protocol of LAMP, four
different primers are used to identify six different sequence areas, which brings an excellent
selectivity, while the sensitivity is improved by the exponential amplification feature. In
most LAMP-based assays, the target miRNAs serve as triggers to activate the reaction, only
in the presence of which can the primers be extended by the strand displacement DNA
synthesis function of DNA polymerase [31]. The target-triggered LAMP (TT-LAMP) with
a simple probe design remarkably improved detection sensitivity [32]. In ligation-based
LAMP (ligation-LAMP), the high fidelity of ligase in discriminating single-base mismatches
can be applied to improve the specificity [33]. Real-Time LAMP (RT-LAMP) applying a
new electrochemical DNA chip enables a multiplex LAMP reaction in a simple device
that is easy to operate [34]. These technologies have the characteristics of high specificity
and sensitivity, and have been widely used in the diagnosis of clinical diseases and the
qualitative and quantitative detection of epidemic bacteria of viruses. In LAMP-based
miRNA detection, as the LAMP template contains 4–6 pre-determined stem-loop sequences,
the design of the probes can be quite complicated [25]. Another shortcoming of LAMP
is the use of indirect signal detection methods, such as precipitation and dye, which are
ineffective to discriminate target products from nonspecific products.

In this paper, we designed a facile and ultrasensitive strategy for miR-200a detection
by combining the benefits of RCA with high specificity and LAMP with high sensitivity
(refers to RC-LAMP strategy). Periodontal disease is one of the most prevalent infectious
disease in humans and it is the main cause of tooth loss. Increasing evidence implicates
that periodontitis may link to multiple systemic diseases. In miRNA profiling studies
of periodontal disease tissues, the miR-200 family has been consistently identified as a
potential candidate miRNA biomarker in periodontitis-related processes [35,36]. In this
RC-LAMP assay, the target miR-200a worked as templates for the ligation of padlock probe.
Then, the RCA reaction was initiated by the backward inner primer (BIP) from LAMP,
bringing tandem ssDNA which was long and repeated. The cascade extension and strand
displacement reactions along the RCA product (similar to LAMP process) was carried out
with the forward inner primer (FIP) and forward outer primer (F3). As the reaction went
on, many double hairpin structures with different stem lengths would be produced, which
could independently initiate subsequent LAMP process. Thus, compared with RCA or the
LAMP method, the RC-LAMP method greatly improves detection sensitivity. By utilizing
the proposed RC-LAMP, even miRNA targets at 1 fM can be definitely detected. Bst 2.0
DNA Polymerase with strand displacement activity is used in this assay to enable the RCA
and LAMP to be performed simultaneously without the need for temperature changing
equipment, which simplifies the experimental operation and avoids the possibility of
contamination caused by repeated opening of the tube.

2. Materials and Methods
2.1. Apparatus

The real-time fluorescence measurements of the RC-LAMP were performed on an Ap-
plied Biosystem StepOnePlus real-time PCR instrument (Life Technologies, Inc., Carlsbad,
CA, USA).



Separations 2021, 8, 166 3 of 11

2.2. Materials and Reagents

Bst 2.0 DNA Polymerase (New England Biolabs, Ipswich, MA, USA) was purchased
from New England Biolabs. Betaine solution (Sigma-Aldrich, St. Louis, MO, USA) and
EvaGreen (Biotium, Fremont, CA, USA) were supplied by Merck. dNTP Set 100mM Solu-
tions (Thermo Scientific, Waltham, MA, USA) were bought from Thermo Fisher Scientific.
Diethyl pyrocarbonate (DEPC) treated deionized water was purified using an Elga “Purelab
Option” Water System. A miRNeasy Mini Kit and miRNeasy Serum/Plasma Advanced Kit
(QIAGEN, Hilden, Germany) were purchased from QIAGEN. The miRNAs were acquired
from Shanghai GenePharma Co., Ltd. (Shanghai, China). Oligonucleotides including
padlock probe, FIP, BIP and F3 were synthesized and purified by Sangon Biotech (Shanghai,
China) and had the following sequences (Table 1).

Table 1. miRNA and DNA sequences used in this work.

Name Sequence (5′–3′)

miR-200a-3p
(miR-200a) UAACACUGUCUGGUAACGAUGU

miR-200a-5p CAUCUUACCGGACAGUGCUGGA
miR-200b UAAUACUGCCUGGUAAUGAUGA
miR-200c UAAUACUGCCGGGUAAUGAUGGA
miR-429 UAAUACUGUCUGGUAAAACCGU

let-7a UGAGGUAGUAGGUUGUAUAGUU

Padlock probe

AGACAGTGTTATTCCTCTTCACCCTCCCACTCATTGGCACAGTTTA
GAGGTGAAAAGTAGAGCTGTCAAGCCCAAGGGCTTAGCTT-

TAGGGCTCCTCCTGAGTTCGG
CCCACAGTAGACATCGTTACC

F3 CACTCATTGGCACAGT
FIP AGGAGCCCTAAAGCTAAGTTAGAGGTGAAAAGTAGAGC
BIP GAGTTCGGCCCACAGTAGGGAGGGTGAAGAGGAA

2.3. Preparation of Solution

LAMP primer mix solution: 5 µL F3 (100 µM), 20 µL FIP (100 µM), 20 µL BIP (100 µM)
and 55 µL water were mixed together to get the final concentration of F3 to 5 µM and FIP
and BIP to 20 µM. This solution was stored at −20 ◦C.

2.4. RC-LAMP Assay Procedures

The ligation of the padlock probe is firstly introduced. Briefly, 5 µL target the miRNA
sample and 1 µL 20 pM padlock probe in T4 buffer (66 mM Tris-HCl, 6.6 mM MgCl2,
10 mM DTT and 100 µM ATP, pH 7.6) were mixed and preheated for 3 min at 65 ◦C, then
cooled down to room temperature. T4 DNA Ligase (70 U) was added (with the solution up
to 10 µL) and incubated at 37 ◦C for 45 min to accomplish the ligation reaction and then
heated at 65 ◦C for 10 min to deactivate the enzyme (Table S1).

Then, the ligation products are amplified by RCA using BIP as a primer. Exactly 1 µL
of the ligation products were pipetted into a pre-degeneration mixture containing 1 µL
LAMP primer mix, 0.4 mM dNTPs, 1 M betaine and 2 mM MgSO4 into a final volume
of 20 µL, then the mixture was pre-degenerated at 95 ◦C for 5 min and kept on ice for
another 2 min. A 5 µL solution containing Bst 2.0 DNA Polymerase (6 U) and 1.25 µL
20× EvaGreen was added into pre-degeneration solution, then the 25 µL mixture was put
into the StepOnePlus real-time PCR instrument to conduct the RC-LAMP at 62 ◦C. The
fluorescence intensity was real-time monitored at intervals of 3 min (Table S2).

2.5. Cell Lysis and RNA Preparation

Human colon cancer cell HT-29 was purchased from the Cell Bank of Chinese Academy
of Sciences under catalog number TCHu 103. HT-29 was firstly centrifuged at 3000 rpm
for 5 min in culture medium, then washed with PBS buffer once and spun down with
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centrifugation for 5 min (3000 rpm). A miRNeasy Mini Kit was used for total RNA
extraction from cells following the manufacturer’s quick-start protocol. The serum sample
was obtained using a miRNeasy Serum/Plasma Advanced Kit to extract miRNA. The
miR-200a sample was kept at −80 ◦C.

2.6. Detection of miRNA in Cell and Serum

The cells chosen were human colorectal cancer cell HT-29 (with high expression of
miR-200a). The total RNA from the cells were extracted and added at a concentration
not exceeding 1000 ng. The serum samples were collected from the patients who have
severe periodontal disease in the dental clinic of Sir Run Run Shaw hospital, Zhejiang
University. The related clinical data were accessed with appropriate ethical approvals. The
POI value (the point of inflection value) referred to the time when the amplification curve
reaches the maximum slope, which was used for the quantitative calculation of the LAMP
reaction. The concentration of miRNA was calculated by substituting POI value into the
accompanying standard curve.

3. Results and Discussion
3.1. Design Principle of RC-LAMP Assay

The schematic representation of miRNA detection by RC-LAMP method is shown in
Scheme 1. MiR-200a will hybridize to 5′ and 3′ ends of padlock probe (containing B1c, F1,
F2, F3 and B2c sequence area from LAMP), then this DNA complex would be ligated by
T4 DNA Ligase to form a circular ssDNA, a substrate for RCA. The RC-LAMP reaction
is carried out in one step with the participation of circular ssDNA, LAMP primer (FIP,
BIP and F3) and Bst 2.0 DNA Polymerase. Firstly, the BIP which contains B2 and B1c (B1
complementary) sequences bind to the B2c (B2 complementary) sequence on the circular
ssDNA to initiate the RCA reaction under the action of Bst 2.0 DNA Polymerase with strand
displacement activity, creating a single-stranded repeat sequence. Then, the internal primer
(FIP) and the external primer (F3) are hybridized with this single stranded product, forming
amplicons of various stem-loop structures by amplification and strand displacement, which
is further amplified by following LAMP process. The final amplification products bind to
the double-stranded fluorescent dye EvaGreen to produce a fluorescent signal, which can
be detected to quantify the target miRNA.

3.2. Optimization of Reaction Parameters

Several reaction parameters including the concentration of padlock probe, FIP/BIP
and amplification temperature were systematically optimized to get the optimal exper-
imental conditions for RC-LAMP. We evaluate each experimental parameter by ∆POI
value (POI sample—POI negative control), and take ∆POI maximum value as the optimal
experimental condition.

The forming of circular ssDNA needed the help of padlock probe; BIP and FIP also
played an important role in our RC-LAMP method. Thus, we investigated various concen-
trations of padlock probe, BIP and FIP to screen the optimal concentration. As shown in
Figure 1, the maximum ∆POI value was obtained using the 20 pM padlock probes. Figure 2
showed that suitable concentration of FIP/BIP were 800 nM. Then, different amplifica-
tion temperatures for the RC-LAMP were tested, and 62 ◦C was chosen as the reaction
temperature (Figure 3).

3.3. Selectivity

In order to evaluate the selectivity of this RC-LAMP method for miR-200a analysis,
some other miRNAs that have high sequence homology with miR-200a, such as miR-
200a-5p, miR-200b, miR-200c, miR-429 and let-7a, were selected to perform interference
assays under identical conditions. The target and interfering miRNAs are detected by the
RC-LAMP strategy using miR-200a specific padlock probe, and all miRNAs are at the same
concentration (10 fM). The result was examined by detecting the ∆POI value, which was
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the POI value difference of blank and target. The higher the ∆POI value, the better the
response of the miRNA to detection method. As shown in Figure 4, the ∆POI value of other
miRNAs is much lower than target miR-200a, meaning interferences of other miRNAs are
almost negligible. Our RC-LAMP method has excellent selectivity for miRNA detection.
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Figure 1. The optimization of the concentration of padlock probe on the RC-LAMP assay. The
graph shows the ∆POI value vs. the concentration of padlock probe. Experimental conditions:
miR-200a 1 pmol/L, T4 DNA ligase 70 U, FIP/BIP 800 nmol/L and amplification temperature
62 ◦C, respectively.
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Figure 2. The optimization of the concentration of FIP/BIP on the RC-LAMP assay. The graph shows
the ∆POI value vs. the concentration of FIP/BIP. Experimental conditions: padlock probe 20 pmol/L,
miR-200a 1 pmol/L, T4 DNA ligase 70 U and amplification temperature 62 ◦C, respectively.
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Figure 3. The effect of the LAMP amplification temperature on the RC-LAMP assay. The graph
shows the ∆POI value vs. the LAMP amplification temperature. Experimental conditions: padlock
probe 20 pmol/L, miR-200a 1 pmol/L, T4 DNA ligase 70 U and FIP/BIP 800 nmol/L, respectively.
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tions: padlock probe 20 pmol/L, miR-200a / mismatch miRNA 10 fmol/L, T4 DNA ligase 70 U,
FIP/BIP 800 nmol/L and amplification temperature 62 ◦C, respectively.

3.4. Quantification of miRNA

The analytical performance of the RC-LAMP method is estimated under the optimized
reaction parameters. The ∆POI value was recorded and used to quantitatively determine
the miR-200a level. As shown in Figure 5A, a linear relationship was observed with the
logarithm (lg) of the miR-200a concentrations in the range of 1 fM to 1 nM to the ∆POI
value. The correlation equation was ∆POI = 4.8289 Lg C + 7.8932, (R2 = 0.9956, C was
the concentration of miR-200a). The real-time fluorescence signal curves were shown in
Figure 5B, and the signal aroused by 1 fM miR-200a can be clearly discriminated from that
of the blank control. Table S3 displays the limit of detection of this method (500 aM), which
was similar to our RC-qPCR for miRNA detection reported earlier [30]. The sensitivity
of the proposed method is comparable to previously reported amplification strategies for
miRNA detection, as summarized in Table S4.

The analytical sensitivity, precision and accuracy of this assay investigated referring
to the requirements in the MIQE (Minimum Information for Publication of Quantitative
Real-Time PCR Experiments) guidelines. For the sensitivity investigation, miR-200a was
diluted to a concentration of 1 fM, 750 aM, 500 aM, 250 aM and 100 aM, respectively. The
samples without miRNA were used as negative control, and 10 samples were detected
in parallel for each concentration. As shown in Table S3, the sensitivity of RC-LAMP is
500 aM. In order to investigate the precision and accuracy, the miR-200a concentration was
set to 1 fM (the lower limit of quantification), 50 fM (low concentration), 5 pM (medium
concentration) and 500 pM (high concentration). The samples without miRNA were used
as negative control to measure the ∆POI value of each concentration of miR-200a, and each
concentration was tested in parallel five times. The accuracy was expressed in (measured
value/true value) × 100% while the precision was expressed in relative standard deviation.
The precision of RC-LAMP was 3.47%, 18.2%, 6.24% and 1.81% at the lower limit of
quantification and low, medium and high concentration, respectively, while the accuracy
was 108%, 89.9%, 113% and 99.4%, respectively. The experimental results indicated that
the RC-LAMP method had better precision and accuracy.
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Experimental conditions: Padlock probe 20 pmol/L, T4 DNA ligase 70 U, FIP/BIP 800 nmol/L and
amplification temperature 62 ◦C, respectively.

3.5. Real Sample Detection

To evaluate the potential of the RC-LAMP method in real sample analysis, the quantifi-
cation of miR-200a in total RNA, which was extracted from HT-29, was further applied. The
content of miR-200a was 111 ± 2.78 amol/µg, a result that was of no significant difference
(p = 0.1959) from either the RC-LAMP assay or the RC-qPCR (115 ± 2.21 amol/µg) method
reported earlier [2,9] (Figure 6).

Moreover, a spike/recovery experiment was carried out by adding certain amount of
target RNA (final concentration was 1 pM) to the diluted serum, which was regarded as
the sample detected by RC-LAMP method. The recoveries of miR-200a in 250 ng, 500 ng,
1000 ng, 1500 ng and 2000 ng total RNA were 97.3 ± 1.05%, 97.4 ± 1.45%, 98.6 ± 2.97%,
81.3 ± 4.53% and 62.0 ± 3.53%, respectively (Table S5). It is consistent with the recovery of
biological sample testing standards when the total RNA concentration is less than 1000 ng.
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Figure 6. Comparison with RC-LAMP method and RC-qPCR method applied to miR-200a detection
in HT-29 cells. There was no significant difference between RC-LAMP and RC-qPCR method.
Experimental conditions (RC-LAMP): padlock probe 20 pmol/L, T4 DNA ligase 70 U, FIP/BIP
800 nmol/L and amplification temperature 62 ◦C. Experimental conditions (RC-qPCR): padlock
probe 20 pmol/L, T4 DNA ligase and Vent (exo-) DNA Polymerase 70 U and 0.2 U, forward and
reverse primer 100 nmol/L and annealing temperature 56 ◦C, respectively.

4. Conclusions

In summary, an ultrasensitive RC-LAMP strategy for miRNA detection was estab-
lished, coupled with RCA for high specificity and LAMP for efficient amplification. It
displays superior detection sensitivity with a detection limit of 500 aM. The sensitivity of
the RC-LAMP assay is comparable to the traditional RCA or LAMP-based miRNA assays,
showing a wider range of quantification. At the same time, the RC-LAMP assay is more
resistant to matrix interference than our RC-qPCR method reported before. Therefore, it is
possible to detect lower concentrations of miRNA in samples by increasing the total RNA
added. In addition, this method used Bst 2.0 with strand displacement activity as a DNA
polymerase, enabling RCA and LAMP to be performed simultaneously without the need
for precise temperature changing equipment, simplifying experimental operations and
avoiding the possibility of contamination caused by repeated tube opening. In our study,
the target miR-200a works as a linker for RCA process. When this method is used to detect
other miRNAs, only the complementary sequence for target in padlock probe needs to be
modified, which provides a new idea for miRNA detection. Owing to its facile detection
mode and simple operation, this method has great potential in clinical sample detection.
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